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Abstract

Chronic kidney disease (CKD) has become a major global health crisis, causing millions of

yearly deaths. Predicting the possibility of a person being affected by the disease will allow

timely diagnosis and precautionary measures leading to preventive strategies for health.

Machine learning techniques have been popularly applied in various disease diagnoses and

predictions. Ensemble learning approaches have become useful for predicting many com-

plex diseases. In this paper, we utilise the boosting method, one of the popular ensemble

learnings, to achieve a higher prediction accuracy for CKD. Five boosting algorithms are

employed: XGBoost, CatBoost, LightGBM, AdaBoost, and gradient boosting. We experi-

mented with the CKD data set from the UCI machine learning repository. Various prepro-

cessing steps are employed to achieve better prediction performance, along with suitable

hyperparameter tuning and feature selection. We assessed the degree of importance of

each feature in the dataset leading to CKD. The performance of each model was evaluated

with accuracy, precision, recall, F1-score, Area under the curve-receiving operator charac-

teristic (AUC-ROC), and runtime. AdaBoost was found to have the overall best performance

among the five algorithms, scoring the highest in almost all the performance measures. It

attained 100% and 98.47% accuracy for training and testing sets. This model also exhibited

better precision, recall, and AUC-ROC curve performance.

1. Introduction

Chronic kidney disease (CKD) has become very common across races [1], resulting in millions

of deaths worldwide annually [2]. Proper diagnosis and timely treatment are major concerns

in most developing countries. CKD mostly hits older people [3, 4], and by 2050, the number of

people aged 65 years and above is estimated to increase to 1.5 billion from 703 million in 2019,
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with a more than double growth rate [5]. This will put a significant additional burden on

healthcare services across the countries [6].

According to a study by the Center for Disease Control and Prevention, in 2017, approxi-

mately thirty million people in the U.S. alone were affected by CKD [7], which has been

increased to 37 million in 2021 [8]. Moreover, most people are not aware of being infected by

CKD. Traditionally, doctors confirm the CKD for any patient based on some clinical tests such

as estimating glomerular filtration rate (GFR) from a filtration marker (e.g., serum creatinine or

cystatin C) or through a urine test, detecting the presence of albumin and/or protein [9–11].

However, these tests may not always give accurate results, leading to the wrong diagnosis.

CKD can be mitigated to some extent if the possibility of it can be predicted beforehand for

the suspected patients [12, 13]. This would allow healthcare professionals to deliver better ser-

vices by embracing precautionary measures and early diagnosis and treatment. Machine learn-

ing algorithms have been popularly used in several disease diagnoses and predictions [14–17].

For CKD prediction also, various such techniques have been explored [18–22]. Machine learn-

ing algorithms are powerful for analysing large and complex datasets and identifying patterns

and relationships that may not be apparent to human experts. In the context of CKD predic-

tion, machine learning has the potential to improve accuracy and reduce costs by identifying

early signs of disease progression and predicting the risk of developing CKD in at-risk

populations.

However, traditional machine learning techniques suffer from some crucial limitations,

including [23, 24]:

• Overfitting, where the algorithm becomes too specialised to the training data and fails to

generalise to new data.

• Large, high-quality datasets are needed to train and validate the algorithms, which can be

challenging to obtain in some clinical settings.

• Training and evaluating machine learning algorithms may require considerable computa-

tional time and resources, especially for large datasets.

• High dependency on the quality and quantity of data available for training. If the data is

incomplete, biased, or otherwise of poor quality, the resulting algorithm will be inaccurate or

may not work at all.

• The machine learning algorithms can inadvertently incorporate biases present in the train-

ing data, leading to unfair or discriminatory outcomes.

Recently, ensemble learning techniques have shown great promise in improving the accu-

racy, robustness, and generalizability of predictive models, making them valuable in many

fields, including healthcare, finance, marketing, social media analytics, etc. The ensemble

learning approaches are gaining attention for disease prediction with higher accuracy [25–31].

Among the ensemble learning techniques such as boosting, bagging, and stacking, boosting

algorithms can reduce the training error (bias) and testing error (variance).

In this paper, we design a novel CKD prediction model using boosting algorithms. We aim

to improve the performance of the disease prediction model over similar existing works. The

contributions of this paper are summarised as follows.

