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Abstract

To enhance our ability to model long-range semantical dependencies, we introduce a novel

approach for linguistic steganography through English translation. This method leverages

attention mechanisms and probability distribution theory, known as NMT-stega (Neural

Machine Translation-steganography). Specifically, to optimize translation accuracy and

make full use of valuable source text information, we employ an attention-based NMT

model as our translation technique. To address potential issues related to the degradation

of text quality due to secret information embedding, we have devised a dynamic word pick

policy based on probability variance. This policy adaptively constructs an alternative set and

dynamically adjusts embedding capacity at each time step, guided by variance thresholds.

Additionally, we have incorporated prior knowledge into the model by introducing a hyper-

parameter that balances the contributions of the source and target text when predicting the

embedded words. Extensive ablation experiments and comparative analyses, conducted on

a large-scale Chinese-English corpus, validate the effectiveness of the proposed method

across several critical aspects, including embedding rate, text quality, anti-steganography,

and semantical distance. Notably, our numerical results demonstrate that the NMT-stega

method outperforms alternative approaches in anti-steganography tasks, achieving the

highest scores in two steganalysis models, NFZ-WDA (with score of 53) and LS-CNN (with

score of 56.4). This underscores the superiority of NMT-stega in the anti-steganography

attack task. Furthermore, even when generating longer sentences, with average lengths

reaching 47 words, our method maintains strong semantical relationships, as evidenced by

a semantic distance of 87.916. Moreover, we evaluate the proposed method using two met-

rics, Bilingual Evaluation Understudy and Perplexity, and achieve impressive scores of

42.103 and 23.592, respectively, highlighting its exceptional performance in the machine

translation task.
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1. Introduction

Linguistic steganography refers to the technique of concealing secret information within text,

making it difficult for people to perceive its presence. Unlike other forms of steganography,

linguistic steganography focuses on utilizing language and semantical features to hide infor-

mation [1]. In the field of linguistic steganography, information can be concealed by altering

word order, using specific grammar structures, or incorporating unusual vocabulary in the

text. The hidden information may include encrypted messages, secret instructions, or any

other content that needs to be kept confidential [2]. The applications of linguistic steganogra-

phy are diverse and have far-reaching implications in the fields of information security and

network security. Some of these applications include:

1. Covert Communication: Linguistic steganography can be used to covertly exchange sensi-

tive information between parties. By concealing data within seemingly innocuous text, it

offers a level of discretion that can be vital in various situations, including intelligence oper-

ations and secure corporate communications.

2. Privacy Preservation: Linguistic steganography can be a means of preserving the privacy of

communications. In cases where individuals or organizations need to protect their data

from unauthorized access or surveillance, this technique allows for discreet information

exchange.

3. Censorship Evasion: In regions with strict censorship policies, linguistic steganography can

serve as a way to bypass content restrictions. By hiding information within seemingly

innocuous text, individuals can share and access information that would otherwise be

prohibited.

4. Secure Communication: Linguistic steganography can facilitate secure communication by

embedding encrypted messages within carrier text. This method enhances the confidential-

ity of the information being transmitted, making it harder for eavesdroppers to intercept

and understand the content.

5. Security Protocols: Some security protocols and systems utilize linguistic steganography to

embed digital watermarks or additional security features within textual documents to pre-

vent forgery or unauthorized access.

Linguistic steganography offers a unique and versatile approach to data security, providing

a covert channel for the exchange of sensitive information, all while maintaining the appear-

ance of regular text. As technology continues to advance, the development and analysis of lin-

guistic steganography techniques play a crucial role in ensuring the confidentiality and

integrity of digital communications [3].

In the early stages of linguistic steganography, modification-based techniques were com-

monly used, such as synonym substitution, introducing spelling errors, syntactic transforma-

tions, and semantical operations, to embed secret information [4, 5]. However, these methods

heavily relied on complex syntactic or semantical analysis, making it challenging to achieve

high accuracy [6]. In addition, attackers could potentially detect the modifications through

comparisons, resulting in lower security [7]. Moreover, due to the limited redundancy in the

text, these techniques had a smaller embedding capacity, and even minor text alterations could

lead to semantical anomalies or grammatical errors.

In response to these issues, researchers have proposed non-modification-based stegano-

graphic methods, where carrier texts are obtained or generated under the guidance of secret

information [8]. These carrier-based methods aim to find a series of texts that match the secret
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information, for instance, by selecting several texts from a large corpus using the mapping

function. On the other hand, generative linguistic steganography relies on specific statistical

patterns or language models to automatically produce steganographic texts [9]. Early genera-

tive steganography often relied on grammar rules, such as context-free grammars or sentence

templates. TEXTTO was one of the earliest methods [10], designed with sentence templates

composed of word groups. Based on the syntactic features of the sentences, these templates

were filled to generate the carrier texts. Other early studies, like NICETEXT [11] and Mimicry

[12], utilized grammar rules to generate carrier texts. The key difference of these methods

from modification-based linguistic steganography is that they do not require the original texts,

making it difficult for attackers to detect by comparison. Although these methods have a high

embedding rate, they lack consideration of semantical information, resulting in carrier texts

with no contextual relevance, leading to lower security.

