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Abstract

Creating large-scale public datasets of human motion biomechanics could unlock data-

driven breakthroughs in our understanding of human motion, neuromuscular diseases, and

assistive devices. However, the manual effort currently required to process motion capture

data and quantify the kinematics and dynamics of movement is costly and limits the collec-

tion and sharing of large-scale biomechanical datasets. We present a method, called

AddBiomechanics, to automate and standardize the quantification of human movement

dynamics from motion capture data. We use linear methods followed by a non-convex

bilevel optimization to scale the body segments of a musculoskeletal model, register the

locations of optical markers placed on an experimental subject to the markers on a musculo-

skeletal model, and compute body segment kinematics given trajectories of experimental

markers during a motion. We then apply a linear method followed by another non-convex

optimization to find body segment masses and fine tune kinematics to minimize residual

forces given corresponding trajectories of ground reaction forces. The optimization

approach requires approximately 3-5 minutes to determine a subject’s skeleton dimensions

and motion kinematics, and less than 30 minutes of computation to also determine dynami-

cally consistent skeleton inertia properties and fine-tuned kinematics and kinetics, com-

pared with about one day of manual work for a human expert. We used AddBiomechanics

to automatically reconstruct joint angle and torque trajectories from previously published

multi-activity datasets, achieving close correspondence to expert-calculated values, marker

root-mean-square errors less than 2 cm, and residual force magnitudes smaller than 2% of

peak external force. Finally, we confirmed that AddBiomechanics accurately reproduced

joint kinematics and kinetics from synthetic walking data with low marker error and residual

loads. We have published the algorithm as an open source cloud service at

AddBiomechanics.org, which is available at no cost and asks that users agree to share pro-

cessed and de-identified data with the community. As of this writing, hundreds of research-

ers have used the prototype tool to process and share about ten thousand motion files from
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about one thousand experimental subjects. Reducing the barriers to processing and sharing

high-quality human motion biomechanics data will enable more people to use state-of-the-

art biomechanical analysis, do so at lower cost, and share larger and more accurate

datasets.

Introduction

Quantitative analysis of human movement dynamics is a powerful tool that has been widely

used to estimate joint loading during walking and running e.g. [1–9], assess muscle function

during gait in individuals with cerebral palsy e.g. [10, 11], analyze the performance of assistive

devices for improving human movement e.g. [12–15], quantify changes in neuromuscular

control due to Parkinson’s disease e.g. [16, 17], and even generate more realistic computer

graphics e.g. [18–20]. But the resource-intensive nature of quantitative movement analysis

restricts access to this data and keeps study sample sizes small. Without automated tools to

process, analyze, and harmonize lab-based human movement data, the biomechanics field has

been hamstrung in its ability to apply modern, data-hungry machine learning approaches to

create accurate, data-driven models to predict, prevent, and personalize treatment for the

many injuries and conditions that impair movement.

Laboratory-based motion capture is the current benchmark data acquisition technique to

quantify human biomechanics [21, 22], but current state-of-the-art software for reconstructing

the motion and kinetics of a human musculoskeletal model from optical marker trajectories

and ground reaction forces requires substantial iterative “guess-and-check” refinement, which

increases costs, limits scalability, and reduces the reproducibility of motion capture studies

[23–25]. A typical experiment involves placing optical markers on a subject’s body segments

and having the subject perform actions in a laboratory space surrounded by specialized cam-

eras. These camera systems and associated software are able to reconstruct the three-dimen-

sional locations of the optical markers in the lab, and given the marker trajectories over time,

one can use proprietary, open, or custom software to reconstruct the kinematics of the sub-

ject’s body segments. If external loads recorded simultaneously from ground force plates an

inverse dynamics method can be used to estimate the joint torques the subject used to generate

the observed motion.

Current practices for model scaling and inverse kinematics

To reconstruct movement kinematics from optical motion capture data, software must address

several sources of noise, ambiguity, and model error. Given a set of marker trajectories corre-

sponding to a motion of interest, software must reconstruct a digital twin of the experimental

subject, with segment dimensions that match the subject as closely as possible. This process is

called scaling, and a variety of approaches have been described [23, 26–33]. Finding accurate

scaling is especially important when using motion capture data to create muscle-driven simu-

lations because the muscle-tendon parameters are scaled by the body segment dimensions

[34]. To achieve accurate kinematic results, the locations of the markers on the scaled digital

twin must be adjusted to account for variations caused by human error in attaching the mark-

ers to the body and the variations in the dimensions of human subjects [24]. This is called

marker registration. Finally, the positions and orientations of the body segments over time

must be determined, which is typically done using an optimization process called inverse kine-

matics [35–39]. Inverse kinematics algorithms generally produce more accurate results when

the solutions are constrained by an underlying skeletal model [13, 24, 40].
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The interdependence between scaling, marker registration, and inverse kinematics means

that experts must follow an iterative guess-and-check procedure, where they refine each of the

steps several times, making small adjustments to each value until a desired accuracy is achieved

[41, 42]. For example, increasing the length of the upper arm segment in a subject’s digital

twin will require also changing the marker registrations for any markers on the forearm and

the hands, because otherwise those markers would move as a result of the longer upper arm. A

longer upper arm will also, all else being equal, change the resulting motion found by inverse

kinematics. While there are best practices for conducting validation at each step [34], the pro-

cess typically requires extensive and subjective input from an expert.

Automating the scaling and registration process has been studied before, in pioneering

work by Reinbolt et. al. [43] and Charlton et. al. [44]. These authors used gradient-free optimi-

zation methods to automatically estimate body segment scales and marker registrations while

solving gradient-based inverse-kinematics problems repeatedly in an inner-loop to evaluate

optimization progress. These methods require large amounts of compute time because every

iterative guess the outer optimizer makes about body segment scaling and marker offsets

requires solving a computationally costly inner optimization problem (inverse kinematics) to

evaluate the quality of the guess. The method of Reinbolt et al. [43] produces the best results

using a particle-based optimizer for their outer optimization problem, to combat the non-con-

vexity of the problem, but this comes at a further increase in computational cost.

