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Abstract

Pain is strongly associated with neuro-immune activation. Thus, the emerging role of the

endocannabinoid system in neuro-inflammation is important. Acupuncture has been used

for over 2500 years and is widely accepted for the management of pain. Our study aimed to

investigate the effects of electroacupuncture on the regulation of cannabinoid receptor type

1 within the peripheral nervous system. Inflammatory pain was induced by injecting Com-

plete Freund’s adjuvant to induce mechanical and thermal hyperalgesia. Electroacupunc-

ture significantly attenuated the mechanical and thermal sensitivities, and AM251, a

cannabinoid receptor type 1 antagonist, eliminated these effects. Dual immunofluorescence

staining demonstrated that electroacupuncture elevated expression of cannabinoid receptor

type 1, co-localized with Nav 1.8. Furthermore, electroacupuncture significantly reduced lev-

els of Nav 1.8 and COX-2 by western blot analysis, but not vice versa as AM251 treatment.

Our data indicate that electroacupuncture mediates antinociceptive effects through periph-

eral endocannabinoid system signaling pathway and provide evidence that electroacupunc-

ture is beneficial for pain treatment.

Introduction

Pain is a common problem that affects patients’ quality of life and incurs huge economic costs.

The mechanisms of pain are complex, and neuro-immune activation modulates the initiation

and maintenance of pain. The on-demand endocannabinoid system has been shown to be

involved in various physiological processes. Notably, emerging preclinical and clinical studies

have demonstrated that targeting the endocannabinoid system offers opioid-sparing effects in

pain treatment [1]. The two main endocannabinoids are N-arachidonoyl ethanolamine (anan-

damide, [AEA]) [2] and 2-arachidonoylglycerol (2-AG) [3], derivatives of arachidonic acid.

Fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) principally metabo-

lize AEA and 2-AG, respectively. Endocannabinoids are endogenous ligands that bind to
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cannabinoid G-protein-coupled receptors type 1 (CB1) and type 2 (CB2) [4]. Both cannabi-

noid receptor agonists and inhibitors of FAAH and MAGL have reliable antinociceptive

effects.

CB1 is highly expressed throughout the nervous system, modulates the release of neuro-

transmitters and neuropeptides from presynaptic nerve endings, and inhibits synaptic trans-

mission [5]. Stimulation of CB1 leads to the activation of K+ channels and inhibition of

voltage-gated Ca2+ channels and adenylyl cyclase, subsequently downregulating the cAMP/

PKA pathway [6]. In contrast, CB2 receptors are mainly expressed in immune cells and

peripheral tissues. CB2 activation inhibits adenylyl cyclase activity and stimulates the induc-

tion of mitogen-activated protein kinase phosphatase-1 (MKP-1), resulting in the activation of

mitogen-activated protein kinase signal transduction [7]. CB2 encompasses immunomodula-

tory functions and maintenance of synaptic plasticity, and may have potential as a therapeutic

target for neuropathic pain and neurodegenerative diseases [8].

Acupuncture has had beneficial effects on pain relief and treatment for more than 2500

years in the East Asian cultural sphere. However, the mechanisms underlying the effects of

acupuncture are still not well understood. Analgesia effects of acupuncture are through multi-

dimensional pathways including stimulations of Aδ- and C-fibers [9, 10], meanwhile, releasing

of bioactive chemicals such as endorphin [11], adenosine [12], serotonin [13], and endocanna-

binoids [14]. Electroacupuncture (EA) increases the production of endocannabinoids and its

beneficial effects are eliminated by AM251 (a selective CB1 antagonist) in the rat brain [14].