• Exploratory data analysis is performed to transform the considered dataset for better experi-

mental usability.

• Hyperparameter techniques, such as standardisation, normalisation, feature selection, and

fine-tuning, are employed to achieve optimal results.
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• The attribution of existing dataset features to disease prediction is assessed.

• Five boosting algorithms are individually applied to build the prediction model.

• The prediction performances of the five boosting algorithms are evaluated and compared.

• Our model achieved better accuracy and runtime than other machine learning-based CKD

prediction models in method evaluation.

2. Related work

As mentioned above, machine learning has been extensively used for various disease diagnoses

and predictions [17, 32, 33]. To improve the performance of these models, several machine

learning techniques are combined to extract the advantages of each of them. This ensemble

approach has gained acceptance and popularity after successful implementations for the pre-

diction, detection, diagnosis, and prognosis of different diseases, such as heart disease [34, 35],

breast cancer [36], skin disease [37], thyroid disease [38], myocardial infarction [39], Alzhei-

mer’s disease [40], etc. For CKD prediction, several prediction techniques and models have

already been proposed [41]. In the following, we briefly review some notable experiments for

the diagnosis and prediction of CKD using ensemble learning techniques.

For CKD prediction, Kumar et al. [42] proposed an ensemble learning approach that com-

prises a support vector machine (SVM), decision tree, C4.5 decision tree, particle swarm opti-

misation - multilayer perceptron (PSO-MLP), and artificial bee colony C4.5. The prediction

process has two steps–i) in the first step, weak decision tree classifiers are obtained from C4.5,

and ii) in the second step, the weak classifiers are combined with the weighted sum to get the

final output from the classifier, attaining accuracy of 92.76%. Pal [43] developed a bagging

ensemble method comprising a decision tree, SVM, and logistic regression to predict CKD.

The best accuracy of 95.92% was achieved in the case of the decision tree. Hasan and Hasan

[44] proposed an ensemble method for kidney disease diagnosis. They used adaptive boosting

(AdaBoost), bootstrap aggregating, extra trees, gradient boosting, and random forest to build

their prediction model. They performed tenfold cross-validation to validate the results. The

highest accuracy of 99% was attained with adaptive boosting. For CKD detection, Wibawa

et al. [45] developed an ensemble learning method that comprises three stages. In the first

stage, base classifiers like Naive Bayes, SVM, and k nearest neighbour (kNN) were used. Corre-

lation-based feature selection (CFS) was combined with the base classifiers mentioned above

in the second stage. In the third stage, they used CFS with AdaBoost, achieving the highest

accuracy of 98.01%. For CKD diagnosis, Jongbo et al. [1] built an ensemble learning model

through bagging and random subspace based on three base classifiers–kNN, naïve Bayes, and

decision tree. Data preprocessing was done to mitigate the missing value issue and data nor-

malisation for scaling the independent variables within a certain range. The random subspace

gained better performance than bagging in most performance measure metrics. It achieved an

accuracy of 98.30% when combined with the decision tree method. To detect CKD, Ebiare-

doh-Mienye et al. [46] combined the information-gain-based feature selection technique with

the proposed cost-sensitive AdaBoost (C.S. AdaBoost), intending to save CKD screening time

and cost. They trained the proposed C.S. AdaBoost with the reduced feature set, which

attained a maximum accuracy of 99.8%. Emon et al. [47] used various boosting techniques to

predict the risk of CKD progression among patients. The authors applied the principal compo-

nent analysis (PCA) method to get the optimal feature set and attained the highest accuracy

rate of 99.0% using random forest (R.F.). Ramaswamyreddy et al. [48] used wrapper methods
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along with bagging and boosting models to develop a CKD prediction model, attaining an

accuracy of 99.0% with gradient boosting. However, the authors did not evaluate their model

using other performance measure metrics.

3. Research methodology

This section briefly discusses the research steps followed and the ensemble learning techniques

used in the experiment.