Given the interconnected nature of body segment scaling, marker registration, and inverse

kinematics, one might also consider posing all three problems as a single optimization prob-

lem. However, such a formulation leads to a nonconvex optimization in which a global solu-

tion is not guaranteed [45]. Instead, we can only guarantee to find a local optimum close to an

initial guess, so providing a high quality initial guess is crucial. Andersen et al. [46] have for-

mulated such nonconvex optimization problems, but did not address the problem of reliably

finding an initial guess for the non-convex optimization problem proposed.

Markerless motion capture systems based on video recordings have recently become pop-

ular since they do not require expensive motion capture equipment [47]. While these

approaches do not track optical markers, recent work has focused on combining markerless

motion capture techniques (e.g., pose detection) with scaled musculoskeletal models to

incorporate physiological joint constraints [48, 49]. These approaches still rely on solving an

inverse kinematics problem, using keypoints from pose detection algorithms, rather than

optical markers. Accurate scaled models also enable deeper biomechanical analyses with

markerless motion capture techniques to estimate kinetic quantities, like joint moments and

muscle forces [49].

Creating physically-consistent simulations

Making accurate conclusions about the kinetics of human movement requires that the kine-

matics and mass properties of a musculoskeletal model are “dynamically-consistent” with

external forces (e.g., ground reaction forces). Incorporating experimental, external force mea-

surements into simulations of movement can lead to challenges similar to those presented in

the scaling and inverse kinematics problems. When inconsistencies between model properties,

kinematics, and measured external forces are present, an inverse dynamics analysis will yield

physically impossible external forces and moments about the model’s root segment (e.g., pel-

vis), often referred to as residual forces. Biomechanics researchers aim to minimize or elimi-

nate residual forces and moments from their simulations; in practice, it is usually sufficient to

reduce the magnitude of the residual forces below recommended thresholds based on the mag-

nitude of the experimental ground reaction forces and center of mass trajectory [34].
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Similar to model scaling, dynamic consistency is usually achieved through an iterative pro-

cess where changes in model kinematics and mass parameters are made to reduce residual

forces and moments. OpenSim, widely used simulation software, provides the Residual Reduc-

tion Algorithm (RRA) tool, which adjusts mass, body mass center locations, and joint kinemat-

ics to minimize residual forces and moments [41, 50]. The RRA tool uses a tracking controller

to adjust joint kinematics while penalizing the magnitude of residual forces and moments.

Tracking weights for each joint must be chosen such that the kinematic changes are within

measurement errors while still minimizing residual forces. Since changes in residual forces are

dependent on changes in kinematics and mass properties, it is often necessary to run the RRA

tool iteratively to meet recommended residual force thresholds. Sturdy et al. [25] used the RRA

tool to automate the reduction of residual forces by optimizing the tracking weights with ran-

dom hill climbing. This approach yielded residuals within recommended thresholds from

Hicks et al. [34], but required a pre-scaled model, joint trajectories from inverse kinematics,

and up to 2 hours of processing time per subject on a standard desktop machine.

Automating motion capture data processing with AddBiomechanics

Thus, despite recent advances in biomechanics simulation methods, reconstructing human

movement from experiments remains a challenging and time-consuming task for researchers,

and large-scale datasets are lacking. This paper introduces an automated method (Fig 1), called

AddBiomechanics, that uses a combination of traditional kinematic solvers and modern

bilevel optimization to estimate high quality inverse kinematics and dynamics from experi-

mental motion capture data in reasonable computation time. We first apply a sequence of opti-

mizations to approximate the initial values for each of the body segment scales, marker

registrations, and inverse kinematics [43, 44]; thus, no user-provided initial guess is required.

Then, rather than iteratively repeat those optimization problems hundreds of times as in previ-

ous work, we apply bilevel optimization techniques to simultaneously optimize body scaling,

marker registration, and inverse kinematics. Next, we find a least-squares fit for the subject

mass and initial center-of-mass position and velocity such that integrating the center-of-mass

accelerations (which are the measured ground-reaction-forces divided by subject mass) results

in the least-squares closest approximation to the purely kinematic motion we found in the pre-

vious step. Finally, we optimize body segment masses and tune the body scales, marker regis-

trations, and model kinematics using the same bilevel approach to find a motion that is still

consistent with the experimental marker data while achieving nearly zero residuals. To evalu-

ate the algorithm, we computed marker RMS errors and residual forces and moments for a set

of common movements studied in the biomechanics field including walking, running, squat-

ting, and sit-to-stand motions, and compared errors to results computed by experts. We also

used AddBiomechanics to estimate joint angles and moments for a simulated walking motion

with known dynamics and zero residuals. Finally, we evaluated the computational cost of com-

puting kinematics and kinetics on these datasets.

AddBiomechanics can process large amounts of motion capture data automatically. To

facilitate its use, we have released the software as an open source cloud-based service available

at AddBiomechanics.org, where over 300 researchers from dozens of institutions have begun

to process their data without downloading or installing any software. AddBiomechanics out-

puts OpenSim project files [41], compatible with the widely used open source biomechanics

package, so the results of scaling and marker registration can be transferred to OpenSim for

further analysis. Optimized skeletons can also be exported in formats compatible with MuJuCo

[51] and PyBullet [52], which are physics simulators commonly used in reinforcement learn-

ing and computer graphics.
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Methods

Given a musculoskeletal model and experimental data, AddBiomechanics solves a sequence of

optimization problems to compute model scaling, inverse kinematics, and inverse dynamics,

where the solution for each problem is the initial guess for the subsequent problem. First, the

model scaling and inverse kinematics problems are solved using a series of linear and bilevel

optimization problems to find a solution for the model body segment scale factors, marker reg-

istrations, and joint kinematics. If ground reaction force data is provided by the user, AddBio-

mechanics then estimates center of mass trajectory and overall subject mass with a linear

optimization, followed by a non-convex optimization step to minimize residual forces and

tune the original model scaling and joint kinematics solution. Each of these steps are described

in more detail in the sections that follow.