EA is applied to the Huantiao (GB30) and Yanglingquan (GB34) acupoints to reduce inflam-

matory pain by increasing CB2 levels [15]. It has been reported that EA, applied to Neixiyan

(Ex-LE4) and Dubi (ST35), inhibits chronic pain in a mouse model of knee osteoarthritis. Its

signaling pathway involves elevated levels of endocannabinoids and CB1 in the ventrolateral

periaqueductal gray (vlPAG) [16]. A recent study demonstrated that low-frequency EA stimu-

lation through median nerve induced an anti-nociceptive effect and led to higher orexin A and

lower GABA levels in the vlPAG. It suggests that peripheral neurostimulation activates hypo-

thalamic orexin neurons to induce a CB1-dependent cascade [17].

Peripheral neurostimulation of acupuncture through endocannabinoid system, may be one

of the primary mediators, has been shown to relieve pain by regulating pain perception levels

and anti-inflammatory effects experimentally. Acupuncture regulates the endocannabinoid

system and is a novel research topic. However, the effects of EA on CB1 expression in the

peripheral nervous system (PNS) have not been elucidated. Peripheral neurostimulation could

be a viable target for the treatment of pain. In the present study, we aimed to determine

whether EA reduces inflammatory pain by activating CB1 in the dorsal root ganglia (DRG).

Dual immunofluorescence staining demonstrated CB1 was co-localized with Nav 1.8, a volt-

age-gated sodium ion channel that generates and conducts nociceptive action potentials (APs)

[18]. Furthermore, blocking CB1 eliminated the analgesic effects and anti-inflammatory path-

ways. Our data indicate that EA attenuates nociceptive processing through endogenous canna-

binoid signaling.

Materials and methods

Animals

C57/B6 female mice aged 8–12 weeks were purchased from the BioLASCO Animal Center

(BioLASCO, Yilan, Taiwan). Animals were housed under a 12–12-h light–dark cycle and 22˚C

ambient temperature, food and water were provided ad libitum. All procedures were per-

formed in accordance with the National Institute of Health Guide for the Care and Use of
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Laboratory Animals. The study protocol was approved by the Ethics Committee of Hualien

Tzu Chi Hospital, Hualien, Taiwan (permit No. 110–38 and 110–55).

Induction of inflammatory pain model and grouping

Mice were anesthetized with 1% isoflurane and were injected with 20 μl of saline or CFA

(diluted in the same volume of saline; Sigma, St. Louis, USA) in the right plantar surface of the

hind paw to induce intraplantar inflammation. EA was applied using stainless-steel acupunc-

ture needles (1 inch, 32 G, Yu Kuang, Taipei, Taiwan) that were inserted into the muscle layer

to a depth of 2–3 mm at the GB30 and GB34 acupoints ipsilaterally under 1% isoflurane

anesthetization. Electrical stimuli were delivered using an EA portable stimulator (Ontai, New

Taipei City, Taiwan) at an intensity of 1 mA for 15 min at a frequency of 2 Hz. AM251 (Sigma,

St. Louis, USA) was dissolved in the dilution solution (dimethyl sulfoxide: Tween-80:

saline = 1:1:8) and was injected at GB30 and GB34 acupoints (10 μl/each acupoint, 5 mg/kg

body weight total dose) ipsilaterally before EA treatment. This solution was also used as a vehi-

cle control. A total of seventy-two mice were randomly subdivided into eight groups of: (1)

Control group: normal saline injection, (2) CFA group: CFA injection to induce inflammatory

pain, (3) EA group: CFA injection and EA was applied at GB30 and GB34 acupoints, (4) Sham

group: CFA injection and needles inserted at two acupoints without electrical stimulation, (5)

Control + vehicle group: normal saline injection and vehicle control injection at two acu-

points, (6) CFA + vehicle group: CFA injection and vehicle control injection at two acupoints,

(7) EA + vehicle group: CFA injection and vehicle control injection, then EA was applied at

two acupoints, and (8) AM251 group: CFA injection and AM251 injection at two acupoints,

then EA was applied.