To address the issue of semantical irrelevance, some generative steganography models

using statistical language models emerged, such as using n-gram models [13] or Markov chains

[14] to model semantical features. Due to the difficulty of semantical modeling, some statistical

models are applied to specific genres such as short jokes [15], emails [16], and poetry [17]. To

improve text fluency, Guo et al. [18] used n-gram models to generate alternative carrier text,

which was then manually edited and polished. This method calculates the conditional proba-

bility p(xi|x1, x2,. . ., xi-1), where xi is the i-th word, to determine the word at each moment. To

address data sparsity and excessive parameters, both n-gram models and Markov models

introduce the Markov assumption, assuming that each word is only related to the previous sev-

eral words, i.e., p(xi|x1, x2,. . ., xi-1)� p(xi|xi-n+1, xi-n+2,. . ., xi-1). However, according to the Mar-

kov assumption, as the word distance increases, the semantical relevance between words

decreases, resulting in weak semantical relevance between sentences in the entire text [19].

In recent years, neural networks have provided new solutions for modeling long-range

semantical dependencies in text. Sun et al. [20] combined the Encoder-Decoder architecture

of RNN (Recurrent Neural Network) with grammatical templates to generate hidden Chinese

poetry, improving the long-range semantical relevance between generated carrier text. Cao

et al. [21] used Long Short-Term Memory network (LSTM) to select encoded carrier words

from a specific word library that matches the secret message. Yang et al. [22] proposed an

RNN-Stega algorithm for information hiding, achieving state-of-the-art performance in

embedding capacity and text quality. The algorithm first encodes alternative words based on

conditional probability distributions and then picks words that match the current secret mes-

sage bitstream for embedding. As traditional models have limited long-term memory com-

pared to RNN and LSTM, deep learning-based models have gradually replaced traditional

linguistic steganography models [23]. However, RNN memory units also have certain limita-

tions: As the vocabulary grows, previous semantical information is eventually ignored, result-

ing in weaker semantical consistency in the entire text [24]. Therefore, how to maintain

semantical relevance when generating long or multiple sentences of carrier text remains a chal-

lenge in linguistic steganography.

This paper combines the neural machine translation (NMT) model with steganography

models to introduce the NMT-Stega model. The proposed NMT-Stega model generates the

carrier text y of target language based on the source text x and previously generated target

words. During text generation, the source text provides useful information for semantical rele-

vance between sentences. For example, when generating the word yn+1, NMT-Stega considers

not only the previously generated words y1, y2,. . ., yn but also the corresponding source words

x1, x2,. . ., xm. Furthermore, the model uses an attention-based hyper-parameter to equilibrate

the impact of the source text and the target text on the target word. In order to further enhance

the quality of hidden text, this paper introduces a word pick policy to construct an alternative
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set. Experimental results demonstrate that NMT-Stega has the capability to generate multiple

semantically related lengthy sentences. Additionally, NMT-Stega exhibits excellent perfor-

mance in anti-steganography experiments.

The following three aspects are where our contributions lie:

1. Proposed NMT-Stega method addresses the issue of decreased semantical relevance as the

length of generated sentences increases. It adopts an Encoder-Decoder architecture fused

with attention mechanism to dynamically embed the secret information during text genera-

tion. Each target word’s pick takes into consideration both the source text and previously

generated target text to maintain semantical coherence with distant words.

2. To mitigate the degradation of text quality caused by embedding secret information, a

dynamic word pick policy based on probability variance is designed, allowing adaptive con-

struction of the alternative set and dynamic adjustment of embedding capacity at each time

step.

3. Attention hyper-parameters are introduced to study their effects on the embedding capacity

and text quality, providing insights into the interplay between different attention parame-

ters and variance thresholds.

4. The article makes a significant contribution by proposing a novel method that combines

attention mechanisms and probability theory for linguistic steganography. This approach

could potentially improve the security and quality of steganographic text, which is a valu-

able contribution to the field.

2. Materials and methods

2.1 Background

2.1.1 Linguistic steganography by machine translation. Translation-based Steganogra-

phy (TBS) is a technique that leverages the variability of different translations produced by

multiple translators for the same source text. Initially proposed by Beltrán et al. [25], the Lost

in Translation (LiT) model utilizes this characteristic to hide information within the translated

sentences. Each translator’s output is encoded using Huffman coding, and the sentences that

correspond to the encoding of the secret message bits are selected as the final carrier texts.

An improved version of LiT, known as LiJtT (Lost in just the Translation), was later intro-

duced by Zidenberg et al. [26]. Unlike LiT, LiJtT directly encodes the generated translated sen-

tences. Each sentence is transformed into a hash value based on a secret key, and the sentences

that match the least significant bit (LSB) of the secret message bits are chosen as the carrier

texts.

Both LiT and LiJtT require the involvement of multiple translators, and the embedding

capacity of the model depends on the diversity of the generated translations [27]. However, if

there are no LSB(Least Significant Bit) matches with the secret message bits in any translation

at a given moment, the embedding process fails. To address this issue, Meng et al. [28] pro-

posed LinL (Lost in n-best List), which utilizes a statistical machine translation (SMT) model

to obtain the n-best translations for a given source sentence.

For example, when n = 1, given a source sentence, the translated sentence t̂ is the sentence

that maximizes the conditional probability p(t|s), i.e.:

t̂ ¼ arg max pðtjsÞ
t

ð1Þ
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According to Bayes’ formula:

t̂ ¼ arg max pðtÞpðsjtÞ
t

ð2Þ

In which, p(t) represents the language model of the target text, and p(s|t) represents the

translation model trained with a bilingual corpus.