Input model and experimental data

Generic, unscaled musculoskeletal model. Our algorithm can scale and register markers

on arbitrary skeletons defined using the OpenSim model format. A skeleton is composed of a

Fig 1. AddBiomechanics automates the analyses required in a standard motion capture pipeline. AddBiomechanics integrates into the standard

motion capture pipeline to automate the process of model scaling, marker registration, inverse kinematics, and residual reduction. Once experimental

marker and ground reaction force data have been collected and uploaded (steps 1–3), AddBiomechanics (step 4), replaces time-consuming and error-

prone manual steps in previous workflows. Our method processes input marker and force data through several steps automatically. First, it finds the

functional joint centers from the data (step 4.1), and then it uses the marker data and those joint centers to make an initial guess for body segment scales

and marker registrations (step 4.2). The initial guess then serves as the starting point for a bilevel optimization problem that matches the model

geometry and kinematics to the experimental marker data as closely as possible (step 4.3). Next, the model trajectory is updated by fitting the center of

mass motion to the ground reaction force data (step 4.4). A final optimization adjusts body segment masses and joint kinematics to maximize

consistency between the model and the experimental data (step 4.5). The final output is a musculoskeletal model scaled to the subject with registered

markers, joint angles, and joint torques over time.

https://doi.org/10.1371/journal.pone.0295152.g001
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set of body segments, connected by joints. The scaling of each link is concatenated to form the

s vector, and the degrees of freedom of each joint are concatenated to form the q vector. The

algorithm supports all OpenSim joint types, including custom joints. Examples of skeletons

that have been successfully scaled and registered in our experiments include widely used state-

of-the-art biomechanical models [53, 54].

Motion capture marker trajectories. The output of a commercial motion capture system

is a series of frames, often at 100–200 Hz, where each frame contains 3D coordinates repre-

senting the trajectories of optical motion capture markers in the experimental capture volume

at the corresponding moment in time. Users must provide these marker trajectories for each

experimental movement trial. Each 3D coordinate must be “labeled” with a tag corresponding

to an experimental marker location on the subject (e.g. “C7” for the optical marker placed on

the C7 spinal segment). A full list of marker tags, and their location on a given musculoskeletal

model is known as the “marker set.” We provide models with default marker sets, but users

may upload a custom model with a marker set that matches the experimental marker data they

provide. In practice, markers are almost never placed exactly at their ideal locations, and these

small deviations in experimental marker placement must be accounted for during the marker

registration step. Not every marker from the marker set is observed in every frame, because

markers may be occasionally obstructed during a motion capture experiment. Our algorithm

allows for markers with missing frames and can automatically adjust for deviations in marker

placement during the optimization.

Ground reaction forces. Ground reaction forces are recorded from force plates embed-

ded in the ground and are typically measured at higher frame rates (e.g., 1000–2000 Hz) com-

pared to marker trajectory measurements. To compute dynamics with AddBiomechanics,

users must provide the 3 forces, 3 torques, and center of pressure locations for each force plate

as a C3D file or tab-delimited data file. We assign loads from each force plate to the feet in the

model based on when the feet are penetrating the ground within known force plate geometries

and when the ground reaction force information exceeds a non-zero threshold. We assume

that both feet are never simultaneously in contact with a single force plate.

Model scaling and inverse kinematics

Model optimization to minimize marker position errors. Given the measured marker

trajectories from a motion capture system with length equal to the number of time points T,

�x1:T , AddBiomechanics formulates a nonconvex optimization that solves for the kinematic

pose trajectories, q1:T, the scaling parameters of the body segments of the musculoskeletal

model, s, and the locations of markers attached to the body segments, p. The objective of the

optimization is to minimize the deviation of estimated marker positions from �x1:T :

min
q1:T ;s;p

XT

t¼1

XM

i¼1

k fFKðqt; s; p
ðiÞÞ � �xðiÞt k; ð1Þ

where M is the number of markers, pðiÞ 2 R3
denotes the position of the i-th marker in the

local frame of the body segment to which it is attached, and p 2 R3�M
is the concatenated local

positions of all markers. fFK(qt, s, p(i)) is the forward kinematic process that transforms a point

p(i) in a skeleton scaled by s and in the pose qt from the local coordinate frame of the assigned

body segment to the world coordinate frame. Note that we use the t to denote the time index

(rather than a value in seconds) throughout the manuscript.

Eq (1) is high-dimensional and nonconvex. Consequently, the solution of such an optimiza-

tion is highly sensitive to the initialization of the decision variables. We use a bilevel maxi-

mum-a-posteriori (MAP) optimization and an initialization strategy to achieve new state-of-
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the-art in automatic processing of biomechanical motion capture data. The proposed bilevel

MAP optimization simultaneously considers data reconstruction and anthropometric statistics

when jointly optimizing all decision variables in Eq (1). To overcome the sensitivity to the ini-

tial guess, our method individually initializes each type of variable using independent sources

of information. Specifically, we use kinematic constraints to initialize q1:T, a geometric invari-

ant to initialize s, and real-world measurement to initialize p. Once the variables are initialized

individually, the final bilevel optimization ensures that they agree with one another, given the

observed data and model priors. More details about each of these steps are provided in the sec-

tions that follow.

