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Abstract

With the widespread application of low-dose computed tomography (LDCT) technology, pul-

monary nodules have aroused more attention. Significant alteration in plasma metabolite

levels, mainly amino acid and lipid, have been observed in patients of PNs. However, evi-

dence on the association between central carbon metabolism and PNs are largely unknown.

The aim of this study was to investigate the underlying association of PNs and plasma cen-

tral carbon metabolites. We measured the levels of 16 plasma central carbon metabolites in

1954 participants who gained LDCT screening in MALSC cohort. The inverse probability

weighting (IPW) technique was used to control for bias due to self-selection for LDCT in the

assessed high-risk population. The least absolute shrinkage and selection operator

(LASSO) penalized regression was used to deal with the problem of multicollinearity among

metabolites and the combined association of central carbon metabolites with PNs was esti-

mated by using quantile g-computation (QgC) models. A quartile increase in 3-hydroxybu-

tyric acid, gluconic acid, succinic acid and hippuric acid was positively associated with the

PNs risk, whereas a quartile increase in 2-oxadipic acid and fumaric acid was negatively

associated with the risk of PNs in multiple-metabolite models. A positive but insignificant

joint associations of the mixture of 16 metabolites with PNs was observed by using QgC

models analyses. Further studies are warranted to clarify the association between circulat-

ing metabolites and PNs and the biological mechanisms.

1. Introduction

Lung cancer ranks first in the death spectrum of malignancies, with 18.0% mortality world-

wide [1] and 28.1% nationwide of China [2]. The National Lung Cancer Screening Trial

(NLST) reported that low-dose computed tomography (LDCT) screening can reduce the over-

all mortality rate due to lung cancer by 20% [3]. Therefore, LDCT was recommended a main
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technique for lung cancer screening in many countries [4], which enhanced the detection rate

of pulmonary nodules (PNs). The evidence of both NLST [5] and a community-based LDCT

lung cancer screening study in China [6] respectively found that PNs (diameter >4 mm) were

estimated 27.3% and 22.9% by LDCT, indicating the detection rate of PNs is higher in the

high-risk population of lung cancer.

A pulmonary nodule observed by imaging are highly likely to be diagnosed as lung cancer.

Along with the increased size of the pulmonary nodule, the prevalence of lung cancer was

increased ranging from 0% to 1% for nodules <6 mm, 1% to 2% for nodules 6 to 8 mm, and

approximately 10% for nodules�8 mm [5, 7]. In addition, the detected PNs before lung cancer

manifestation may cause serious anxiety and depression [8]. However, few treatment

approaches available for patients with PNs other than follow-up and surgery. Therefore, it is

necessary to explore the risk factors and the potential biological changes of PNs for clinical

intervention. Up to now, research on the risk factors for PNs mainly focused on smoking, his-

tory of lung disease, occupational exposure and heritable factors, while the association of

metabolites with PNs remained unknown. Evidence indicated that metabolites are related to

the development of nodules, such as thyroid nodules and PNs [9, 10].

Central carbon metabolism, also known as energy metabolism, mainly involves glycolysis,

the tricarboxylic acid cycle (TCA) and the pentose phosphate pathway (PPP). Central carbon

metabolism is the primary source of energy demanded by organisms and provides precursors

for other metabolisms. Previous studies showed that central carbon metabolism played an

essential role in the development of pulmonary diseases. For instance, in the PPE/ LPS-

induced chronic obstructive pulmonary disease(COPD) mice model [11]., the differences in

urinary succinic acid, isocitric acid, and pyruvic acid were statistically significant [11]. Another

bleomycin model of pulmonary fibrosis in mice found that increased level of glycolysis, TCA

cycle, and PPP associated with upregulated energy production for energy demand of the

fibrotic lungs [12]. A metabolomics study based on mass spectrometry showed that, compared

with controls, significantly decreased levels of some plasma amino acids were observed in

benign PNs [10]. Another plasma metabolomics and lipidomics study involving 1160 partici-

pants showed that metabolites associated with arginine and proline metabolism were elevated

in patients with benign solitary pulmonary nodules (SPNs), while fatty acids and acylcarnitine

were decreased in benign SPNs [13]. These studies suggested that amino acid and lipid metab-

olism are pivotal for the development of PNs. However, there are limited studies on the associ-

ation between central carbon metabolism and PNs.

In summary, the present study aimed to investigate the association between central carbon

metabolites and the risk of PNs in a community-based cohort of high-risk populations for

lung cancer. The study to innovatively propose the association of central carbon metabolites

with pulmonary nodules and explain the changes in plasma metabolites possibly caused by the

occurrence of pulmonary nodules. We performed absolute quantitative Gas Chromatography-

triple Quadrupole Mass Spectrometry (GC-MS/MS) metabolomics analysis of 16 central car-

bon metabolites mainly involved in glycometabolism and mitochondrial oxidative

phosphorylation.