3.1 Research workflow

The workflow of the proposed work is shown in Fig 1. We performed exploratory data analysis

on the considered dataset for better quality assessment. In this phase, missing values are identi-

fied and replaced using data imputation methods. The interquartile range (IQR) method is

used to detect outliers present in the dataset. Some other required libraries are executed to

check the corrupt data, if any, in the dataset. Also, standardisation, normalisation, feature

selection, and tuning are made during the prediction model development process using five

boosting algorithms. The dataset was split into training (60%) and test (40%) subsets. The

results are assessed through various performance metrics.

3.2 Boosting algorithms

Ensemble learning is a method that combines different traditional machine learning

approaches to enhance the performance of the prediction model [49]. Various ensemble learn-

ing approaches are proposed [50, 51]. Boosting algorithm is one of the effective approaches in

the ensemble learning family. In the literature, several boosting algorithms can be found [52,

53]. In this experiment, specifically for CKD prediction, we considered the following five

ensemble learning based boosting algorithms:

XGBoost. XGBoost (eXtreme gradient boosting) works by combining different kinds of

decision trees (weak learners) to calculate the similarity scores independently [54]. It helps to

overcome the problem of overfitting during the training phase by adapting the gradient

descent and regularisation process. The mathematical formula for the XGBoost algorithm is

shown in Eq 1.

fyðxÞ ¼
XT

m¼1
gmhm x; ymð Þ ¼

XT

m¼1
gml x 2 Rjm

� �
ð1Þ

where fθ(x) is XGBoost model with parameters θ,hm is the mth weak decision tree with parame-

ters θm, and γm is the weight associated with mth tree. T denotes the number of decision trees, l
denotes the loss function, and Rjm is an indicator function that returns 1 if x is in region Rjm,

otherwise 0.

CatBoost. CatBoost (categorical boosting) is faster than other boosting algorithms as it

does not require the exploration of data preprocessing [55]. It is used to deal with high cardi-

nality categorical variables. For low cardinality variables, one-hot encoding techniques are

used for conversion. The objective function for the CatBoost algorithm is defined using Eq 2.

Lðy; f ðxÞÞ ¼
XN

i¼1
l yi; f xið Þ þ

l

2

XP

j¼1
w2

j ð2Þ

�

where y is the true label of the training set, f(x) is the predicted label, N is the number of train-

ing samples, l denotes the loss function, λ is the regularisation parameter used to penalise over-

fitting, P is the number of features and w is the weight associated with each feature of the

dataset.
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LightGBM. LightGBM is an extension of a gradient boosting algorithm, capable of han-

dling large datasets with less memory utilisation during the model evaluation process [56].

Gradient-based one-side sampling method is used for splitting the data samples, reducing the

number of features in sparse datasets during training. The objective function for the

LightGBM algorithm is defined using Eq 3.

LðyÞ ¼
XN

i¼1
l yi; ŷ lð Þ þ

XT

i¼1
o fj
� �

ð3Þ

where θ is a set of model parameters, N is the number of training samples, l denotes the loss

function, yi is the true label of ith sample, ŷl is the predicted label for the model, fj is the jth deci-

sion tree, T is the number of trees, and ω is the regularisation term.

AdaBoost. AdaBoost works by adjusting all the weights without prior knowledge of weak

learners [57]. The weakness of all the base learners is measured by the estimator’s error rate

while training the models. Decision tree stumps are widely used with the AdaBoost algorithm

to solve classification and regression problems. The objective function for the AdaBoost algo-

rithm is defined using Eq 4.

LðHÞ ¼
XN

i¼1
exp � yi∗H xið Þð Þ ð4Þ

Fig 1. The workflow of the proposed ensemble learning based CKD prediction.

https://doi.org/10.1371/journal.pone.0295234.g001
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where H(xi) is the prediction of the classifier on the ith sample xi and yi is its corresponding

true label in {-1, +1}and N denotes the number of training samples.

Gradient boosting. In this method, the weak learners are trained sequentially, and all esti-

mators are added one by one by adapting the weights [58]. The gradient boosting algorithm

focuses on predicting the residual errors of previous estimators and tries to minimise the dif-

ference between the predicted and actual values. The objective function for the gradient boost-

ing algorithm is written using Eq 5.

LðyÞ ¼ minF

XN

i¼1
l yi; Fmathbf xið Þð Þ ð5Þ

where F is the ensemble model, n is the number of training examples, yi is the true label of the

ith sample, l denotes the loss function, and Fmathbf(xi) is the output of the ensemble model on

example mathbf(xi).