Bilevel maximum-a-posteriori (MAP) optimization. Given recorded marker positions

�x t at time index t, we are interested in reconstructing the scales of each body segment in the

musculoskeletal model, s, the local positions of the markers p attached to their assigned body

segments, as well as the joint pose qt. This problem can be formulated as a maximum a-priori

(MAP) optimization:

max
s;p

�

max
qt

P�xð�x tjqt; s; pÞ � PsðsÞ � Ppðpj�pÞ � PqðqÞ
�

ð2Þ

The first term, P�xð�x tjqt; s; pÞ, is a conditional probability of the observed data given the esti-

mated parameters. This formulation is equivalent to the standard least-squares inverse kine-

matics objective term if we assume Gaussian noise in our marker observations. The second

term, Ps(s), expresses the prior of skeleton scaling, encoded as a multivariate Gaussian fit to the

ANSUR II dataset [55] of anthropometric scalings. If the height, weight, or biological sex of

the experimental subject is known, the multivariate Gaussian skeleton scaling prior is condi-

tioned on that information before any optimization. The third term, Ppðpj�pÞ, is a zero-mean

Gaussian distribution that regularizes the deviation of the marker locations from their

intended locations �p provided by the experimenter, encoding that markers are generally placed

close to their intended locations, even if they do not perfectly align. Ppðpj�pÞ regularizes mark-

ers differently: some markers are placed on anatomical landmarks, and therefore are unlikely

to move relative to the landmark from subject to subject, and other markers are placed any-

where on a body segment as “tracking” markers, and therefore the optimizer should be allowed

wide discretion to adjust those marker locations. The sets of “anatomical” and “tracking”

markers are determined from the musculoskeletal model provided by the user. For best perfor-

mance, users should place at least one anatomical marker on each body segment in the model.

The fourth term is a prior over q, but we assume this is a uniform distribution and drop it

hereafter.

This is a bilevel optimization problem, because in order to evaluate the quality of given skel-

eton scaling s and marker locations p, we need to optimize over the possible joint positions qt.
To efficiently solve the bilevel optimization problem, we observe that at the optimal values of

qt for maxqt P�xð�x tjqt; s; pÞÞ, the gradient of the inner optimization problem will be zero. Using

this observation, we reformulate the bilevel optimization problem as a single-level nonconvex

optimization problem with nonconvex constraints. For numerical stability, we minimize the

negative log of the above objective function:

mins;p;qt
� lnðP�xð�x tjqt; s; pÞÞ � lnðPsðsÞÞ � lnðPpðpj�pÞÞ

subject to
@

@qt
lnðP�xð�x tjqt; s; pÞÞ ¼ 0

ð3Þ
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At a locally-optimal point, the gradient of the objective term with respect to any of the deci-

sion variables is zero, so it must be zero with respect to qt:

@

@qt
lnðP�x ð�x tjqt; s; pÞÞ þ

@

@qt
lnðPsðsÞÞ

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼0

þ
@

@qt
lnðPpðpj�pÞÞ

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼0

¼ 0 ð4Þ

Thus, at a locally-optimal point for the objective function, the constraint in Eq 3 must hold

regardless, and so we could theoretically omit it from the optimization problem without loss of

correctness. However, we found that explicitly including the constraint allows the optimizer to

converge to a high-quality solution much more quickly. See S1 Appendix for a more detailed

analysis.

We could use any nonlinear optimization solver to solve Eq (3). In practice, we use IPOPT

[56], which is a high-quality and open source solver. However, due to our problem’s non-con-

vexity, a good initial guess for the decision variables is needed to produce reasonable results.

Initializing the kinematic decision variables. Prior to solving the optimization problem

in Eq (3), we need to get “close-enough” initial guesses for the decision variables. We do this

through a sequence of optimization problems as described in the steps below. We obtain initial

guesses for the joint angles, qt, body segment scales, s, and marker offsets, p, individually based

on independent sources of information such that the cascading errors can be mitigated.

1. Initialize p using the marker locations measured by the experimenter or defined by the

existing marker set.

2. Initialize s by analytically computing the functional joint centers and axes using the method

described in [57], refine those values using a non-convex sphere-fitting problem, and scale

s to match the joint axes along with the measured markers.

3. Initialize qt by solving inverse kinematics with a skeleton scaled to s and with marker loca-

tions p.

Step 1 is trivial and Step 3 is a simplified Eq (1) with s being given from Step 2 and p given

from Step 1, minqt

PM
i¼1
k fFKðqt; s; pðiÞÞ � �xðiÞt k. Solving this inverse kinematics problem effi-

ciently has been an area of research for decades [58–60] and can be done efficiently and

reliably.

The most involved step in our initialization process is Step 2, initializing the body segment

scales s. We begin by analytically computing a set of functional joint centers and axes from the

measured marker trajectories using the least-squares method given in [57]. The least-squares

method is deterministic, but can be slightly less than optimal in the presence of soft-tissue arti-

facts, so we further refine joint center estimates with a non-convex problem, initialized with

the answers we get from [57]. Let the subset of markers attached to the two body segments

connected by the joint be M. We can estimate the joint position c in the world frame over

time by

min
c1:T ;r

XT

t¼1

XjMj

i¼1

ðk �xðiÞt � ctk � riÞ
2
; ð5Þ

where ri is the estimated distance between the i-th marker �xðiÞt and the joint center ct for all t. ri
is constant over time. For each marker, Eq (5) fits a moving sphere centered at ct with the

radius ri, to match the measured positions of the marker over time.
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The sphere-fitting approach to finding functional joint centers can yield ambiguities when

marker motion adjacent to a joint is primarily confined to the sagittal plane, as commonly hap-

pens in locomotion. In such cases, we could move our joint center perpendicular to the sagittal

plane, and still have an equally good solution for sphere-fitting. As a result, sphere-fitting

might incorrectly scale the skeleton to match erroneous joint positions. For example, we might

incorrectly scale the hip width while still matching all the measured marker motion for the

thighs and the pelvis.

To address these ambiguities, we formulate another optimization problem to simulta-

neously find the joint axis and the joint center, building on Eq (5). This problem is similar in

spirit to the axis-of-rotation problem described in [61], but can be implemented without any

matrix factorizations. The goal of the axis fit problem is to identify not only a joint center c,
but also the direction of axis a at each frame. We also estimate a fixed distance from the center

for each marker, parameterized by a distance ui along the axis a and a distance vi perpendicular

to the axis a. The result of a successful axis fit is that we capture a line at each frame, where the

functional joint center could lie anywhere on that line:

min
c1:T ;a1:T ;u;v

XT

t¼1

XjMj

i¼1

ðjjaaT
t ð�x

ðiÞ
t � ctÞjj

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
parallel to a

� uiÞ
2
þ ðjjð�xðiÞt � ctÞ � aaT

t ð�x
ðiÞ
t � ctÞjj

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
perpendicular to a

� viÞ
2

subject to 8tjjatjj ¼ 1:

ð6Þ

For each marker �xðiÞt in the set M, we decompose �xðiÞt � ct to two vectors: the parallel vector

which is the projection of �xðiÞt � ct on at, and the remaining orthogonal vector. Eq (6) encour-

ages that both the projected vector and the orthogonal vector maintain constant length over

time for every marker in M.