Nociceptive behavior test

Mechanical and thermal sensitivities were measured at baseline and 24–72 h after the CFA

injection. All examinations were performed only when the mice were calm and were not sleep-

ing or grooming. Mechanical sensitivity was measured by examining the force of response to

stimulation using three applications of an automated mechanical stimulation apparatus (Ugo

Basile SRL, Gemonio, Italy). Thermal sensitivity was measured by examining the latency of

responses to stimulation with three applications of thermal stimulation from a Hargreaves

apparatus (Ugo Basile SRL, Gemonio, Italy). Briefly, mice were placed on a metal mesh or

plexiglass platform for thermal sensitivity, with a plexiglass cage, and habituated for 30 min.

The plantar region of the hind paw was stimulated by a tip or focused light source for thermal

sensitivity, and force Gram counts or withdrawal latencies for thermal sensitivity were auto-

matically recorded when the stimulation caused the mouse to withdraw the paw.

Immunofluorescence staining

After measuring of behavior tests at 72 h, mice were sacrificed using CO2 exposure. The right

side lumbar DRG L3-L5 were immediately dissected and were post-fixed with 4% paraformal-

dehyde at 40C for 3 days. The tissues were then placed in 30% sucrose (w/v) for cryoprotec-

tion. The DRG were embedded in frozen section media (Sakura Finetek, CA, USA) and were

cut into 10-um sections in cryostat (Leica Biosystems, Nussloch, Germany). The sections were

fixed with 4% paraformaldehyde for 30 min and were rinsed with 0.05% Tween 20/phosphate

buffered saline (PBS-T) three times, then were blocked with 5% BSA, 0.1% Triton X-100, and

0.01% sodium azide for 30 min at room temperature. The sections were incubated with pri-

mary antibody Nav 1.8 (1:200) (Alomone, Jerusalem, Israel), the CB1 (1:100) (Santa Cruz Bio-

technology, Texas, USA) at 4˚C overnight in a moisture chamber. The secondary antibodies
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were incubated with goat anti-rabbit IgG DyLight488 (1:1000) (KPL, MD, USA) and goat anti-

mouse IgG DyLight680 (1:1000) (KPL, MD, USA) for 2 hours at 4˚C. The stained samples

were mounted with a fluorescent mounting medium (KPL, MD, USA), sealed under a cover-

slip, and photographed using a fluorescent microscope (Axio Observer 7, Carl Zeiss Micros-

copy, NY, USA).

Western blot analysis

As mentioned above, the right side L3-L5 DRG were immediately dissected and were stocked

at -80˚C. Total proteins were prepared by homogenization with lysis buffer (NP40 cell lysis

buffer; Thermo Fisher Scientific, Vienna, Austria) containing a protease inhibitor (Thermo

Fisher Scientific, IL, USA) and PMSF (final concentration of 1 mM; Sigma, St. Louis, USA).

Ten micrograms of protein from each sample were analyzed using a BCA protein assay. The

extracted proteins were subjected to 8–12% SDS-Tris glycine gel electrophoresis and trans-

ferred onto a PVDF membrane. The membrane was blocked with 5% nonfat milk in a PBS-T

buffer, incubated with primary antibody Nav 1.8 (1:500) (Alomone, Jerusalem, Israel), CB1

(1:200) (Santa Cruz Biotechnology, Texas, USA), the COX-2 (1:200) (Santa Cruz Biotechnol-

ogy, Texas, USA), and α-tubulin (1:1000) (Santa Cruz Biotechnology, Texas, USA) in PBS with

1% BSA and 0.01% sodium azide for overnight at 4˚C. A peroxidase-conjugated secondary

antibody (1:5000) (KPL, MD, USA) was used as the secondary antibody. The protein bands on

the membranes were visualized using a Western Chemiluminescent Kit (HyECL, Taipei, Tai-

wan) with a UVP ChemStudio Touch System (Analytik Jena, CA, USA). The image intensities

of specific bands were quantified using NIH ImageJ software (Bethesda, MD, USA).