2. Materials and methods

2.1 Study population

The Ma’anshan Lung Screening Cohort (MALSC) is an ongoing prospective population-based

cohort study and the baseline surveys were completed from June 2020 to November 2020. Vol-

unteers aged 55–74 years were recruited and selected with achieving one of the following

inclusion criteria:1) current smokers or former smokers who ceased smoking <15 years, with
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intensity of smoking> = 20 pack-years 2) at least 1 year of exposure to occupational hazardous

materials-such as silica, cadmium, asbestos, arsenic, beryllium, uranium, chromium, nickel,

diesel exhaust, soot and ash, radon, coke oven emissions 3) history of COPD, diffuse pulmo-

nary fibrosis or pulmonary tuberculosis 4) long history of passive smoking- more than 2 h/day

and the time of duration�20 years at home or work 5) family history of lung cancer in the

first-degree relatives 6)previous history of malignant tumor. Exclusion criteria as follows:1)

has been diagnosed with lung cancer 2) hemoptysis and unexplained hemoptysis 3) clinically

diagnosed as a new cancer patient within the last five years- non-pigmented skin cancer, carci-

noma in situ of the cervix and localized prostate cancer were excluded 4) unexplained weight

loss�7.5kg in the past year 5) currently suffer from a serious quality of life condition. Finally,

2289 participants were recruited to perform LDCT screening. All participants were required to

have lived locally for at least three years. In this study, we performed an absolute quantitative

GC-MS/MS metabolomics analysis based on baseline LDCT screening results in high-risk

populations. Meanwhile, we further excluded 305 participants with lung disease and finally

included 1984 partcipants.

This study was approved by the Ethics Committee of Ma’anshan Center for Disease Control

and Prevention (Approval No.2020001), and all participants were required to provide written

informed consent for admission.

2.2 The definition of pulmonary nodule

The pulmonary nodule was defined as focal opacities up to 3 cm in diameter with surrounding

lung parenchyma, including those abutting the pleura [14].

2.3 Data collection

Data on demographic and socioeconomic information (e.g., age, sex, education, income), life-

style habits (e.g., smoking status, passive smoking, drinking, tea consumption, exposure to

occupational hazards, exercise, cooking, thurification, occupational exposure to organic sol-

vent), and personal and family history of diseases (e.g., hypertension, diabetes, lung disease,

cancer, family history of cancer, family history of lung cancer in any relatives, family history of

lung cancer in first-degree relatives) were collected by trained interviewers using a validated

questionnaire. The level of education was divided into primary school and below, junior high

school, and high school and above. Net annual household income was divided into three cate-

gories (i.e., <50000 RMB, 50000~100000 RMB,�100000 RMB). Smoking status was classified

as never smoker, current smoker and former smoker. Current smokers were defined as those

who smoke continuously or cumulatively for more than six months and smoked at least one

cigarette per day. Former smokers were defined as those who had been quitting smoking for

more than six months at the time of the survey. Passive smokers were considered to be those

who live and work around smokers and unknowingly inhale particulate matter or various

toxic substances produced by smoking. Drinkers were defined as subjects who currently drink

alcohol at least once a week for more than six months. Tea drinkers were defined as subjects

who currently drink tea at least once a week for more than six months. Exercisers were defined

as those who exercise for more than thirty minutes at least once a week. Lung diseases include

asthma, chronic bronchitis, pneumonia, emphysema, pulmonary tuberculosis, pulmonary

fibrosis, silicosis, pneumoconiosis, and chronic obstructive pulmonary disease. Height, weight

and blood pressure (systolic blood pressure and diastolic blood pressure) were measured by

trained investigators using precise instruments. BMI (kg/m2) was calculated by dividing

weight in kilograms by height in meters squared. Fasting blood samples of participants were
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collected in the morning to detect blood biochemical indexes (total cholesterol, triglycerides,

HDL-C, LDL-C, and fasting blood glucose) by using automated biochemical instruments.

2.4 Measurement of central carbon metabolites

The fasting blood samples in the early morning were collected in EDTA-K2 anticoagulant

tubes, then immediately centrifuged and stored in the refrigerator at -80˚C. All plasma samples

were gradient thawed on ice and then mixed in a vortex for 30 seconds. On the ice, 100 μL ali-

quot of each plasma sample and 20 uL [2H4]- succinic acid isotope internal standard (10 ug/

mL) were precisely transferred to a 1.5 mL EP tube, then diluted with 300 uL cold methanol

and vortexed for 1 min, ultrasound in an ice-water bath for 10 min. Subsequently, the EP tube

containing a mixture of plasma sample and cold methanol was placed in a -20˚C refrigerator

for 1 h to precipitate proteins, followed by centrifugation at 13,800 g for 15 min at 4˚C. The