LinL employs an n-best search algorithm to select the n-best translated sentences and

encodes them for information embedding. Compared to LiT and LiJtT, LinL demonstrates

improved robustness and higher embedding capacity.

Existing TBS models are based on SMT models. One problem with SMT is that it uses the

Markov assumption to compute the language model, which assumes that the generation of the

next word depends only on a few preceding words. As a result, the quality of the generated

translation text is relatively poor [19].

2.1.2 NMT. Recently, NMT has demonstrated outstanding performance in various

machine translation tasks such as English-German and English-French translations [29, 30].

Unlike SMT, NMT consists of an Encoder-Decoder architecture. The Encoder encodes the

source sentence into a fixed-length vector, which is then fed into the Decoder to generate the

translation in the target language [23], as shown in Fig 1.

Let x = (x1, x2,. . ., xm) represent the current input source sentence to the Encoder, where m

is the number of words in x. Let y = (y1, y2,. . ., yn) be the final output target sentence from the

Decoder, where n is the number of words in y. At time step t, the NMT model predicts the tar-

get word yt by calculating the conditional probability as follows:

p ytjy1; y2; . . .; yt � 1; xð Þ ¼ softmax g htð Þð Þ ð3Þ

Here, ht is the recursive hidden state computed according to (4), and g(�) is the transforma-

tion function that converts ht into a word vector, with the word vector’s dimension equal to

the size of the vocabulary.

ht ¼ f ht� 1; yt� 1ð Þ; t � 2

s:t: h1 ¼ f c; y0ð Þ; t ¼ 1
ð4Þ

Where c is the representation of the source sentence obtained from the Encoder, and f(�) is a

non-linear function, which can be an RNN, LSTM, GRU (Gate Recurrent Unit), or Trans-

former. Each sentence is represented with a start symbol<SOS> and an end symbol <EOS>,

with y0 =<SOS>.

Due to NMT’s superior performance across translation tasks compared to SMT, it has

gained significant concern. The attention mechanism enables the model to focus on specific

words in the source sentence when generating target words, significantly improving the quality

of the generated translation text [31], this is also one of the sources of inspiration for this paper.

2.2 Proposed method

In order to obtain high-quality steganographic text with inter-sentence semantical correlation,

this paper proposes a NMT-based steganographic model called NMT-Stega. To fully leverage

useful information from the source text during the generation process, an attention mecha-

nism is employed. Traditional TBS method based on SMT generates multiple translation sen-

tences from the source sentence, encodes each sentence, and finally selects the one

corresponding to the secret information as the final target sentence. In contrast, NMT-Stega

dynamically selects generated words based on the secret information during the target sen-

tence generation process, achieving the goal of embedding secret information.
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Fig 1. NMT model.

https://doi.org/10.1371/journal.pone.0295207.g001

PLOS ONE N/A

PLOS ONE | https://doi.org/10.1371/journal.pone.0295207 January 2, 2024 6 / 23

https://doi.org/10.1371/journal.pone.0295207.g001
https://doi.org/10.1371/journal.pone.0295207


Since the selected words are not always the most probable ones, embedding process may

lead to a decrease in the quality of the generated text to some extent. The main focus of this

paper is to maintain inter-sentence semantics during the information embedding process

while minimizing the quality degradation caused by word pick.

2.2.1 General architecture. To improve translation accuracy, this paper adopts an NMT

model based on attention mechanism as the translation model. Integrating attention mecha-

nism into the Encoder-Decoder structure allows the model to dynamically focus on specific

parts of the input, thereby enhancing the efficiency of natural language processing (NLP)

tasks. For instance, in machine translation, the attention mechanism can find highly relevant

source language words when predicting the output value yt.

The architecture of the proposed NMT-Stega model is illustrated in Figs 2 and 3. Next, the

working principles and roles of the encoder and decoder will be introduced separately.

Let x!¼ ðx1; x2; . . .; xmÞ represent the current input sentence to the encoder, where m is

the number of words in x!. The hidden layer h can take the form of RNN, LSTM, or GRU. In

this paper, bidirectional LSTM (Bi-LSTM) is used as the hidden unit, which can better capture

contextual information within sentences, as it compresses not only the information preceding

the current word but also the information following it. In other words, each word xt can be

represented as ht, which is a fusion of the forward hidden state h
!

t and the backward hidden

state h
 

t:

h
!

t ¼ fLSTMðxt; h
!

t� 1Þ ð5Þ

h
 

t ¼ fLSTMðxt; h
 

tþ1Þ ð6Þ

Fig 2. Encoder of NMT-Stega model.

https://doi.org/10.1371/journal.pone.0295207.g002
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Fig 3. Decoder of NMT-Stega model.