4. Dataset collection and manipulation

We used the CKD data set (https://archive.ics.uci.edu/ml/datasets/chronic_kidney_disease),

publicly available at the UCI machine learning repository, for the experiment. The dataset was

collected from Apollo Hospitals, Managiri, India.

4.1 Dataset description

The dataset contains 400 instances and 25 attributes. The first 24 attributes are predicate/inde-

pendent, and the last one is a dependent/target attribute. Among the attributes, 11 are

numeric, and 14 are categorical. The attributes are described in Table 1. It represents the infor-

mation about considered attributes, the description of attributes, their measurements, and the

range values.

Table 2 describes the attribute information with their measures like count of records, mean,

standard deviation (std), minimum (min) value, and maximum (max) value. For example, the

blood pressure (bp) attribute has a count value of 400, mean 76.175, std 13.769, min 50, and

max 180, respectively.

4.2 Data preprocessing

We performed some preprocessing on the considered CKD dataset to make the dataset most

usable. The purpose was to transform the available raw data into a format easily understood by

the ensemble learning algorithms. We conducted the following steps as data preprocessing:

a. Identify and replace duplicate values.

b. Identify and replace missing values.

c. Detect and replace the outliers.

d. Convert categorical variables to numerical values using one-hot encoding.

e. Perform data transformation (-1 to 1) and scaling (0 to 1).

The results of the above steps are discussed below.

Class balancing. The training dataset should be balanced of positive and negative

instances to achieve reasonable prediction. From Fig 2(A), it can be observed that the consid-

ered dataset was highly biased toward the positive class, i.e., “patients having CKD” over the

negative class, “patients not having CKD.” To minimise this difference, we used SMOTE to
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balance the dataset. From Fig 2(B), it can be observed that the resultant dataset is fairly

balanced.

Exploratory data analysis. We used different data visualisation tools to visualise and ana-

lyse the distribution of the data samples. Fig 3 shows the normally distributed histograms that

group all the attributes of the considered dataset within the range values. Here, the X- and Y-

axes describe the input attributes, and their corresponding values, respectively. Fig 4 plots the

probability density using the kernel density estimation (KDE) method. The X- and Y-axes

denote each attribute’s parameter value and probability density function, respectively. Fig 5

depicts the boxplot of all the considered attributes of the dataset. It provides a good indication

of how the dispersion of values is spread out. To handle the outliers in the dataset, the IQR

method was used.

Correlation coefficient analysis. To identify and plot the relationship among the dataset

attributes, we used the correlation coefficient analysis (CCA) method. A strong association/

relationship between the set of independent and dependent attributes indicates a good-quality

dataset. Fig 6 presents the CCA of the dataset attributes used in the experiment. The relation-

ship range lies between +1 to -1 along the X- and Y-axes.

Data wrangling and cleaning. To clean the dataset, we identified the missing values using

the isnull() method and then calculated the percentage of null values present in the dataset.

We used the data imputation methods (mean, median, fill, and original) to replace the null val-

ues. The missing values were replaced using the column’s mean, median, and mode. We used

Table 1. Attributes information of the dataset.

Attribute Description Measurement Value range

Age (age) Participant’s age Years 2–90

Blood pressure (bp) Participant’s blood pressure mm/hg 50–180

Specific gravity (sg) Urine specific gravity of the participant Nominal 1.005–1.025

Albumin (al) Blood volume of the participant Nominal 0–5

Sugar (su) Participant’s sugar level in the blood Nominal 0–5

Red blood cells (rbc) Normality of red blood cells of the participant Categorical 0 or 1

Pus cell (pc) Normality of pus cells of the participant Categorical 0 or 1

Pus cell clumps (pcc) Presence of pus cell clumps in the participant’s urine Categorical 0 or 1