supernatants were collected and dried with nitrogen to obtain metabolic extracts. The dried

extract samples were derived in two steps. First, 40 μL methoxyamine hydrochloride in pyri-

dine (20 mg/mL) was added to the extract samples, and then shaken for 90 min at 37˚C with

the speed of 350 rpm. Subsequently, 40 μL bis-(trimethylsilyl)–trifluoroacetamide (BSTFA)

with 1% trimethylchlorosilane (TMCS) was added and incubated for another 60 min under

the same conditions. After the derivatization, the mixture was centrifuged at 13800×g for 20

min. Finally, 50 uL supernatant was quantitatively transferred to sample vials for detection by

gas chromatography–triple quadrupole mass spectrometry (GC-MS/MS, Agilent 7890B-

7000D).

1 μL aliquot of the derivatized solution was injected into an Agilent GC system. Separation

was performed on an HP-5MS fused-silica capillary column (30.0 m × 0.25 mm, 0.25 μm,

Agilent).

The GC injector temperature was set to 250˚C and the injection volume was 1 μL (split

ratio of 10:1). Helium was used as the carrier gas with a flow rate of 1.2 ml/min. The initial

oven temperature of the GC system was set at 60˚C for 1 min. The temperature was then

increased up to 100˚C at 30˚C/min, followed by a 20˚C/min increase to 220˚C, and finally

increased to 280˚C at 50˚C/min. The final temperature was held for 4 minutes. The mass spec-

trometer (MS) was operated in electron ionization (EI) mode (70 eV, ion source temperature:

260˚C, quadrupole temperature:150˚C, transfer line temperature: 260˚C).

We consulted relevant literature, considering that there were few metabolomics studies on

pulmonary nodules so far, and we also referred to the literature about the association between

metabolites and lung cancer. Considering the availability of the assay, 16 candidate metabolites

were finally selected for targeted metabolomics experiments to explore the association between

the candidate metabolites and pulmonary nodules. The candidate metabolites and their most

characteristic Q1/Q3 mass ion in GC-MS/MS were summarized in S1 Table. Missing values

for each candidate were imputed by corresponding detection (LOD) were substituted by

LOD/
p

2. LODs for 16 candidate metabolites were 7.81 ng/mL- 125.00 ng/mL. The detection

rate of all metabolites is more than 85%. One QC and blank sample were run after every 20

study samples.

2.5 Statistical analyses

The categorical variables were expressed as numbers (percentiles) and the continuous variables

were expressed as mean ± standard deviations (SDs) or median with interquartile range (IQR).

The student’s t-test and Mann-Whitney U test were applied to compare continuous data based

on the normality of the data distribution, and the Chi-square test was applied to make compar-

isons of categorical data. The distributions of plasma concentrations of metabolites were
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expressed as medians with IQR, and Mann-Whitney U test was performed to evaluate differ-

ences in metabolite concentrations between PNs group and non-PNs group. The Spearman’s

rank correlation method was used to calculate the correlations among the concentrations of

the 16 metabolites.

The inverse probability weighting (IPW) technique was used to control for bias due to self-

selection for LDCT in the assessed high-risk population. Briefly, two steps are required to be

conducted for IPW. First, the probability of each individual being selected for the study was

calculated. Next, the weight, which was the inverse of the selection probability, was calculated

and included in the analysis. We assessed the balance of general characteristics between the

non-screened and screened groups by calculating the standardized mean difference (SMD).

SMD>0.1 was considered to be unbalanced between the two groups.

Logistic regression models with the individual weights in models were applied to estimate

the weighted associations between central carbon metabolites and the risk of PNs. Plasma

metabolite concentrations were used as classification variables to fit the models based on the

quartiles, where the lowest quartile was the reference group. Confounders were defined as

covariates on the basis of biological plausibility or statistical considerations. The odds ratios

(ORs) and 95% CI were estimated based on Model 1: crude model; Model 2: adjusted for age

and sex; Model 3: additionally adjusted for smoking status, drinking, exercise, occupational

exposure to organic solvent, thurificatio and triglycerides.

The least absolute shrinkage and selection operator (LASSO) penalized regression was per-

formed to deal with complex multicollinear data. In brief, the LASSO is a regression shrinkage

and selection method that imposes a penalty on component regression coefficients [15]. In the

LASSO regression model, with the increase of the penalty parameter lambda (λ), more penali-

zation will be imposed on the variables, resulting in more coefficients close to zero, so it is still

a sparse model [16]. Significant metabolites from the LASSO regression model were included

in the multiple logistic regression simultaneously to construct a multiple-metabolite model,

adjusted for potential confounding variables in Model 3.