https://doi.org/10.1371/journal.pone.0295207.g003

PLOS ONE N/A

PLOS ONE | https://doi.org/10.1371/journal.pone.0295207 January 2, 2024 8 / 23

https://doi.org/10.1371/journal.pone.0295207.g003
https://doi.org/10.1371/journal.pone.0295207


ht ¼ ½ h
!T

t ; h
 T

t �
T

ð7Þ

The decoder’s final output is y = (y1, y2,. . ., yn), where n is the number of words in the target

sentence y. The probability distribution for predicting the current word yt can be represented

as:

p ytjy1; y2; . . .; yt� 1; x
!� �
¼ MLPðyt� 1; st; ctÞ ð8Þ

where MLP is a multi-layer perceptron component, st is the output state of the hidden layer,

which is given by:

st ¼ fLSTMðst� 1; yt� 1; ctÞ ð9Þ

where, ct is another hidden state besides ht, computed as follows:

ct ¼
Xm

i¼1

â ithi ð10Þ

where â it is the attention weight, calculated as follows:

â it ¼ softmaxðaitÞ ð11Þ

Where ait represents the reference weight of the current word yt on the source word xi, given

by:

ait ¼ aðst� 1; htÞ ð12Þ

The component a is a feedforward neural network trained together with the other parts of

the NMT model.

2.2.2 Dynamic word pick policy. Applying the proposed word pick policy to the obtained

probability distribution allows us to generate an alternative set, and the effectiveness of the

word pick policy directly determines the quality of elements in the alternative set. In this

experiment, we determine whether a word can enter the alternative set by setting a limit on the

variance of the probability distribution.

First, we need to select the top-8 words with the highest probabilities from the obtained

probability distribution. The probability value ranked first is denoted as p1, corresponding to

the target word target_word1 generated at time t in the case of no embedding. We then calcu-

late the variance values var(n) (n = 2, 4, 8) for the top-8 words, specifically:

varðnÞ ¼
1

n

Xn

i¼1

ðpi �
1

n

Xn

j¼1

pjÞ
2
< ε ð13Þ

where pi represents the probability value of the i-th word wi at time t, sorted in descending

order of probability, and ε is the variance threshold. If the variance of the top-8 words’ proba-

bilities satisfies the threshold condition, i.e., var(8) is less than ε, then all 8 words are added to

the alternative set. Otherwise, we reduce n to 4 and check if var(4) is less than ε. If it satisfies

the condition, we add the first 4 words to the alternative set. If not, we further reduce n to 2

and check if var(2) is less than ε. If it satisfies the condition, the current alternative set consists

of 2 words. If not, we skip the embedding at the current position and directly output the word

with the highest probability.

Different values of ε will produce different alternative sets. The impact of ε on the model

will be detailed in the experimental section.
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The proposed word pick policy allows the number of words in the alternative set at each

time step to be potentially different. In other words, the embedding capacity at each time step

is automatically adjusted based on the current conditional probability distribution, making it

an adaptive secret information embedding policy.

2.2.3. Our attention-based hyper-parameter adjustment. In our model, the probability

distribution of the target word at time t depends on both the source text and the already gener-

ated target text. The calculation formula is as follows:

p ytjy1; y2; . . .; yt� 1; x1; x2; . . .; xnð Þ ¼ MLPða � Ct; StÞ ð14Þ

Where, α is the attention hyper-parameter, and it satisfies α2[0, 1]. MLP represents a multi-

layer perceptron. During model training, α is set to 1. During generation, α is adjusted to con-

trol the degree of dependency between the target sentence and the source sentence. When α =

0, the generation of the word at time t only depends on the already generated target sentence,

which represents the traditional generative linguistic steganography method. Due to the lack

of dependency on the source text, the generated target sentences lack semantical relevance. As

α increases, the embedding of the secret word at time t gradually depends on the source text.

When α = 1, the dependency of the secret word on both the source and target sentences

becomes consistent.

In this paper, we manually pick different attention parameter weights to test the model’s

text generation quality and steganography ability. Different weights will yield different proba-

bility distributions, thereby changing the word pick in the alternative set.

Embedding and extraction algorithms. The main idea of the embedding algorithm is to

construct a alternative set based on the probability distribution generated by the language

model and then select the word corresponding to the current moment’s secret information as

the final embedded word. The specific embedding process is shown in Algorithm 1.
Algorithm 1. Secret information embedding algorithm.
Input: Secret information bitstream B; Source text C; Beam size bs;
Variance threshold ε; Weights α, β.
Output: Target embedded word.
Procedure:
Step 1: Data preprocessing and model training.
Step 2: While B is not empty do:
Step 3: Read a sentence from the source text C.
Step 4: If not at the end of the sentence then:
Step 5: Calculate the probability distribution of the next word using
the model according to (14).
Step 6: End if.
Step 7: For bs = 8; bs > 0, do:
Step 8: If var(bs) < ε then:
Step 9: Add these bs words to the alternative set.
Step 10: Else:
Step 11: bs = bs-2.
Step 12: End if.
Step 13: End for.
Step 14: Build a binary tree based on the probability distribution of
alternative words in the alternative set and encode the alternative
words.
Step 15: Generate the target word corresponding to the binary code
that matches the current secret information bit.
Step 16: End while.
Step 17: Return the generated target embedded word.
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For example, assuming a secret bit stream B = {01011011. . .}, and the source text isHe said
he hopes that the two sides will further strengthen their exchanges and cooperation (In Chinese).

The alternative set size is 2, and the current secret bit is 0. Then, we select the word with the

highest probability as the embedded word. If the next bit is 1, we choose the word with the sec-

ond-highest probability as the embedded word. Based on the secret bit stream, the final

embedded sentence obtained will be He said he hopes that the two sides will further strengthen
their exchanges and cooperation (In English).