We run both sphere fitting and axis fitting at each joint. Because the axis fit is a strictly

more demanding problem, if it succeeds, then the axis is passed on as a constraint for subse-

quent problems. If axis fitting fails, then it must be because there is out-of-plane marker

motion, which means that the sphere fit is not ambiguous, so then the exact joint center is

passed along to subsequent problems.

Once we determine the joint center and/or the joint axis, we formulate another optimiza-

tion to initialize the scaling parameters s:

min
s;a

XM

i¼1

k fFKðqt; s; p
ðiÞÞ � �xðiÞt k þ

XN

j¼1

k fFKðqt; s;0
ðjÞÞ � ðcðjÞt þ aa

ðjÞ
t Þ k; ð7Þ

where the zero vector 0(j) indicates the local coordinate of the joint j, and N is the number of

joints. The first term fits the skeleton to the measured marker positions, while the second term

encourages the joints to lie on the estimated joint axes solved by Eq (6), at a distance controlled

by the scalar decision variable α. If the joint axis does not exist for the joint j, we set aj to zero

and remove α from the optimization.

After initializing the decision variables, we find a solution by minimizing Eq (3). The body

scales, s, and marker registrations, p, are returned to the user as an optimized version of the

OpenSim model the user submitted to the tool. The joint angle trajectories, qt, obtained from

inverse kinematics solution for each trial are exported using OpenSim’s MOT file format.

Inverse dynamics

Model optimization to achieve physical consistency. After finding a set of marker regis-

trations and body scales that achieve a good inverse kinematics fit to the marker trajectories,
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we can then solve another optimization problem to find body segement masses and updated

joint kinematics that minimize the set of residual forces and torques applied to the pelvis. Simi-

lar to the model scaling and inverse kinematics optimization, this problem is non-convex, so

we first need to create a good initial guess for the model and mass parameters and update the

kinematic trajectory so that it is physically consistent with the observed ground reaction force

data. To achieve this, we solve a series of linear equations to fit the system’s center of mass tra-

jectory to our results from the marker fitting step while prescribing the observed ground reac-

tion forces. We begin with the solution q1:T obtained from the previous model scaling and

inverse kinematics process. To avoid large acceleration artifacts in the dynamic fitting prob-

lems, we smooth the solution q1:T by minimizing the jerk of the joint angle trajectories over

time (S1 Appendix).

Center of mass trajectory fitting. The trajectory of the center of mass of the system is dic-

tated by the ground reaction forces acting on the model and can be defined by the differential

equation:

€z ¼
f
m
� g ð8Þ

where €z 2 R3 is center of mass acceleration, f is the ground reaction force vector, m is the sys-

tem mass, and g is gravitational acceleration.

Since the ground reaction forces are known from experimental data, the center of mass

acceleration is just a linear function of inverse mass of the model. We define a new variable

m ¼ 1

m, and note that the center of mass trajectory is a linear function of μ. If the initial state

(the state at index t = 1) of the center of mass acceleration, ðz1; _z 1Þ, is known, the entire trajec-

tory zt is determined. We aim to find a best fit of this trajectory to the trajectory that we

obtained from the marker-fitting optimization, ẑ t.

We define a vector ζ that contains the three unknown quantities:

ζ ¼

z1

_z 1

m

2

6
6
6
4

3

7
7
7
5
2 R7

ð9Þ

We can define a linear system with matrix A 2 R3T�7 and offset b 2 R3T that maps the vec-

tor ζ onto Z 2 R3T , a vector of concatenated center of mass position vectors over time:

Aζ þ b ¼ Z ¼

z1

z2

..

.

zT

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

2 R3T ð10Þ

Given the observed trajectory of center of mass motion from the marker fitting step, Ẑ , it

is possible to find a least-squares best estimate for the unknowns, ζ̂ , using the pseudo-inverse

of A:

ζ̂ ¼ AyðẐ � bÞ ð11Þ
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To derive A, first, we define a semi-explicit Euler integration scheme to solve for the center

of mass trajectory:

_z tþ1 ¼ _z t þ
1

m
f tDt

ztþ1 ¼ zt þ _z tþ1Dt

ð12Þ

where Δt is the integration time step in seconds.

We can then construct A and b using this integration scheme to relate the unknowns ζ to

the center of mass positions, Z:

A ¼

I 0 0

I DtI D
2

t ðf 1
Þ

I 2DtI D
2

t ðf 2
þ 2f

1
Þ

..

. ..
. ..

.

I TDtI D
2

t

PT
t¼1
ðT � tÞf t

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

b ¼

0

� D
2

t g

� D
2

t ðg þ 2gÞ

..

.

� D
2

t

PT
t¼1
ðT � tÞg

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

ð13Þ

Here, the first two columnar blocks of A represent the contributions from z1 and _z 1 to the

trajectory Z, where I and 0 are the 3 × 3 identity and zero matrices, respectively. The third

columnar block of A represents the contribution from the inverse mass μ and is a single col-

umn containing terms corresponding to the time integration of the ground reaction forces.

Similarly, the vector b contains terms corresponding to the time integration of gravitational

acceleration.

By solving Eq (11), we obtain a least-squares best fit of the initial conditions and mass of the

system, ζ̂ , and can use this solution to obtain a new trajectory for the center of mass that is

physically consistent with the observed ground reaction force data, Z ¼ Aζ̂ þ b. We can

recover total mass as m ¼ 1

m
. Finally, we modify the position of the pelvis over time while keep-

ing the remaining joint angles fixed to update the model’s center of mass trajectory to match

Z. This step serves as an initialization for the final problem described later, which will further

refine the joint angle trajectories while optimizing the mass properties of the model.