Statistical analysis

Statistical analyses were performed using OriginPro 8 software (OriginLab, MA, USA). All sta-

tistical data are presented as the mean ± standard error (SEM). Statistical significance was ana-

lyzed using one-way ANOVA, followed by the Bonferroni post hoc test. Statistical significance

was set at p< .05.

Results

The effect of EA treatment on mechanical and thermal pain behaviour

The efficacy of EA in ameliorating inflammatory pain was assessed by comparing the mechani-

cal and thermal pain responses at baseline and at 24 and 72 h. As shown in Fig 1A and 1B, no

significant differences were observed among the four groups under basal conditions. Complete

Freund’s adjuvant (CFA) injections reduced both mechanical and thermal sensitivities in the

CFA, EA, and Sham groups (24 h mechanical sensitivity: 0.32 ± 0.03, 0.77 ± 0.05, and

0.46 ± 0.04, respectively; thermal sensitivity: 0.25 ± 0.02, 0.67 ± 0.05, and 0.38 ± 0.05, respec-

tively) (72 h mechanical sensitivity: 0.33 ± 0.03, 0.91 ± 0.06, and 0.42 ± 0.04, respectively; ther-

mal sensitivity: 0.29 ± 0.03, 0.69 ± 0.04, and 0.41 ± 0.04, respectively). EA applied at GB30 and

GB34 significantly reversed the pain phenomena when compared to the CFA and Sham

groups at 24 and 72 h. Behavioral nociceptive responses of Sham EA (without electrical stimu-

lation) did not significantly improve compared with those of the EA group.

EA promoted expression of CB1 in the DRG

We aimed to determine whether EA relieves pain through the analgesic activity of CB1 in the

PNS. Mouse DRG were immediately dissected and further visualized by dual immunofluores-

cence staining 72 h after CFA administration. CFA injection resulted in upregulation of Nav
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1.8, but did not alter expression of CB1, compared with the control group (Fig 2, CFA group).

It is a high-profile finding that EA elevated expression of CB1 and cell count of co-localization

with Nav 1.8, compared with the control, CFA, and sham groups (Fig 2, EA group).

EA raised levels of CB1 and reduced levels of Nav 1.8

We further assessed protein levels of CB1 and Nav 1.8 using western blot analysis. CFA injec-

tion caused overexpression of Nav 1.8, and EA significantly reversed it (CFA:1.67 ± 0.21,

EA:0.96 ± 0.07, Sham:1.48 ± 0.10; CFA vs. EA, p< .001) (Fig 3A and 3B). In the Sham EA

group, overexpression of Nav 1.8 was similar to the CFA group. In addition, EA significantly

raised levels of CB1, Sham EA had no the same effect (CFA:0.90 ± 0.11, EA:1.21 ± 0.07,

Sham:1.00 ± 0.07; CFA vs. EA, p< .05) (Fig 3A and 3C).

A CB1 inhibitor blocked pain relieving effects of EA on mechanical and

thermal pain behaviors

To investigate the role of CB1 involvement in EA-mediated pain relief, AM251 was injected at

GB30 and GB34 (10 μl at each acupoint, 5 mg/kg total quantity) before EA was applied. An

equal volume of diluted vehicle was injected at GB30 and GB34 in the control+V, CFA+V,

and EA+V groups. Our data revealed no significant differences between the four groups at

baseline (Fig 4A and 4B). CFA injection reduced the mechanical and thermal pain threshold

in the CFA+V, EA+V, and AM251 groups (24 h mechanical sensitivity: 0.41 ± 0.02,

0.80 ± 0.04, and 0.61 ± 0.04, respectively; thermal sensitivity: 0.41 ± 0.03, 0.75 ± 0.04, and

0.55 ± 0.04, respectively) (72 h mechanical sensitivity: 0.52 ± 0.03, 0.92 ± 0.04, and

0.63 ± 0.04, respectively; thermal sensitivity: 0.39 ± 0.02, 0.84 ± 0.04, and 0.44 ± 0.03). EA sig-

nificantly ameliorated pain compared to the CFA+V group at 24 and 72 h. Furthermore,

AM251 treatment significantly blocked the EA-mediated pain relieving effects compared with

the EA+V group (Fig 4A and 4B).