The process of secret information extraction is similar to embedding. The receiver shares

the source text and the same NMT model with the sender. Then, the same method is used to

build the alternative set, encode alternative words, and compare the received stego-text with

alternative words to extract the corresponding secret information bits. The specific extraction

algorithm is shown in Algorithm 2.
Algorithm 2. Secret information extraction algorithm.
Input: Target carrier text; Source text C; Beam size bs; Variance
threshold ε; Weights α, β.
Output: Secret information bitstream B.
Procedure:
Step 1: Data preprocessing and model training.
Step 2: Read a sentence from the source text C.
Step 3: If not at the end of the sentence then:
Step 4: Calculate the probability distribution of the next word using
the model according to (14).
Step 5: End if.
Step 6: For bs = 8; bs > 0, do:
Step 7: If var(bs) < ε then:
Step 8: Add these bs words to the alternative set.
Step 9: Else:
Step 10: bs = bs-2.
Step 11: End if.
Step 12: End for.
Step 13: Build a binary tree based on the probability distribution of
alternative words in the alternative set and encode alternative words.
Step 14: Compare the received hidden sentence with alternative words,
extract the corresponding secret information bits.
Step 15: Add the extracted bits to B.
Step 16: Return the secret information bitstream B.

3. Experiments and results

This paper conducted a series of experiments to test the embedding rate, text quality, and secu-

rity of the generated carrier text. In addition, a comparison with other generative linguistic ste-

ganography models was performed to assess the model’s performance in preserving text

semantics.

3.1 Data acquisition, processing and experimental setup

The proposed model used a parallel Chinese-English corpus obtained from the public news

website as the dataset, comprising 1,252,977 news sentences. The maximum and average sen-

tence lengths were 98 and 34, respectively. The dataset was split into training, validation, and

testing sets with an 8:1:1 ratio. Before model training, data preprocessing was performed,

including removing special symbols, website links, and numerical characters.

All test experiments in this paper were carried out on the Ubuntu 18.4 operating system

with a GX2080Ti GPU (128GB) and CUDA 10.0. The model was implemented using Pytorch

and Python 3.8. The hyper-parameters of the model were set as follows: encoder and decoder
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with 6 stacked layers, each layer using an 8-head attention mechanism; word embedding

dimension set to 512; dropout regularization (dropout rate = 0.2) during pretraining to avoid

overfitting; Adam optimization algorithm with an initial learning rate of 0.0003. Additionally,

a batch size of 64 and 75 iterations were used.

To ensure the quality of the generated carrier text, setting a reasonable variance threshold is

essential. This paper first calculated the variance distributions of the top-2, 4, and 8 words

without embedding, and their corresponding histograms are shown in Figs 4–6.

Based on the obtained histograms, manual threshold values were selected: 0.07, 0.072,

0.074, 0.076 for the top-2; 0.07, 0.08, 0.09, 0.1 for the top-4; 0.045, 0.05, 0.055, 0.06 for the top-

8. The impact of variance thresholds on evaluation metrics will be further demonstrated in the

following experiments.

3.2 Evaluation metrics

In machine translation systems, BLEU (Bilingual Evaluation Understudy) [32] and PPL (Per-

plexity) [33] are commonly used to evaluate text quality. BLEU is a metric that measures the

similarity between machine translation and professional translation. Higher BLEU values indi-

cate higher translation quality, and its calculation is as follows:

BLEUN ¼ bðC; SÞ expð
XN

n¼1

wn log CPnðC; SÞÞ ð15Þ

Where b(C, S) is a penalty factor:

bðC; SÞ ¼
1; ls � lc

e1�
ls
lc ; lc � ls

(

ð16Þ

Where, ls is the length of the reference sentence, and lc is the length of the evaluated sentence.

Fig 4. The conditional probability variance histogram of top-2.

https://doi.org/10.1371/journal.pone.0295207.g004
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CPn(C,S) represents the precision of generated translation C compared to reference translation S:

CPnðC; SÞ ¼

X

i

X

k
min ðhkðciÞ; max hkðsijÞÞ
X

i

X

k
hkðciÞ

ð17Þ

Fig 6. The conditional probability variance histogram of top-8.

https://doi.org/10.1371/journal.pone.0295207.g006

Fig 5. The conditional probability variance histogram of top-4.

https://doi.org/10.1371/journal.pone.0295207.g005
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PPL is a metric used to evaluate the quality of language model. It treats the language model

as a probability distribution over sentences or paragraphs, representing the probability of gen-

erating a sentence in the text. A smaller PPL indicates a better-trained model, and its calcula-

tion is as follows:

PPL ¼ 2
� 1
N

XN

i¼1
log PðsiÞ ð18Þ

Where si represents the i-th generated sentence, N is the total number of sentences, and P(si) is

the probability of si calculated by the language model. In this paper, BLEU was used to assess

text quality, while PPL was used to evaluate the statistical performance of the generated text.

3.3 Ablation experiment

Table I presents example target texts generated with different values of the attention hyper-

parameter α.

From Table 1, it can be observed that sentences generated under different attention hyper-

parameters are different, but they share similar semantical attributes. Therefore, further

research on the relationship between attention hyper-parameters and model performance is

necessary. This section will discuss the impact of different α values on the model’s embedding

rate and the quality of the generated text, using bs = 2 as an example.