Angular dynamics fitting. Fitting the center of mass trajectory provides better physical

consistency with the linear ground reaction forces applied to the system, but the trajectory

may still be inconsistent with the moments these forces produce about the center of mass of

the system. Given our solution to the linear center of mass fitting problem, ζ̂ , we can expand

our approach to also address physical inconsistencies in the angular dynamics.

We use θt 2 R
3 to denote the rotational generalized coordinates of the root segment (e.g.,

the pelvis) at time t, which are a subset of the coordinates in qt. First, we assume that changing

θt does not change the mass matrix or the Coriolis forces for the skeleton at time t. This is not

true in general, but since we aim to make small adjustments to θt from the inverse kinematics

solution, we find this in practice to be a reasonable approximation when creating an initial

guess for the skeleton’s root trajectory. We can then construct a new linear map that relates the

initial conditions of the root segment to the trajectory, Ξ 2 R6T
, which includes both the pelvis
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coordinate rotations, Θ 2 R3T
, and center of mass positions, Z 2 R3T

:

~Aξþ ~b ¼ Ξ ¼
Z

Θ

" #

¼

z1

z2

..

.

zT
θ1

θ2

..

.

θT

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

2 R6T
ð14Þ

The vector ξ contains the initial conditions of the center of mass trajectory and the initial

pelvis rotational coordinate values, θ1 and speeds, _θ1:

ξ ¼

z1

_z 1

θ1

_θ1

2

6
6
6
6
4

3

7
7
7
7
5
2 R12 ð15Þ

The initial values of z1 and _z 1 are chosen based on our previous solution to the center of

mass trajectory fitting problem. Note that unlike in the previous linear fitting problem, we

now hold the skeleton mass fixed, so no inverse mass term appears in ξ, and what used to be

the third columnar block in A in Eq 13 is now instead part of the constant term and appears in

~b. See S1 Appendix for details on how ~b is constructed. As before, we construct ~A to map the

initial conditions ξ onto the trajectory X:

~A ¼

I 0 0 0

I DtI 0 0

I 2DtI 0 0

..

. ..
. ..

. ..
.

I TDtI 0 0

@θ1

@z1

� �
@θ1

@ _z 1

� �

I 0

@θ2

@z1

� �
@θ2

@ _z 1

� �

I DtI

@θ3

@z1

� �
@θ3

@ _z 1

� �

I 2DtI

..

. ..
. ..

. ..
.

@θT

@z1

� �
@θT

@ _z 1

� �

I TDtI

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð16Þ

Note that the upper left and lower right quadrants of ~A are identical to the block matrices

we constructed in A, since we use the same semi-explicit integration scheme for both zt and θt
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as defined in Eq (12). The center of mass trajectory zt does not depend on θ1 or _θ1, so the

upper right quadrant contains all zeros.

To compute the terms
@θt
@z1

and
@θt
@ _z1

in the lower left quadrant of ~A, we first note that the center

of pressure locations are fixed based on the ground reaction force data. Therefore, if we change

the location of the center of mass by some finite value Δzt, the moment applied by the ground

reaction force about the pelvis changes by Δτt = Δzt × ft. This means that the acceleration of

the pelvis rotational coordinates changes by D€θ t ¼ M� 1

t ðDzt � f tÞ, where Mt is the generalized

mass matrix for our skeleton in configuration qt found by the inverse kinematics and scaling

steps. This can be rewritten as a linear expression between Δzt and D€θ t using the skew-sym-

metric matrix [ft]:

D€θ t ¼ � M
� 1

t ½f t�Dzt; ð17Þ

where � M� 1

t ½f t� is a constant matrix in R3�3.

Note that Eq (17) is true for the initial time step even without our simplifying approxima-

tions (that changing θt does not effect mass matrix Mt or Coriolis forces). These approxima-

tions are only necessary when we begin to integrate this expression forward in time, since

changes in θt will change the mass matrix, Mt, and the linear offsets from the equations of

motion (e.g., the Coriolis forces) contained in ~b, which would render the problem non-linear.

We can now compute
@θt
@z1

and
@θt
@ _z1

by multiplying together known terms based on the chain

rule:

@θt

@z1

¼
Xt

i¼1

@θt

@€θ i

@€θ i

@zi

@zi
@z1

ð18Þ

@θt

@ _z 1

¼
Xt

i¼1

@θt

@€θ i

@€θ i

@zi

@zi
@ _z 1

ð19Þ

Where the partials are given by:

@θt

@€θ i

¼ ðt � iÞðDtÞ
2I

@€θ i

@zi
¼ � M� 1

i ½f i�
@zi
@z1

¼ I
@zi
@ _z 1

¼ ði � 1ÞDtI ð20Þ

In Eq (19), the first two terms are the same as Eq (18), and the third term is the change in

center of mass position due to the change in _z 1. Both
@zi
@z1

and
@zi
@ _z1

can be obtained directly

from A.

The vector ~b includes terms for the time integration of gravitational acceleration, the accel-

eration due to the applied ground reaction forces, and the Coriolis terms of the equations of

motion of the skeleton. In general, the Coriolis terms depend on θt, but based on our simplify-

ing assumption to keep the problem linear, we simply use the initial guess for θt to compute

the terms in ~b. Refer to S1 Appendix for more details on the construction of ~b.

We can then find a least-squares best fit for the unknown initial conditions, ξ̂, given the

observed trajectories of the center of mass position and pelvis rotation coordinates, X̂, using

the pseudo-inverse of ~A:

ξ̂ ¼ ~AyðX̂ � ~bÞ ð21Þ
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We use the solution ξ̂ to reconstruct a physically-consistent trajectory for the pelvis coordi-

nate rotations and center of mass positions, X ¼ ~Aξ̂ þ ~b. To make the problem linear, we

have assumed that our solution for the pelvis coordinate rotations, Θ, does not change the

mass matrix or Coriolis terms, but since this is not true in general, the solution to Eq (21) will

change the terms in ~A and ~b. Therefore, to find a satisfactory initial guess for the skeleton’s

root trajectory, we form and solve the system defined by ~A and ~b iteratively until X converges.