Fig 1. Comparative graphs of mechanical and thermal pain behaviors at baseline 24 h, and 72 h. CFA was injected at the hind paw and nociceptive

withdrawal force or latency was measured ipsilaterally. EA was applied at baseline, 24 h, and 72 h under 1% isoflurane anesthetization. (A) Mechanical and

(B) thermal pain sensitivities are shown as ratios, compared with baseline for each group (n = 9). * p< .05 for means when compared with control group. p

< .05 for means when compared with CFA group. @ p< .05 for means when compared with EA group.

https://doi.org/10.1371/journal.pone.0295432.g001
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AM251 treatment reduced expression of CB1 mediated by EA in the DRGs

As mentioned above, mouse DRG were immediately dissected 72 h after CFA injection. CFA

up-regulated cellular expression of Nav 1.8 in the CFA+V and sham+V group and had no

change in CB1 expression compared with the control+V group. Our results showed that EA

increased CB1 expression and decreased Nav 1.8 expression compared to the CFA+V group

(Fig 5, EA+V group). AM251 treatment did not reduce the number of Nav 1.8 and blocked a

raising effect of CB1 immunoreactive cells mediated by EA compared with EA+V group (Fig

5, AM251 group). AM251 blocked the cellular modulation effects of EA in the expression of

Nav 1.8 and CB1.

Fig 2. Nav 1.8 and CB1 expression was detected using dual immunofluorescence staining in the DRG. Nav 1.8 immunoreactive cells (green) and CB1

immunoreactive cells (red) were merged (yellow, marked by arrowhead). CFA injection increased expression of Nav 1.8 (marked by triangle) and EA raised

expression of CB1 (marked by triangle) (scale bar = 100 μm, n = 3).

https://doi.org/10.1371/journal.pone.0295432.g002
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AM251 treatment blocked EA-mediated down-regulation of Nav 1.8 and an

increasing of CB1

We further assessed protein levels of Nav 1.8, COX-2, and CB1 using western blot analysis. EA

significantly reduced protein levels of Nav 1.8 (CFA+V: 1.47 ±0.05, EA+V: 0.92 ± 0.07,

AM251: 1.21 ± 0.10; CFA+V vs. EA+V, p< .001) (Fig 6A and 6B) and COX-2 (CFA+V:

1.25 ± 0.09, EA+V: 0.73 ± 0.06, AM251: 0.92 ± 0.09; CFA+V vs. EA+V, p< .001) (Fig 6A and

6C). Furthermore, AM251 injection significantly blocked an increase of CB1 (CFA+V:

0.85 ± 0.02, EA+V: 1.12 ± 0.10, AM251: 0.81 ± 0.03 EA+V vs. AM251, p< .001) (Fig 6A and

6D) and down-regulation of Nav 1.8 (EA+V vs. AM251, p< .05) (Fig 6A and 6B). It has partial

blocked effects of COX-2 (EA+V vs. AM251, p = .45) (Fig 6A and 6C).

Discussion

In this study, we showed that EA significantly increased CB1 expression in the DRG. AM251

eliminated EA-mediated anti-nociceptive and immunomodulatory effects. These findings

Fig 3. Expression levels of CB1 and Nav 1.8 in the DRGs. (A) Mice DRG homogeneous lysates were immunoreactive with specific antibodies to Nav 1.8,

CB1, and α-tubulin (B) Levels of Nav 1.8, (C) Levels of CB1 were normalized with internal control α-tubulin and were compared to that of the control

group (n = 6). *** p< .001 for means when compared with control group. p< .001 for means when compared with CFA group. @ p< .05 for means when

compared with EA group.