Table 1. Example target texts generated with different attention HYPER-parameter.

(A)

α Translation

1 It is not the level and number of people that we have seen.

0.9 There has been a long time, but not the level and number of people we have seen now.

0.8 There is always a problem, but not the level and numbers that we have seen now.

0.7 However, it is not the case that we have seen in the level and number of people.

0.6 It is not enough to see that the current level of work.

(B)

α Translation

1 During the passage of typhoon disaster, we found in the sky and some trees on the ground were found

damaged by road safety.

0.9 During the passage of typhoon, certain trees on the slope were posed as a safety hazard in August last year.

0.8 During the passage of typhoon, some trees on the slope were once burning and posed a risk of fallen trees.

0.7 During the passage of typhoon course, there were many trees on the slope of Sheungyiu last August and posed

a challenge to road safety.

0.6 During the course of typhoon, it was forbidden to grow down on the ground and posed a chance to prevent the

spread of land.

(C)

α Translation

1 The best way is to encourage enterprises of the two countries to explore areas and content of cooperation, and

the government has given positive support.

0.9 The best way is to encourage the companies of both sides to explore areas and content of cooperation, and the

government should give positive support.

0.8 The best way is to encourage the enterprises of the two countries to explore areas and content of cooperation,

and to offer positive support.

0.7 The best way to promote cooperation is to encourage enterprises of the two sides to explore new ways to

expand cooperation and to give them positive support.

0.6 The best way to promote cooperation is to encourage enterprises to discuss ways to expand cooperation.

https://doi.org/10.1371/journal.pone.0295207.t001
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3.3.1 The influence of α on the embedding rate. As shown in Fig 7, as α increases, the

embedding rate bpw (bits per word) of different models decreases. This is because α reflects

the dependency level of the current generated word yt on the source sentence. When α
decreases from 1 to 0.6, the constraints on the current word yt are reduced, which expands the

selectable range of alternative set elements and ultimately increases the size of the alternative

set. Thus, reducing the value of α can increase the model’s embedding capacity.

3.3.2 The Influence of α on the PPL. Fig 8 reveals that as α increases, PPL also increases,

which is opposite to bpw. This indicates that appropriately reducing the value of α not only

increases the model’s embedding capacity but also reduces the complexity of the language

model. This is because when the dependency of yt on the source sentence is reduced, the gen-

eration of yt relies more on the already generated parts. It is these parts that provide more use-

ful information, making the distribution of the final generated sentences closer to the true

distribution of the target text.

3.3.3 The influence of α on the BLEU. Fig 9 shows that BLEU decreases as α decreases,

further confirming that changing the value of α affects the dependency of yt on the source

sentence.

Table 2 presents the experimental results of PPL, BLEU, and bpw under different variance

thresholds ε and attention hyper-parameters α, with varying bs values.

From Table 2, it can be concluded that as α decreases, both PPL and BLEU decrease, while

bpw increases. Moreover, increasing bs and variance threshold ε also increases the model’s

embedding capacity and complexity, with BLEU decreasing.

Fig 7. Influence of different α and ε on bpw.

https://doi.org/10.1371/journal.pone.0295207.g007
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When the embedding rate is too high, the quality of the generated carrier text may decline

due to the impact on the quality of alternative set elements. For example, given the source text:

An area of approximately 330 hectares of foreshore and seabed are affected by the works as
required in the gazette today April 14 (In Chinese), a high embedding rate may produce the

carrier text: The scope of the service is well affected by the three stages of the project, which is
scheduled for today April 15 in 2004 (In English). Reducing the embedding rate results in better

carrier text such as An area of approximately 330 hectares of foreshore and seabed are affected
by the works as required in the gazette today April 14 (In English).

3.4 Contrast experiment

This study compares three generative linguistic steganography models, including two different

Markov-based steganography models [34, 35] and one RNN-based generative text steganogra-

phy model, i.e., RNN-stega [22]. Specifically, literature [34] utilizes Markov models and Huff-

man coding to embed secret information by analyzing the statistical features of text. It first

establishes a Markov model of the text and then employs Huffman coding to embed the secret

information into the text, minimizing its impact. This method emphasizes the efficient con-

cealment of information while preserving the naturalness of the text. By utilizing the Markov

model, it can better maintain the statistical characteristics of the text. On the other hand, litera-

ture [35] focuses on a language model based on Markov chains, modifying the order of text to

embed secret information. It utilizes the properties of Markov chains to embed information

into the text and reconstructs the Markov chain during extraction to retrieve hidden

Fig 8. Influence of different α and ε on PPL.

https://doi.org/10.1371/journal.pone.0295207.g008
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information. This approach emphasizes achieving information concealment within the text by

imitating the characteristics of natural text to enhance security. As for the introduction of

RNN-stega, please refer to the introduction section.