QgC models was used to assess the joint association of relevant metabolites with the risk of

PNs. QgC models is a parametric, generalized linear model-based implementation of g-computa-

tion [17], applied to estimate the joint mixture index and the importance (i.e., weights) of each

component in the mixture. It provides an estimate of the association with outcome for all compo-

nents in a specified mixture simultaneously increasing by one-quantile. Different from weighted

quantile sum (WQS) regression, it is not limited by the assumption of directional homogeneity

and also allows nonlinear and non-additive effects of the individual components of the mixture.

All statistical analyses were performed on SPSS 23.0 (version 23.0. IBM Corp., Armonk,

NY, USA.) and R software (version 4.2.0, R Core Team). All statistical tests were two-sided.

P< 0.05 was regarded as statistically significant.

2.6 Data availability

Data will be made available on request.

3. Results

3.1 Characteristics of the study population

The baseline characteristics of the high-risk populations (screened group and non-screened

group) were shown in S2 Table. Compared with those who did not participate in screening,

participants in screened group were more likely to be older, female, less educated, lower

income, previously having smoking history or never smoking, exposed to occupational haz-

ards, exercise regularly, cook regularly, hypertension, diabetes, to have a family history of
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cancer, a family history of lung cancer in any relatives, or a family history of lung cancer in

first-degree relatives (SMD>0.1). To reduce the imbalance in baseline characteristics between

the screened and non-screened group, the IPW method was applied to control for selection

bias. As was shown in S2 Table, the baseline characteristics were balanced between the

screened and non-screened groups after IPW (all SMD<0.1). Simultaneously, we obtained the

weight of each object in the screened group, so that each object in the screened group not only

represented himself/herself, but also those with similar characteristics who did not participate

in the screening. The weights would be used in all subsequent analyses.

The main characteristics of the screened subjects, including a comparison between those

who were detected with PNs vs non-PNs, were summarized in Table 1. Out of 1954 partici-

pants, 505 males (71.6%) and 199 females (28.4%) were detected with PNs. Compared to par-

ticipants free of PNs, there was a higher proportion of subjects who followed regular exercise,

thurification, or occupational exposure to organic solvent in those that PNs participants.

3.2 Concentrations of central carbon metabolites

The plasma concentrations of alpha-ketoglutaric acid, 3-hydroxybutyric acid, gluconic acid,

phosphoenolpyruvic acid, succinic acid, hippuric acid, citric acid, malic acid, L-Lactic acid,

cis-aconite acid, and isocitric acid were significantly higher in PNs group than in non-PNs

group (p< 0.05), while the plasma concentrations of 2-oxadipic acid and orotic acid were sig-

nificantly lower in PNs group than in non-PNs group. Whereas with respect to other metabo-

lites such as fumaric acid, glyceric acid, glucaric acid and maleic acid, the differences between

PNs groups and non-PNs groups were not significant (p> 0.05) (Table 2). The Spearman cor-

relations ranged from -0.14 to 0.71 (S1 Fig).

3.3 Associations of PNs with central carbon metabolites

After adjusting for potential confounders, significant associations were found for alpha-keto-

glutaric acid, 2-oxadipic acid, 3-hydroxybutyric acid, phosphoenolpyruvic acid, succinic acid,

hippuric acid, citric acid, malic acid, orotic acid, L-Lactic acid, cis-aconite acid and isocitric

acid (p-trend < 0.05) in Model 3(Fig 1), the results in Model 1 and Model 2 were similar to

those in Model 3.

Due to the strong multicollinearity of the metabolites in this study, we employed LASSO

regression to filter these 16 metabolites, and selected some of them into the multi-metabolite

model. Based on the LASSO regression, the multi-metabolite model included 2-oxadipic acid,

3-hydroxybutyric acid, gluconic acid, fumaric acid, succinic acid, hippuric acid, glucaric acid

and orotic acid (Fig 2A and 2B). Next, a multi-metabolite logistic stepwise regression model

was established to explore the mixed effects of multiple metabolites on PNs risk (Table 3). All 8

metabolites were brought into the model and additionally adjusted for the potential covariates

in model 3. The association of 6 metabolites with PNs remained significant. In comparison to

individuals in the lowest quartile of 3-hydroxybutyric acid, gluconic acid, succinic acid and

hippuric acid, individuals in the highest quartiles showed 69%(95%CI:1.24~2.31), 70% (95%

CI:1.20~2.43), 120%(95%CI:1.56~3.10) and 104%(95%CI:1.46~2.84) increased risk of PNs,

respectively. Conversely, individuals in the highest quartile of two metabolites were negatively

associated with the risk of PNs compared to those in the lowest quartile, with ORs of 0.28

(0.20~0.39) and 0.41 (0.28~0.58) for 2-oxadipic acid and fumaric acid, respectively.