Bacteria (ba) Presence of bacteria in the participant’s urine Categorical 0 or 1

Blood glucose random (bgr) Blood sugar test of the participant mgs/dl 22–490

Blood urea (bu) Nitrogen level in the participant’s blood mgs/dl 1.50–391

Serum creatinine (sc) Creatinine level in the participant’s blood mgs/dl 0.40–76

Sodium (sod) Sodium level in the participant’s blood mEq/L 4.50–163

Potassium (pot) Potassium level in the participant’s blood mEq/L 2.50–47

Haemoglobin (hemo) Haemoglobin measure in the participant’s blood Gms 3.10–54

Packed cell volume (pcv) Measure and size of RBCs in the participant’s blood Numeric 9.00–54

White blood cell count (wc) WBCs count in the participant’s blood Cells/cumm 2200–26400

Red blood cell count (rc) RBCs count in the participant’s blood Millions/ cumm 2.10–8

Hypertension (htn) If the participant has hypertension Categorical 0 or 1

Diabetes mellitus (dm) If the participant has diabetes Categorical 0 or 1

Coronary artery disease (cad) If the participant has coronary artery disease Categorical 0 or 1

Appetite (appet) Participant’s desire or need for something to eat Categorical 0 or 1

Pedal edema (pe) If the participant has swelling in the ankles and feet Categorical 0 or 1

Anaemia (ane) Deficiency in RBCs of the participant Categorical 0 or 1

Class (outcome) If the participant has CKD Categorical 0 or 1

https://doi.org/10.1371/journal.pone.0295234.t001
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the IRQ method to detect the outliers and replace them using the Z-score method. The Z-

score method shifts the distribution of all the data samples and makes the mean 0. Using data

cleaning methods, we further checked for duplicate, inconsistent, and corrupt values in the

dataset and neutralised them wherever applicable.

Table 2. Attributes information of the dataset.

Attribute Count Mean Std Min Max

Age (age) 400 51.585 17.308 2 90

Blood pressure (bp) 76.175 13.769 50 180

Specific gravity (sg) 1.017 0.005 1.005 1.025

Albumin (al) 1.057 1.343 0 5

Sugar (su) 0.450 1.084 0 5

Red blood cells (rbc) 0.727 0.445 0 1

Pus cell (pc) 0.773 0.420 0 1

Pus cell clumps (pcc) 0.105 0.307 0 1

Bacteria (ba) 0.055 0.228 0 1

Blood glucose random (bgr) 149.710 78.481 22 490

Blood urea (bu) 57.426 49.286 1.500 391

Serum creatinine (sc) 3.072 5.617 0.400 76

Sodium (sod) 136.790 10.039 4.500 163

Potassium (pot) 4.605 2.857 2.500 47

Haemoglobin (hemo) 12.332 2.926 3.100 17.80

Packed cell volume (pcv) 37.843 9.292 9 54

White blood cell count (wc) 8448 2951.563 2200 26400

Red blood cell count (rc) 4.473 1.009 2.100 8

Hypertension (htn) 0.368 0.483 0 1

Diabetes mellitus (dm) 0.343 0.475 0 1

Coronary artery disease (cad) 0.085 0.279 0 1

Appetite (appet) 0.795 0.404 0 1

Pedal edema (pe) 0.190 0.393 0 1

Anaemia (ane) 0.150 0.358 0 1

Class (outcome) 0.625 0.485 0 1

https://doi.org/10.1371/journal.pone.0295234.t002

Fig 2. Dataset balancing using SMOTE.

https://doi.org/10.1371/journal.pone.0295234.g002
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Fig 3. Histogram of the dataset attributes.

https://doi.org/10.1371/journal.pone.0295234.g003

Fig 4. Density plot of the dataset attributes.

https://doi.org/10.1371/journal.pone.0295234.g004
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Fig 5. Boxplot of the dataset attributes.

https://doi.org/10.1371/journal.pone.0295234.g005

Fig 6. Correlation coefficient analysis of the dependent and independent attributes in the dataset.

https://doi.org/10.1371/journal.pone.0295234.g006
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Data standardisation and normalisation. We used the MinMaxScaler() for feature scal-

ing. We scaled the data values using Eq 1 for standardisation and batch normalisation. Here,

the data mean is set to 0 and the standard deviation to 6.

NðXÞ ¼
PN

i¼1
xi � xmin

xmax � xmin
ð6Þ

where N, X, xi, σ(x), xmin, and xmax denote the total sample in the data, ith attribute, the mean

of the attributes, the sample variance of the attributes, the minimum value of the sample, and

the maximum value of the sample, respectively.