We utilize two linguistic steganalysis tools, namely NFZ-WDA [36] and LS-CNN [37], to

evaluate the security of the carrier texts. NFZ-WDA is a specialized steganalysis model for

detecting neural network-based steganography that uses n-gram algorithms to identify statisti-

cal feature variations between the carrier texts and reference texts. NFZ-WDA is a specialized

steganalysis model based on the observation that all authors leave distinct inherent traces of

vocabulary use in their written texts, which can be recognized and used for authorship analy-

sis. By analyzing the distribution of intrinsic words within the text using the n-gram algorithm,

the inherent word usage style within the text can be estimated to detect statistical feature

changes between the carrier text and the reference text. On the other hand, LS-CNN first uses

the word embedding layer to extract the semantic and syntactic features of words, and then

learns sentence features using rectangular convolutional kernels of different sizes to capture

complex long-text dependencies and detect distribution differences between the carrier text

and the reference text.

In this study, conventional training methods were not employed, where steganalysis tools

are trained separately for different bs. As real-world carrier texts are often a mixture of various

Fig 9. Influence of different α and ε on BLEU.

https://doi.org/10.1371/journal.pone.0295207.g009
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Table 2. Influence of different parameters on bwp, BLEU and PPL.

(A)

ε bs α bpw PPL BLEU

0.07 2 1 0.663 55.860 23.592

0.072 0.715 57.915 23.286

0.074 0.758 59.482 23.370

0.076 0.758 62.499 23.216

0.07 4 0.778 63.507 23.516

0.08 1.059 67.658 23.202

0.09 1.120 72.800 23.316

0.1 1.174 75.913 23.050

0.045 8 0.841 69.731 23.368

0.05 0.981 73.123 23.131

0.055 1.104 79.709 22.898

0.06 1.320 81.373 22.468

(B)

ε bs α bpw PPL BLEU
0.07 2 1 0.770 54.399 23.207

0.072 0.815 55.437 22.962

0.074 0.843 57.985 22.900

0.076 0.866 58.031 23.074

0.07 4 1.180 63.046 23.213

0.08 1.265 63.268 22.921

0.09 1.297 68.503 23.034

0.1 1.390 73.664 22.833

0.045 8 1.243 64.391 22.970

0.05 1.395 72.113 22.669

0.055 1.457 74.640 22.699

0.06 1.650 79.044 22.236

(C)

ε bs α bpw PPL BLEU
0.07 2 1 0.787 50.169 22.339

0.072 0.835 52.201 22.271

0.074 0.867 55.249 22.151

0.076 0.896 57.267 22.273

0.07 4 1.199 59.267 22.245

0.08 1.301 60.397 22.144

0.09 1.332 62.409 22.143

0.1 1.446 67.547 21.813

0.045 8 1.265 62.408 22.269

0.05 1.452 71.735 21.803

0.055 1.518 72.801 21.674

0.06 1.762 73.345 21.196

(D)

ε bs α bpw PPL BLEU

(Continued)
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data, we aim to approximate real-world scenarios and train a single steganalysis model with

the mixed carrier texts of different bs. For instance, when training LS-CNN to detect carrier

texts, the training dataset contains a total of 15,000 carrier sentences generated from various

payload bs, attention parameters α, and variance thresholds ε.

Furthermore, to validate the long-range semantical correlations between the generated car-

rier sentences, we computed the semantical distances and the average sentence lengths of the

generated carrier sentences. Semantical distance is a metric used to measure the semantic simi-

larity between texts. In steganalysis, it is often employed to compare the semantical similarity

between carrier text and reference text. If the embedded secret information alters the semanti-

cal content of the text, the semantical distance may increase. As a steganalysis metric, it helps

detect whether a text contains hidden information. A larger semantic distance may indicate an

increased difference between texts, possibly due to steganographic operations. Average sen-

tence length is the mean length of sentences in a text. In steganalysis, this metric is typically

used to detect changes in the text. When secret information is embedded in a text, the average

sentence length may change because the embedded information can lead to certain sentences

becoming shorter or longer. By comparing the average sentence length between carrier and

reference text, changes can be detected, hinting at potential steganographic operations in the

text. The semantical distance was computed using OpenAI GPT model [38]. The steganalysis

accuracy and semantical distance results for different models are shown in Table 3.

Table 2. (Continued)

0.07 2 1 0.824 44.105 20.883

0.072 0.883 45.148 20.815

0.074 0.924 45.167 20.751

0.076 0.949 47.144 20.589

0.07 4 1.265 52.200 20.932

0.08 1.393 52.270 20.804

0.09 1.488 55.270 20.669

0.1 1.572 62.448 20.272

0.045 8 1.352 51.329 20.810

0.05 1.604 59.586 20.516

0.055 1.803 63.176 20.095

0.06 1.988 65.112 19.777

(E)

ε bs α bpw PPL BLEU
0.07 2 1 0.896 42.103 18.774

0.072 0.923 43.144 18.678

0.074 0.944 45.138 18.697

0.076 0.948 45.193 18.583

0.07 4 1.398 45.177 18.700

0.08 1.553 50.258 18.515

0.09 1.678 50.327 18.108

0.1 1.775 52.443 18.063

0.045 8 1.548 44.348 18.510

0.05 1.878 46.549 18.080

0.055 2.102 50.751 18.054

0.06 2.211 55.065 17.519

https://doi.org/10.1371/journal.pone.0295207.t002
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Table 3 indicates that the proposed model outperforms the other three models in terms of

anti-steganography attacks and preserving semantical relationships between sentences. Com-

pared to RNN-stega, the detection accuracy of NFZ-WDA and LS-CNN on the carrier texts

generated by our model reduced by 21.5% and 28.3%, respectively, at the same embedding

rate. This indicates that our model exhibits higher security and better resistance against mali-

cious attacks. The proposed NMT-stega model generates carrier text with a maximum average

sentence length of 47, whereas the previous methods had a maximum sentence length of only

31. This indicates that our method introduces more significant changes in sentence structure,

resulting in longer sentences. Additionally, the minimum semantical distance between sen-

tences reached 87.916, which is significantly lower than the minimum semantical distance of

the previous methods. This suggests that the generated carrier texts exhibit higher semantical

similarity between sentences, making them more natural and preserving more of the original

semantical information compared to the previous methods. In summary, our method can

effectively maintain semantical relationships between long sentences, even when generating

lengthy text.