3.4 QgC models analyses

Fig 3 presented the results of QgC models analyses for PNs. Overall, the 16 metabolite mixtures

were positively but not significantly associated with PNs, with an OR of 1.10 (95% CI: 0.92 ~
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Table 1. Basic characteristics of PNs group and non-PNs group.

non-PNs group (n = 1250) PNs group (n = 704) P
Demographics

Age, year (mean (SD)) 62.19 (6.84) 62.63 (6.73) 0.166

Sex (n, %) 0.609

Male 883 (70.6) 505 (71.7)

Female 367 (29.4) 199 (28.3)

Education (n, %) 0.545

Primary and below 381 (30.5) 206 (29.3)

Junior high school 499 (39.9) 299 (42.5)

High school and above 370 (29.6) 199 (28.3)

Income, RMB (n, %) 0.808

<50000 374(29.9) 203 (28.8)

50000~99999 661 (52.9) 383 (54.4)

�100000 215 (17.2) 118 (16.8)

BMI, kg/m2 (n, %) 0.727

<18.5 27 (2.2) 11 (1.6)

18.5~23.9 618 (49.4) 351 (49.9)

24.0~27.9 488 (39.0) 282 (40.1)

�28.0 117 (9.4) 60 (8.5)

Lifestyle habits

Smoking status (n, %) 0.347

Never smoker 429 (34.4) 231 (32.8)

Current smoker 600 (48.0) 361 (51.3)

Former smoker 221 (17.7) 112 (15.9)

Passive smoking (n, %) 0.301

No 412 (33.0) 216 (30.7)

Yes 838 (67.0) 488 (69.3)

Drinking (n, %) 0.975

No 807 (64.6) 455 (64.6)

Yes 443 (35.4) 249 (35.4)

Tea consumption (n, %) 0.074

No 569 (45.5) 291 (41.4)

Yes 681 (54.5) 413 (58.7)

Exposure to occupational hazards (n, %) 0.453

No 929 (74.3) 534 (75.9)

Yes 321 (25.7) 170 (24.1)

Exercise (n, %) 0.041

No 580 (46.4) 293 (41.6)

Yes 670 (53.6) 411 (58.4)

Cooking (n, %) 0.582

No 438 (35.0) 238 (33.8)

Yes 812 (65.0) 466 (66.2)

Thurification (n, %) 0.038

No 1150 (92.0) 628 (89.2)

Yes 100 (8.0) 76 (10.8)

Occupational exposure to organic solvent (n, %) 0.008

No 1223 (97.8) 674 (95.7)

Yes 27 (2.2) 30 (4.3)

(Continued)

PLOS ONE The association between targeted metabolomics and central carbon

PLOS ONE | https://doi.org/10.1371/journal.pone.0295276 December 7, 2023 7 / 17

https://doi.org/10.1371/journal.pone.0295276


1.31). With the largest contribution of positive weights were hippuric acid, succinic acid and

citric acid, and the largest contribution of negative weights were fumaric acid, 2-oxadipic acid

and glucaric acid.

3.5 Stratification analysis

S3 and S5 Tables described the results of the single-metabolite model when dividing the sub-

jects into different subgroups. A remarkably higher association between the levels of central

carbon metabolites and PNs was noticed among participants of age< 65 years and males. This

trend was also observed in LASSO regression (S3 and S4 Figs). In the multi-metabolite model,

age has a modification effect on the association between the levels of 2-oxadipic acid, gluconic

acid, fumaric acid, succinic acid, hippuric acid, malic acid and PNs (S4 Table). Additionally,

sex was observed as a modifiable factor on the association between the levels of 2-oxadipic

acid, 3-hydroxybutyric acid, gluconic acid, fumaric acid, succinic acid, hippuric acid and PNs

(S6 Table). S6 (B) Fig shows that whole metabolite levels in females were positively associated

with PNs risk (OR = 1.48, 95%CI:1.05~2.09), with the greatest positive weights for hippuric

acid, phosphoenolpyruvic acid and malic acid. In addition, no significant differences were

found in the association between metabolite levels and PNs in subgroups stratified by age (S5

Fig).

Table 1. (Continued)

non-PNs group (n = 1250) PNs group (n = 704) P
Personal and family history of diseases

Hypertension (n, %) 0.340

No 614 (49.1) 330 (46.9)

Yes 636 (50.9) 374 (53.1)

Diabetes (n, %) 0.208

No 1042 (83.4) 571 (81.1)

Yes 208 (16.6) 133 (18.9)

Cancer (n, %) 0.741

No 1192 (95.4) 669 (95.0)

Yes 58 (4.6) 35 (5.0)

Family history of cancer (n, %) 0.418

No 699 (55.9) 407 (57.8)

Yes 551 (44.1) 297 (42.2)

Family history of lung cancer in any relatives (n, %) 0.345

No 944 (75.5) 545 (77.4)

Yes 306 (24.5) 159 (22.6)

Family history of lung cancer in first-degree relatives (n, %) 0.316

No 959 (76.7) 554 (78.7)