https://doi.org/10.1371/journal.pone.0295432.g003

PLOS ONE Electroacupuncture attenuates inflammatory pain via peripheral cannabinoid receptor type 1

PLOS ONE | https://doi.org/10.1371/journal.pone.0295432 December 7, 2023 7 / 14

https://doi.org/10.1371/journal.pone.0295432.g003
https://doi.org/10.1371/journal.pone.0295432


demonstrate that EA attenuates inflammatory pain via the peripheral CB1 endocannabinoid

signaling pathway. To the best of our knowledge, no previous studies have examined the rela-

tionship between EA and CB1 in the PNS. Our data confirm that peripheral CB1 plays a piv-

otal role in EA-mediated anti-nociception. Activation of CB1 and CB2 has been shown to

ameliorate the induction and maintenance of inflammatory pain [19, 20]. CB1 knockout mice

displayed increased hypoalgesia during mechanical and heat noxious stimuli. This suggests

that CB1 exerts analgesic effects during pain processing [21]. Endocannabinoids and CB1 are

believed to attenuate excitotoxicity of neuropathic insults. Cannabinergic modulation protects

against neuronal damage and facilitates tonic signaling by binding to CB1 [22, 23]. CB1 is

abundantly expressed in primary afferent peripheral nerves, including in the cell bodies of the

trigeminal ganglion and DRG, and mediates an inhibitory tone for nociceptive activity. Several

studies have shown that the peripheral terminals of nociceptors are important sites for canna-

binergic circuit modulation [24–26]. Interestingly, acupuncture seems to activate both of CB1

and CB2. Administration of AM630 (a CB2 antagonist with 70- to 165-fold selectivity in vitro)

before EA treatment blocked anti-inflammatory effects [27]. Our present data showed that

AM251 could not completely block EA-mediated down-regulation of COX-2. The possible

mechanism may due to EA drive the vagal–adrenal anti-inflammatory axis [28]. CB1 is pri-

marily responsible for pain perception, thus CB2 moderates the anti-inflammatory effects of

acupuncture.

Recently, cannabinoids have been shown to be a potential therapeutic agent for reducing

opioid use for inflammatory and neuropathic pain. However, in humans, systemic administra-

tion of cannabinoids causes psychotropic, memory impairment, and motor control side

effects, which have largely limited their clinical use [1, 29]. A major challenge in the clinical

use of cannabinoids is reducing or eliminating their adverse effects without attenuating their

analgesic effects. The peripheral endocannabinoid system is an important component of pain

control mechanisms. The activation of peripheral CB1 can induce cannabinoid-induced anal-

gesia without causing any central side effects [24, 30]. In addition, our results provide a novel

idea that EA stimulates peripheral CB1 signaling pathway to relieve inflammatory pain and

hyperalgesia.

Fig 4. AM251 blocked pain relieving effects of EA on mechanical and thermal pain behaviors. (A) Mechanical and (B) thermal pain sensitivities are

shown as ratios compared with the baseline of each group (n = 9). * p< .05 for means when compared with control+V group. p< .05 for means when

compared with CFA+V group. @ p< .05 for means when compared with EA+V group.

https://doi.org/10.1371/journal.pone.0295432.g004
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Dysregulation of the endogenous cannabinoid system has been demonstrated in several

chronic diseases that affect females, such as fibromyalgia and multiple sclerosis [31, 32]. Can-

nabinoids have better mechanical and heat pain-beneficial responses in female rats than those

in males [33, 34]. The sexually dimorphic effects of the cannabinoid system may be generalized

based on the CB receptor-binding properties, endocannabinoid levels, and pharmacokinetics

of cannabinoids [35]. Sex steroids are important modulators of CB receptor expression. Male

rats exhibited higher levels of CB1 mRNA in the pituitary gland than female rats, and orchiec-

tomy of male rats reduced CB1 mRNA levels. Moreover, estrogen decreased CB1 mRNA

expression in ovariectomized rats [36]. CB1 levels were decreased in castrated male rats and