In practice, we find that convergence typically takes less than 30 iterations with each iteration

taking less than a second on a low-end server.

Once the solution Ξ̂ has met our convergence criteria, we have found a trajectory for the

center of mass translation and the pelvis coordinate rotations that is physically consistent with

the measured ground reaction force data. Finally, we include additional terms to account for

errors in force plate locations and orientations and to eliminate drift in very long trials; the

details of these terms can be found in S1 Appendix.

Final optimization to tune marker fitting results and minimize residual

loads

After fitting the center of mass trajectory and pelvis coordinate rotations to achieve physical

consistency with the ground reaction force data, we run a final optimization to tune skele-

ton segment masses, marker offsets, segment scale factors, and joint coordinates to mini-

mize the residual forces at the pelvis, f rest , while still retaining a good kinematic fit to the

marker data. We achieve this by taking the marker fitting problem described in Eq (2) and

adding the segment masses to the decision variables and a loss term to penalize the residual

forces:

max
s;p;qt ;m

�

P�x ð�x tjqt; s; pÞ � PsðsÞ � Ppðpj�pÞ � Pf ðf
res
t jqt; s; p;mÞ

�

ð22Þ

We optimize this problem in the same way as the marker fitting problem, where we mini-

mize the negative log of the objective in Eq (22). Note that we do not use a bilevel problem for-

mulation here, since we now allow the solution to deviate slightly from a valid inverse

kinematics solution in order to achieve dynamic consistency. Therefore, we no longer explic-

itly constrain that the gradient of the inverse kinematics loss term with respect to the joint

coordinates be zero.

Open source implementation

To facilitate adoption, we provide the algorithm as an open-source, cloud-based tool that

allows researchers to automate scaling, marker registration, inverse kinematics, residual reduc-

tion, and inverse dynamics for their motion capture data without downloading or installing

any software, available at AddBiomechanics.org. Users can drag and drop files for automated

processing, and then visualize on the web or download results for analysis in OpenSim (Fig 2).

C3D or TRC marker files are supported, and C3D or MOT files for ground reaction forces.

The cloud tool also allows researchers to automatically generate comparisons of their own

hand-scaled data versus the output of the automated system.

Evaluation

To evaluate our algorithm, we first compared AddBiomechanics to expert-computed values

for a dataset published by Hamner et al. (2013) with ten subjects running at 2.0, 3.0, 4.0, and

5.0 m s-1 [62] (40 total trials), as well as a multi-activity dataset [49] that included sit-to-stand,
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squatting, jumping, and walking motions (104 total trials). We compared root mean squared

errors between experimental and model markers and computed residual forces and moments

for both the expert- and AddBiomechanics-determined values. We also qualitatively compared

joint angles and joint torques. We used the model, marker set, and raw experimental data

Fig 2. The web interface for AddBiomechanics. The web interface allows users to drag and drop data files for individual experimental trials and the

subject data is processed automatically in the cloud.

https://doi.org/10.1371/journal.pone.0295152.g002
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(markers and ground reaction forces) from the original study as inputs to AddBiomechanics

and compared to the published results computed by the study investigators.

Quantitative comparison of the solved joint angles and moments with ground truth values

is another critical test of our method. However, ground truth joint angles and moments cannot

be directly measured from experiments. We thus used a three-dimensional dynamic simula-

tion of walking created using trajectory optimization [63], where joint angles and moments

are known and residual forces and moments are also known to be zero, to generate a synthetic

dataset. We used synthesized marker trajectories, along with the computed ground reaction

forces and centers of pressure from the simulation, as inputs to AddBiomechanics. Additional

inputs included the original generic, unscaled model and an unregistered version of the appro-

priate marker set. We then used AddBiomechanics to optimize and compared the recovered

motion to the known joint angles and moments.

Results

Human expert versus automated processing: Running dataset

The average marker RMSE achieved by AddBiomechanics for the running dataset was 1.5 cm,

which is significantly smaller than the 4.3 cm marker RMSE (p< 0.005, paired t-test) in the

originally published results from [62] obtained after using OpenSim’s Residual Reduction

Algorithm (Fig 3, left) to modify the running kinematics to reduce residual loads. In addition,

the maximum marker error produced by AddBiomechanics (3.8 cm) was smaller than the

maximum marker error in the expert-processed results (7.5 cm). AddBiomechanics produced

a small but significant reduction in average RMS residual force magnitude (p< 0.05, paired t-

test) compared to the original study (Fig 3, right). In addition, AddBiomechanics was able to

significantly reduce residual torque magnitudes (p< 0.005, paired t-test) such that they were

below the threshold recommended by Hicks et al. [34], which was not achieved in the original

study. Finally, the lower-limb joint angle and joint torque trajectories from the automated

approach were qualitatively similar to the trajectories from the original study (Fig 4). AddBio-

mechanics produced similar results in both the stance and flight phases of running across all

subjects.

The manual data processing by the expert in the original publication was labor intensive:

each participant took several days for the expert to create a dynamically-consistent scaled

model and compute joint angles and torques. Average computation time for a participant pro-

cessed with AddBiomechanics was less than 30 minutes on a desktop machine, with 3–5 min-

utes spent on scaling and inverse kinematics, and the remainder on dynamic consistency.

Human expert versus automatic processing: Multi-activity dataset

AddBiomechanics produced similar marker errors (RMS: 1.6 cm, max: 3.9 cm) when process-

ing the multi-activity dataset compared to manual processing by experts (RMS: 1.7 cm, max:

3.7 cm; Fig 5, left). The original study published by Uhlrich et al. [49] did not perform a resid-

ual reduction step before computing joint moments. However, AddBiomechanics automati-

cally produced an inverse dynamics solution that met the recommendations of Hicks et al. [34]

(Fig 5, right) and significantly reduced both residual forces and moments (p < 0.005, paired t-

test). In addition, the lower-limb joint angle and joint torque trajectories from the automated

approach were qualitatively similar to the trajectories from the original study (Fig 6).