Yes 291 (23.3) 150 (21.3)

Blood biochemical index

Total cholesterol, mmol/L (mean (SD)) 4.65 (0.95) 4.62 (0.94) 0.493

Triglycerides, mmol/L (mean (SD)) 1.93 (1.92) 1.77 (1.41) 0.061

HDL-C, mmol/L (mean (SD)) 1.38 (0.35) 1.37 (0.33) 0.510

LDL-C, mmol/L (mean (SD)) 2.90 (0.82) 2.93 (0.85) 0.441

Fasting blood glucose (mean (SD)) 5.52 (1.65) 5.62 (1.78) 0.199

https://doi.org/10.1371/journal.pone.0295276.t001
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4. Discussion

Metabolomics provides comprehensive information about the functional status of cells and

help to describe the phenotype of an organism. The metabolomic analysis provides a tool to

reveal the metabolic pathways underlying disease. In order to explore the underlying mecha-

nism of PNs, a targeted metabolomics study based on high-risk populations for lung cancer

was performed in this study.

To the best of our knowledge, this is the first targeted metabolomics study to assess the asso-

ciation between central carbon metabolism and PNs in a population at high risk for lung can-

cer. By using a combination of mixture methods, this study has filled important knowledge

gaps concerning levels of multiple plasma central carbon metabolites in the high-risk popula-

tion of lung cancer and associations with PNs. Using LASSO regression with stability selection,

we identified key metabolites in the mixture, and modeled the individual and joint relation-

ships of these selected compounds with PNs. That is, a quartile increase in 3-hydroxybutyric

acid, gluconic acid, succinic acid and hippuric acid was positively associated with PNs risk,

whereas a quartile increase in 2-oxadipic acid and fumaric acid was negatively associated with

PNs risk in multiple-metabolite models. A positive but insignificant joint association of the

mixture of sixteen metabolites with PNs was observed by using QgC models analyses. These

metabolites are of public health relevance owing to their partial reflection of energy metabo-

lism, as well as the underlying role of PNs in the development of lung cancer.

In comparison of participants with PNs to controls, 3-hydroxybutyric acid was ascertained

as a critical metabolic biomarker for PNs. 3-Hydroxybutyric acid, as one of the most plentiful

ketone bodies in plasma, is found to perform diverse biological functions, involving epigenetic

regulation, energy metabolism and oxidative stress response [18]. To date, the biological func-

tions of 3-hydroxybutyric acid associated with PNs have yet to be reported. Neverthelss, recent

studies have found that levels of hydroxybutyrate dehydrogenase are significantly increased in

some non-cancer lung diseases, possibly due to its antioxidant capacity [19]. Some studies

Table 2. Distribution of plasma central carbon metabolites (ng/mL) in PNs group and non-PNs group.

Metabolites non-PNs group (n = 1250) PNs group (n = 704) Z Pa

alpha-Ketoglutaric acid 2191.3(1523.3~3615.8) 2353.2(1651.2~3988.0) -2.493 0.013

2-Oxadipic acid 112.6(107.6~120.2) 110.4(69.9~118.1) -4.874 <0.001

3-Hydroxybutyric acid 8004.8(4884.0~16615.0) 8953.4(5602.9~19794.7) -3.741 <0.001

Gluconic acid 958.8 (500.6~1380.9) 1025.1(637.8~1443.0) -2.754 0.006

Phosphoenolpyruvic acid 142.4 (131.8~174.3) 150.6 (133.1~189.9) -4.844 <0.001

Fumaric acid 76.3(52.8~124.0) 75.7 (51.3~123.2) -0.234 0.815

Glyceric acid 837.8 (628.9~1205.5) 873.6 (649.3~1247.1) -1.848 0.065

Succinic acid 1082.3 (825.2~1440.5) 1235.3(914.1~1671.4) -5.909 <0.001

Hippuric acid 443.1 (254.5~1228.4) 774.3 (334.7~3027.2) -8.044 <0.001

Citric acid 15738.1 (11447.1~19739.6) 17441.8(13818.7~22081.2) -5.832 <0.001

Malic acid 778.9(589.9~1100.0) 875.6 (663.4~1198.2) -5.134 <0.001

Glucaric acid 64.3 (47.6~89.3) 62.5 (43.2~92.6) -0.533 0.594

Orotic acid 99.6(82.6~112.2) 95.6(55.1~112.2) -3.602 <0.001

L-Lactic acid 348900.6(261142.9~668160.3) 431015.6 (297626.8~704094.2) -4.895 <0.001

cis-Aconite acid 350.4(250.0~468.6) 383.1 (268.2~552.0) -4.599 <0.001

Isocitric acid 3504.0(2002.9~4812.4) 3800.0(2228.9~5323.7) -3.536 <0.001

The concentrations of metabolites were presented as median (P25-P75).
a p-Values were derived from Mann-Whitney U tests.

https://doi.org/10.1371/journal.pone.0295276.t002
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Fig 1. Odds ratios (ORs) and 95% confidence intervals (95% CIs) according to PNs for plasma central carbon

metabolites in single-metabolite model.

https://doi.org/10.1371/journal.pone.0295276.g001
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have demonstrated that 3-hydroxybutyrate supplementation may prevent ROS oxidation by

increasing NADH oxidation [20]. In this study, high levels of 3-hydroxybutyric acid were asso-

ciated with oxidative stress due to its overproduction during mitochondrial dysfunctions [21].