Moreover, combining Tables 2 and 3, it can be seen that our method achieved the best PPL

of 42.103 and a BLEU score of 23.592. Compared to the previous best method, RNN-stega,

these represent improvements of 1.977 and 13.23, respectively. In conclusion, the proposed

method excels at the machine translation task while effectively resisting steganalysis attacks.

3.5 Efficiency analysis

The storage space for this method primarily comes from the encoder-decoder structure,

occupying approximately 182MB of memory. Other components, such as the alternative set,

require about 1.4MB of space, while the memory usage for intermediate variables is almost

negligible. During the training phase, the neural network consumes approximately 7.3

hours. On average, during the inference phase, the time required to complete one pass of the

Table 3. Comparison of experimental results under different experimental configurations. Note: # indicates that smaller values are better, and " indicates that larger

values are better.

Method ε bpw NFZ-WDA# LS-CNN# Semantical distance# Average length" PPL# BLEU"
Markov [34] N/A 1 82.5 95.2 354.317 17 493.992 0.994

N/A 2 80.5 94.8 355.293 17 577.628 0.731

N/A 3 82.5 95 368.158 23 585.311 0.863

Markov [35] N/A 1 88.5 94.9 329.113 19 294.578 1.681

N/A 2 84.5 96.6 360.997 20 486.043 0.973

N/A 3 82 96.8 373.532 25 531.080 0.607

RNN-stega [22] N/A 1 76.5 80.5 280.612 26 44.080 10.362

N/A 2 73 88 324.685 28 67.915 8.041

N/A 3 64.5 89.8 331.454 31 136.542 5.679

NMT-stega 0.045 0.841 53 56.5 87.916 46 69.731 23.368

0.05 0.981 53.5 58.2 89.941 46 73.123 23.131

0.055 1.104 53.5 59 93.218 46 79.709 22.898

0.06 1.320 56 61.5 94.301 46 81.373 22.468

0.045 1.548 55.5 53.4 92.019 47 44.348 18.510

0.05 1.878 52.5 55 96.428 47 46.549 18.08

0.055 2.102 57.5 59.7 106.440 47 50.751 18.054

0.06 2.211 55.5 65.5 113.629 47 55.065 17.519

https://doi.org/10.1371/journal.pone.0295207.t003
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neural network is around 268ms. Constructing the binary tree takes about 17ms, resulting in

an estimated time of about 311ms for embedding information in a single sentence and

approximately 304ms for extracting information from a single sentence. The reason that the

secret information embedding algorithm consumes more time compared to the extraction

algorithm is that it needs to generate the carrier text word by word. In contrast, the extrac-

tion algorithm primarily involves comparing the received carrier sentence with alternative

words for information extraction, which tends to be a faster process as it doesn’t entail text

generation but only involves comparison and matching operations. Considering the superi-

ority of this method in the anti-steganography attacks and maintaining inter-sentence

semantics, these results demonstrate an acceptable performance level in the sensitive field of

linguistic steganography.

4. Conclusion

In this paper, we combine NMT model with linguistic steganography model, resulting in the

NMT-stega model. Firstly, we adopt an attention-fused Encoder-Decoder architecture to

dynamically embed secret information during the text generation process. As the generated

text needs to maintain semantical connections with distant words, the pick of each target text

takes into account both the source text and the previously generated target words. Secondly,

the proposed word pick policy based on probability variance allows for varying the number of

words in the alternative set at each time step. This adaptive secret information embedding pol-

icy adjusts the embedding capacity based on the current conditional probability distribution.

Finally, we analyze the impact of the proposed hyper-parameter based on prior knowledge on

the embedding rate and text generation quality of the model.

The achievements of this study provide researchers with intriguing directions and visions

for future work. Here is a discussion:

1. Enhancing NMT-stega Model Performance: Future work can focus on improving the per-

formance of the NMT-stega model to increase the embedding rate and text generation qual-

ity. This can be achieved through more complex encoder-decoder architectures, refined

attention mechanisms, and advanced word selection strategies.

2. Exploring Diverse Applications: The success of the NMT-stega model’s application can be

extended to various fields. Researchers can explore how this technology can be used to

improve steganalysis, enhance information security, or advance other applications of

steganography.

3. Increasing Model Robustness: Robustness is a key concern in the field of linguistic stegano-

graphy. Future research can concentrate on developing more robust NMT-stega models to

withstand various text processing and analysis attacks.

4. Advancements in Steganalysis and Detection: As linguistic steganography continues to

evolve, steganalysis and detection techniques need to keep pace. Researchers can explore

new methods and algorithms to improve the detection capabilities of linguistic

steganography.
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