Fig 5. AM251 treatment blocked cellular modulation effects of Nav 1.8 and CB1 mediated by EA in the DRGs. Nav 1.8 immunoreactive cells (green)

and CB1 immunoreactive cells (red) were merged (yellow, marked by arrowhead). CFA injection raised expression of Nav 1.8 in the CFA+V and AM251

group (marked by triangle). EA raised expression of CB1 (marked by triangle) and decreased expression of Nav 1.8 in the EA+V group (scale bar = 100 μm,

n = 3).

https://doi.org/10.1371/journal.pone.0295432.g005
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were restored following testosterone replacement [37]. Inflammatory pain–induced upregula-

tion of CB receptors also shows sex-related differences. Males display a greater enhancement

of CB1 under conditions of inflammatory cytokine activation [38]. These studies suggest that

sex hormones and inflammation can influence endogenous cannabinoid tone. Sex differences

in the peripheral administration of cannabinoids should be considered critically.

Functional interactions between CB1 and transient receptor potential vanilloid 1

(TRPV1) receptor mediate analgesia by the administration of acetaminophen, an analgesic

and antipyretic drug, suggesting indirect activation of CB1 [39]. Importantly, peripheral nor-

epinephrine release from sympathetic terminals is controlled by CB1. Crosstalk between

CB1 and TRPV1 modulates anti-inflammatory pain [40]. Analgesic effects of systemically

administered cannabinoids are strongly reduced by using a conditional knockout CB1

Fig 6. Expression levels of Nav 1.8, COX-2, and CB1 in the DRG. (A) Mice DRGs homogeneous lysates were immunoreactive with specific antibodies to

Nav 1.8, COX-2, CB1, and α-tubulin. (B) Levels of Nav 1.8, (C) Levels of COX-2, (D) Levels of CB1 were normalized with internal control α-tubulin and

were compared to that of the control group (n = 6). *** p< .001 means when compared with control+V group. p< .05, p< .001 for means when

compared with CFA+V group. @ p< .05 for means when compared with EA+V group.

https://doi.org/10.1371/journal.pone.0295432.g006
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technique under the control of the Nav 1.8 promoter [24]. A recent study confirmed that

cannabidiol binds selectively to Nav 1.8 channels contributing to its analgesic effects [41].

Furthermore, knocking out CB1 in GABAergic and glutamatergic neurons in the PAG abol-

ished EA-induced analgesic effects [42]. EA mediates analgesic mechanisms including sup-

pression of Nav 1.8 and TRPV1 through neuronal and non-neuronal pathways [43]. Our

data show that co-expression of CB1 and Nav 1.8 in DRG suggests an antinociceptive cross

regulation between the two receptors. These studies implicate EA targeting peripheral CB1

to Nav 1.8 provides effective pain relief.

There were several limitations to our study. First, in this animal study, AM251 was per-

formed in GB30 and GB34 acupoints by intramuscular injection. AM251 is able to cross the

blood–brain barrier. Systemic and central effects of AM251 should be considered. Second,

how EA leads to increasing of CB1 in DRG remains to be clarified. Third, whether this analge-

sic mechanism in humans is uncertain and needs more clinical studies.

Conclusion

In conclusion, we demonstrated that EA triggers peripheral CB1 endocannabinoid signaling

to relieve inflammatory pain. EA elevated expression of CB1 co-localization with Nav 1.8, and

further reduced hyperalgesia and inflammation. These phenomena were eliminated by AM251

treatment and confirmed an EA-mediated peripheral CB1 antinociceptive signaling mecha-

nism. Our data indicated that EA increased the production of cannabinoid analgesia, inhibited

nociceptive processing, and provided evidence that EA could be useful for successful pain

treatment.
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