Further studies are warrant to reveal the exact reason for the upregulation of plasma

3-hydroxybutyric acid in participants with PNs.

The differential expression of 2-oxoadipic acid we observed has been reported in inflamma-

tory diseases such as Behcet’s disease and acne [22, 23]. 2-oxoadipic acid is a common cata-

bolic product of the essential amino acid lysine and tryptophan, of which the tryptophan

pathway is considered to play a vital role in the regulation of inflammation and immunity [24,

25]. Our findings that the levels of 2-oxoadipic acid in PNs participants were lower than in

controls suggested that lysine and tryptophan catabolic pathways may be involved in the devel-

opment of PNs.

Another noticeable finding is that elevated plasma gluconic acid levels were ascertained as a

strong biomarker to distinguish PNs from controls. Gluconic acid is the oxidation product of

glucose, its potential role and mechanism have not been elucidated. It has recently been found

that gluconic acid is produced from the enzymatic reaction of glucose by regulating the activity

of the enzyme glucose oxidase, in which hydrogen peroxide is released [26]. Hence, it can be

inferred that gluconic acid is a marker of oxidative stress. It was reported for the first time in

our study that the levels of gluconic acid were higher in PNs group than in controls. Neverthe-

less, the role of gluconic acid on PNs is not clear and more research needs to be conducted to

validate our findings.

Fig 2. The metabolites selected into the multi-metabolite model by LASSO regression.

https://doi.org/10.1371/journal.pone.0295276.g002

Table 3. Adjusted odds ratios [95% confidence interval (CI)] for PNs according to quartiles of plasma central carbon metabolites included in the multi-metabolite

model.

Metabolitesa Q1 Q2 Q3 Q4 p-trend p-FDR

2-oxadipic acid 1.00(ref) 0.31(0.22~0.43) 0.25(0.17~0.35) 0.28(0.20~0.39) <0.001 <0.001

3-Hydroxybutyric acid 1.00(ref) 1.50(1.13~1.99) 1.50(1.12~2.00) 1.69(1.24~2.31) 0.004 0.005

Gluconic acid 1.00(ref) 1.61(1.12~2.31) 1.95(1.36~2.79) 1.70(1.20~2.43) 0.244 0.244

Fumaric acid 1.00(ref) 0.80(0.60~1.06) 0.79(0.59~1.07) 0.41(0.28~0.58) <0.001 <0.001

Succinic acid 1.00(ref) 1.19(0.89~1.59) 1.56(1.16~2.10) 2.20(1.56~3.10) <0.001 <0.001

Hippuric acid 1.00(ref) 1.28(0.96~1.71) 1.61(1.21~2.14) 2.04(1.46~2.84) <0.001 <0.001

The multi-metabolite model was adjusted for age, sex, smoking status, drinking, exercise, occupational exposure to organic solvent, thurification.
a The concentrations of metabolites were presented in ng/mL.

https://doi.org/10.1371/journal.pone.0295276.t003
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Moreover, in this study we showed that succinic acid, a tricarboxylic acid (TCA) cycle

metabolite, was less abundant in healthy subjects’ than in PNs patients’ plasma, which is simi-

lar to the study conducted by Wu et al [27]. Another member of TCA cycle pathway, fumaric

acid, also seems to play a role in PNs. Both TCA organic acids changed in plasma of partici-

pants with PNs, but in opposite trends (succinic acid elevated while fumaric acid reduced).

Succinic acid is generated from succinyl-CoA by the enzymes of succinyl-CoA synthetase, and

it occupies a crucial position in mitochondrial energy metabolism, serving as the only direct

link between the TCA cycle and the mitochondrial respiratory chain via complex II activity

[28]. Also, succinic acid has been considered to be a metabolic indicator of mitochondrial dys-

function and sepsis [29], with altered tissue concentrations under inflammation and ischemia

[30, 31]. However, novel studies indicated that succinic acid released for activated macro-

phages can act as a pro-inflammatory local mediator [31], which could be another link

between altered plasma metabolism and inflammatory responses. In contrast to our study, the

levels of succinic acid were significantly reduced in urine samples from childhood allergic air-

way diseases [32], and in biological samples from patients with asthma COPD overlap [33].