5. Experiment, results, and discussion

In this section, we present the experimental details of this work and the obtained results by

using the five boosting algorithms to predict CKD. We used 60% of the dataset to train the

boosting algorithms and the rest 40% to test and validate their efficacy. The evaluations are

extensively discussed in terms of accuracy, recall, precision, F1-score, micro-weighted, aver-

age-weighted, and AUC-ROC (area under curve-receiver operating characteristic) curve for

each algorithm.

5.1 Hardware and software specifications

An HP Z60 workstation was used to carry out this research work. The hardware specification

of the system is: Intel XEON 2.4 GHz CPU (12 core), 8 GB RAM, 1 T.B. hard disk, with Win-

dows 10 pro-64-bit O.S. environment. As software requirements, we used the GUI-based Ana-

conda Navigator, the web-based computing platform Jupyter notebook, and Python as the

programming language.

5.2 Feature importance

The feature importance is used to assess the contribution of an independent/predicate attri-

bute that leads to CKD. Generally, not all attributes contribute to disease prediction. For

instance, after running all five boosting algorithms on the original dataset, we found that the

attributes–‘ane’, ‘appet’, ‘ba’, ‘cad’, ‘pc’, ‘pcc’, ‘pe’, ‘su’, and ‘wc’ have no role in CKD predic-

tion. Hence, we eliminated these attributes from the dataset and kept only those that contrib-

uted at least for one algorithm, as shown in Fig 7.

We used the forward selection, a wrapper method, to calculate the feature importance [59].

A higher F-score of a feature indicates more importance of an attribute. For example, in Fig 7,

it can be seen that the haemoglobin (hemo) attribute has the highest contribution in the CKD

prediction for all the algorithms.

5.3 Hyperparameter tuning

We used the grid search method for hypermeter tuning to achieve optimality in the proposed

model’s performance. By specifying a grid or a specified set of values for each hyperparameter,

grid search enables methodically examining various combinations of hyperparameters. This

ensures that all the options are tried to find the optimal values of the hyperparameters. The

deterministic nature of grid search ensures consistency, i.e., it always yields the same outcomes

when the same hyperparameters and data are used. This characteristic facilitates transparent

testing and evaluation by making results simple to replicate and compare. One of the major

advantages of grid search is that it is fairly straightforward to implement. Also, most of the

machine learning frameworks and libraries provide built-in functions or modules for grid
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search. The best values of the hyperparameters found for each algorithm are shown in Table 3.

The listed values for each parameter for the respective algorithm were found to be the best per-

formers in our experiment.

5.4 Cross-validation scheme

Cross-validation is conducted to provide an unbiased evaluation of the prediction model. We

performed the k-fold cross-validation to validate the performance of the proposed model on

the training dataset. Here, we kept the value of k as 6. Based on the validation bias, the hyper-

parameters used in the experiment were tuned.

5.5 Performance evaluation

In this section, the performance of the proposed prediction model for the considered boosting

algorithms is discussed in terms of different performance metrics.

5.5.1 Classification accuracy. The classification performances of the algorithms are evalu-

ated using a confusion matrix. The confusion matrices of all five boosting algorithms applied

on the test dataset are shown in Fig 8. The left upper and the right lower boxes denote the

Fig 7. Contributing features in CKD prediction for all boosting algorithms.

https://doi.org/10.1371/journal.pone.0295234.g007

Table 3. The optimal hyperparameters of boosting algorithms.

Boosting

algorithm

Hyperparameters

XGBoost XGBClassifier (learning_rate = 0.1, n_estimators = 1000, max_depth = 5, min_child_weight = 6, ’reg_alpha’: 60.0, subsample = 0.6,

colsample_bytree = 0.8, ’gamma’: 4.20).

CatBoost CatBoostClassifier (random_state = 0, learning_rate = [0.1, 0.05], n_estimators = 100, max_depth = [1,3,5], leaf_reg’, 2.0, 8, 16,

min_child_samples = 2, 4, 6,

LightGBM LightGBM (boosting_type = ’lgbm’, random_state = 45, learning_rate = 0.1, n_estimators = 1000, max_depth = 2, min_child_samples = 250,

silent = True, n_jobs = 6).

AdaBoost GridSearchCV (random_state = 45, learning_rate = [0.01, 0.05], n_estimators = 200, algorithm = ’SAMME.R’, n_jobs = n_jobs).

Gradient boosting GridSearchCV (random_state = 45, learning_rate = [0.1, 2, 5], estimators = GradientBoostingClassifier(), max_depth = 4, weight = 6, verbose = 1).

https://doi.org/10.1371/journal.pone.0295234.t003

PLOS ONE Chronic Kidney Disease Prediction Using Boosting Techniques based on Clinical Parameters

PLOS ONE | https://doi.org/10.1371/journal.pone.0295234 December 1, 2023 12 / 21

https://doi.org/10.1371/journal.pone.0295234.g007
https://doi.org/10.1371/journal.pone.0295234.t003
https://doi.org/10.1371/journal.pone.0295234


correct predictions for the patients having (true positive) and not having (true negative) CKD,

respectively. The right upper box and the left lower box indicate the number of incorrect pre-

dictions for patients having (false positive) and not having (false negative) CKD, respectively.

The training and testing accuracies of all the boosting algorithms are shown in Fig 9. As per

our experiment, on the test dataset, AdaBoost outperformed other algorithms by attaining the

maximum accuracy rate for the training set of 100% and the test set of 98.47%, followed by

Fig 8. Confusion matrices of the prediction performance on the test set for all the five boosting algorithms.

https://doi.org/10.1371/journal.pone.0295234.g008
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LightGBM, gradient boost, XGBoost, and CatBoost at 99.73%, 99.21%, 97.23%, and 96.97%,

respectively on the training set, and 97.96%, 97.46%, 95.93%, and 96.44%, respectively on the

test set.

5.5.2 Other measurements. In addition to accuracy, we calculated the precision, recall,

F1-score, and support of the five boosting algorithms on the test set, as shown in Figs 10–13,

respectively. In addition, the macro and weighted average were measured for both classes (0:

no CKD, 1: CKD). As shown in those figures, AdaBoost produced the best precision in identi-

fying the presence of CKD, while all algorithms identified the non-infection of CKD with

equal precision. AdaBoost has a better recall and F1-score in confirming the absence of CKD.

Fig 9. Training and testing accuracy statistics of all the boosting algorithms.

https://doi.org/10.1371/journal.pone.0295234.g009

Fig 10. Precision comparison of five boosting algorithms on test set.

https://doi.org/10.1371/journal.pone.0295234.g010
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Regarding the case of support, i.e., the occurrence of class, AdaBoost performs slightly better

than the other algorithms.

5.5.3 AUC-ROC curve. The AUC-ROC curve was used to show the prediction ability of

the boosting algorithms at different thresholds. It represents a false-positive rate (FPR) vs. a

true-positive rate (TPR) along the x-axis and y-axis. A larger AUC-ROC area suggests the

model’s ability to distinguish between 0’s and 1’s, leading to a better prediction. Also, an AUC

value closer to 1 denotes a good separability measure, while in the case of an AUC of below

0.5, the model becomes ineffective in separating the classes, denoting the bad measure of disas-

sociation. The AUC-ROC for the experiment is shown in Fig 14. It can be observed that Ada-

Boost performs best while XGBoost performs worst.

Fig 11. Recall comparison of five boosting algorithms on test set.

https://doi.org/10.1371/journal.pone.0295234.g011

Fig 12. F1-score comparison of five boosting algorithms on test set.

https://doi.org/10.1371/journal.pone.0295234.g012
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6. Comparative analysis

Table 4 presents a comparative analysis of the five boosting algorithms applied on the test data-

set in terms of accuracy, misclassification rate, and runtimes. It can be observed that AdaBoost

has the highest accuracy and least misclassification rate, but it has a slightly higher runtime

than LightGBM and XGBoost.