This suggested that the expression of succinic acid in PNs may differ from other airway or

lung diseases. Fumaric acid has been implicated to inhibit the degradation of HIF-1α in tumor

cells so as to overcome hypoxia in several cancer types [34]. Fumaric acid can be considered a

cancer metabolite in this regard. Nevertheless, the underlying rationale with regard to the

opposite trend of the two metabolites in the plasma of PNs remains to be elucidated.

Hippuric acid was found to reduce the risk of PNs detection. Hippuric acid is a metabolite

generated by a series of gut microbes that degrade plant (poly)phenols and aromatic amino

Fig 3. Weights representing the proportion of the positive or negative partial effect for each metabolite in the quantile g-

computation model with all metabolites.

https://doi.org/10.1371/journal.pone.0295276.g003
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acids; the resulting benzoic acid is subsequently combined with glycine in the liver and kidneys

and finally excreted in the urine. It was identified in a recent study as a metabolomic marker of

gut microbiota diversity and found that reduced hippuric acid was associated with metabolic

syndrome [35]. The gut microbiota was closely related to host health. Researchers have found

that gut microbiota can also influence the development of lung disease through the gut-lung

axis. However, few studies have reported the association between gut microbiota and PNs.

Our study found that the levels of hippuric acid were higher in PNs group, and the dysregula-

tion of intestinal flora may play a certain role in the development of PNs. Clearly, more

detailed metabolomic studies are needed to explore the biological significance of altered hip-

puric acid metabolism.

We identified important metabolites associated with PNs using QgC models and found that

16 metabolites had a positive but not significant overall association with PNs. As well, a higher

association between multiple metabolites and the risk of PNs was found in women. In the anal-

ysis of multi-metabolite mixtures, it is possible that the positive effect on the risk of PNs is

driven by a combination of several key metabolites, involving several key metabolic pathways.

Therefore, any potential intervention should target a specific set of key metabolites, rather

than targeting a single metabolite or all metabolites. In subgroup analyses, compared with

those age< 65 years, the positive weight of lactic acid on PNs was increased in subjects whose

age� 65 years, whereas the weight of malic acid was significantly decreased. Studies have

shown that aging affects various metabolic pathways, many of which are associated with

decreased mitochondrial function [36]. A decrease in mitochondrial function leads to a

decrease in the TCA cycle, which activates the glycolytic pathway and leads to an increase in

lactic acid. The positive weights of citric acid and succinic acid on PNs were remarkably higher

in males than in females. It is possible that higher levels of estrogen in women protect mito-

chondria by increasing the expression of proteins that are part of the respiratory chain or the

tricarboxylic citric acid cycle [37]. However, no statistical methods are available to elucidate

the biological mechanisms, and further experimental studies are needed in the future to con-

firm our findings.

To the best of our knowledge, this is the first targeted metabolomics study to assess the asso-

ciation between central carbon metabolism and PNs in a population at high risk for lung can-

cer. We overcame multicollinearity among metabolites and identified the potential joint

associations of multiple metabolites with PNs by using QgC models. Physical examination and

experimental data were collected in strict accordance with measurement standards to reduce

measurement errors as much as possible. Finally, the metabolites we identified were associated

with PNs risk and might be potential targets for the therapy of PNs. More experimental studies

are needed to verify our results.

It is worth noting that several limitations should be acknowledged in this study. First, due

to the fact that the metabolites were detected in a single-spot plasma sample, we could not

establish their stability in this study. However, the intraindividual variability and reproducibil-

ity of metabolite concentrations were estimated in some studies, and intra-class correlation

coefficients were observed at moderate to high levels (range: 0.27 ~ 0.89) between samples col-

lected during several years intervals, supporting the feasibility of employing metabolomics in

epidemiological studies [38]. Second, we did not assess the impact of diet on plasma metabo-

lites. Nevertheless, it is an overnight fast blood sample of subjects collected in the morning that

we are able to minimize the interference due to the variation in intake of diet in the present

study. Third, even though many of the potential confounders were adjusted for, the residual

confounders could not be ruled out. Finally, the cross-sectional design limited us to infer a

causal relationship between plasma metabolite levels and PNs. Long-term follow-up studies

are warranted to elucidate the role of plasma metabolite levels in the development of PNs.
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5. Conclusions

In summary, we employed a new statistical method of QgC models to evaluate the association

between multiple metabolite concentrations and PNs. We found that 3-hydroxybutyric acid,

gluconic acid, succinic acid and hippuric acid were positively associated with PNs, whereas

2-oxadipic acid and fumaric acid were negatively associated with PNs. A positive but insignifi-

cant joint associations of the mixture of sixteen metabolites with PNs was observed by using

QgC models analyses. Further studies are warranted to investigate the association between

plasma metabolites and PNs and elucidate their biological mechanisms.
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