Fig 13. Support comparison of five boosting algorithms on test set.

https://doi.org/10.1371/journal.pone.0295234.g013

Fig 14. AUC-ROC curves for the experimented boosting algorithms.

https://doi.org/10.1371/journal.pone.0295234.g014
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Since, in our experiment, we found AdaBoost to have the best overall performance in pre-

dicting CKD, we compared it with a few related research works in terms of accuracy, as shown

in Table 5. The justification for achieving higher accuracy can be credited to the adopted pro-

cedures like data imputation for handling missing values, detection and replacing outliers, and

effective data standardisation and normalisation.

7. Conclusion, limitations, and future directions

Diagnosis and prevention of chronic kidney disease have become challenging for healthcare

professionals and other concerned authorities. It can be mitigated to some extent if it can be

pre-diagnosed in well advance. In this paper, we attempted to predict CKD using an ensemble

learning approach. Specifically, we used five boosting algorithms: XGBoost, CatBoost,

LightGBM, AdaBoost, and gradient boosting. We employed different preprocessing tech-

niques like the imputation method for handling missing values and min-max scalar and Z-

score for data standardisation and normalisation. In addition, hyperparameter techniques like

grid search were used to find the optimal parameter values. Furthermore, feature selection was

carried out for each algorithm. AdaBoost emerged as the overall best performer in accuracy

(99.17%), precision, recall, f1-score, and support in the experiment. AdaBoost also attained

better results for AUC-ROC and misclassification rate. Comparing our proposed model with

similar works, we found that our method outperformed others.

Table 4. Comparative analysis of the considered algorithms performed on the test set.

Algorithm Accuracy (%) Misclassification rate (%) Runtime (seconds)

XGB 95.93 4.07 1.215

CatBoost 96.44 3.56 2.009

LGBM 97.96 2.04 1.005

ADB 98.47 1.53 1.970

GB 97.46 2.54 2.752

https://doi.org/10.1371/journal.pone.0295234.t004

Table 5. Comparison of the proposed work with existing similar works.

Research work Ensemble techniques adopted Dataset used Highest accuracy Precision Recall AUC/

ROC

Jongbo et al. [1] Individual + bagging ensemble approach + random

subspace ensemble (naive Bayes, kNN, and decision

tree)

Chronic Kidney Dataset

collected from UCI machine

learning repository

98.30% with decision tree

using random subsample

ensemble

- 98.50% 100%

Kumar et al. [42] SVM, C4.5 decision tree, PSO-MLP, decision tree,

and artificial bee colony C4.5

92.76% with artificial bee

colony 4.5

0.57% 0.42% -

Saurabh Pal [43] Logistic regression, decision tree, SVM, and bagging

method

95.92% with decision tree 99% 98% -

Hasan and Hasan

[44]

AdaBoost, bootstrap aggregating, extra trees,

gradient boosting, and random forest

99% with AdaBoost 98% 100% 99%

Wibawa et al. [45] AdaBoost based on KNN 98.01% with AdaBoost 97.86% 97.83% -

Ebiaredoh-Mienye

et al. [46]

Logistic regression, decision tree, XGBoost, random

forest, SVM, and CS AdaBoost

99.80% with C.S.

AdaBoost

97.50% 100% 98%

Emon et al. [47] Logistic regression, naive Bayes, multilayer

perceptron, stochastic gradient descent, adaptive

boosting, bagging, decision tree, and random forest

99% with Random forest 98.50% 98.50% 98%

Ramaswamyreddy

et al. [48]

Tree bag, AdaBoost, gradient boosting, and random

forest

99% with gradient

boosting

- - -

Our method XGB, CatBoost, LGBM, ADB, and gradient

boosting

98.47% with ADB 98.50% 98.50% 98.60%

https://doi.org/10.1371/journal.pone.0295234.t005
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Though the proposed model performed relatively well, it has some obvious limitations. The

size of the considered dataset is small, which may limit the prediction model’s performance in

generic situations. It is observed that most of the features are having least contribution towards

CKD. A more balanced dataset would lead to a better prediction model.

As an extension of this work, other ensemble learning techniques, like bagging, stacking,

etc., can be explored to improve the results. Additionally, deep learning techniques can also be

experimented with the exercised dataset. To validate the effectivity of the proposed model,

additional and larger datasets are needed in future. Our proposed model can be applied to

other disease datasets (e.g., diabetes) with common features. We expect more powerful disease

prediction models to be developed and implemented in medical diagnosis and treatment.
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