Manual expert scaling for the multi-activity dataset was also labor intensive, taking roughly

one working day per subject, not including additional time to perform inverse kinematics and

inverse dynamics for each of the movement trials. AddBiomechanics required less than one

hour on a desktop machine to automatically perform scaling, inverse kinematics, and inverse
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dynamics for each subject with no input from the user. Scaling and inverse kinematics was

completed in under 10 minutes, with the remaining time being consumed by dynamics

processing.

Synthetic walking data results

We found that AddBiomechanics was able to recover the ground truth joint angles and joint

torques from the synthetic walking marker data to an average of 1.6 deg RMSE and 0.15%

body weight times height (computed over all joints in a trial together). The marker errors and

residual loads achieved by AddBiomechanics for the synthetic data were small (0.63 cm and

0.01% normalized load, respectively; Table 1).

Discussion

Our bilevel optimization algorithm to find body segment scales, marker offsets, and joint angle

and torque trajectories found dynamically-consistent trajectories for the multi-activity dataset

while achieving marker reconstruction errors similar to the originally published expert-pro-

cessed data. In addition, AddBiomechanics was able to automatically reproduce lower-limb

joint angles and torques from the running dataset while achieving similar residual loads and

Fig 3. Human expert versus automated processing: Running dataset. The root-mean-square marker errors (left)

and residual forces and torques (right) from the original published study from Hamner et al. [62] (gray) compared to

the results obtained using AddBiomechanics (blue). The results from Hamner et al. [62] were obtained using

OpenSim’s scaling, inverse kinematics, and inverse dynamics tools, and residual loads were minimized using

OpenSim’s Residual Reduction Algorithm (RRA). The residual forces are normalized to a percent of the peak ground

reaction force, and the residual torques are normalized to a percent of the peak ground reaction force times the average

center of mass height. The solid bars show the average per-trial RMS error, averaged over the 10 subjects in the

evaluation. The error bars show the standard deviation of RMSE across the subjects. The dashed horizontal lines

represent residual force and torque magnitude thresholds recommended by Hicks et al. [34]. Asterisks indicate

statistical differences based on pairwise t-tests.

https://doi.org/10.1371/journal.pone.0295152.g003
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significantly reducing marker error. Finally, AddBiomechanics reproduced the joint angles

and torques from the synthetic walking dataset with high accuracy while achieving very low

marker error and residual forces. The sequential approach we used to create initial guesses for

solving the model scaling, inverse kinematics, and inverse dynamics optimizations problems

made our method fast and robust, requiring no expert intervention.

In addition to being computationally efficient, our method improves upon previous auto-

mated model optimization methods. For comparison, the method in [24] assumed that all the

body segment scalings were known to the algorithm and only attempted to find the marker

offsets and the joint angles, and resulted in 1.21 degree joint angle RMSE. Our method must

also recover segment scaling information from the data but achieves similar results: processing

the synthetic walking data led to a joint angle RMSE of 1.6 degrees. The marker error results

Fig 4. Running data: Joint angles and torques. Joint angles (left) and joint torques (right) from the original published study from Hamner et al. [62]

(gray) compared to the results obtained using AddBiomechanics (blue) for the 2.0 and 5.0 m s-1 running trials. The solid lines represent joint angles and

torques averaged over the 10 subjects in the evaluation; the shaded bands represent the standard deviation across subjects.

https://doi.org/10.1371/journal.pone.0295152.g004
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from our approach are also consistent with previous automated scaling approaches, which all

outperform human experts when fitting a model to the same data [24, 43, 44, 64–66]. However,

previous approaches required large amounts of compute time, were limited to one specific

skeleton, or only addressed part of the body segment scaling and marker registration problem.

In addition, our method found inverse dynamics solutions with normalized residual forces

and torques similar to the results from the automated RRA optimization algorithm proposed

by Sturdy et al. [25]. Our approach found scaling, inverse kinematics, and inverse dynamics

solutions for multiple trials in less than 30 minutes, whereas the approach by Sturdy et al. [25]

can take up to two hours to find dynamics for a single trial, and requires scaling be known in

advance.

Our optimization approach has some limitations that should be considered when process-

ing experimental movement data with AddBiomechanics. First, there is some fundamental

ambiguity in reconstructing the full kinematic and anthropometric information (body seg-

ment scales, marker offset registrations, and body positions) from only marker location data.

For example, the pelvis can be tilted slightly forward, with the markers at the front of the pelvis

shifted upward, and if the angles of the hips and spine are appropriately adjusted then the

markers will still closely match the target data. If this effect is observed in practice, AddBiome-

chanics users can leverage the fact that the optimizer will prioritize solutions that move the

anatomical markers as little as possible, and adjust the marker starting locations on the bones

Fig 5. Human expert versus automatic processing: Multi-activity dataset. The root-mean-square marker errors

(left) and residual forces and torques (right) from the original published study from Uhlrich et al. [49] (gray) compared

to the results obtained using AddBiomechanics (blue). The results from Uhlrich et al. [49] were obtained using

OpenSim’s scaling, inverse kinematics, and inverse dynamics tools, but no residual reduction step was performed. The

residual forces are normalized to a percent of the peak ground reaction force, and the residual torques are normalized

to a percent of the peak ground reaction force times the average center of mass height. The solid bars show the average

of per-trial RMS error, averaged over the 10 subjects in the evaluation. The error bars show the standard deviation of

RMSE across the subjects. The dashed horizontal lines represent residual force and torque magnitude thresholds

recommended by Hicks et al. [34]. Asterisks indicate statistical differences based on pairwise t-tests.

https://doi.org/10.1371/journal.pone.0295152.g005
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Fig 6. Multi-activty data: Joint angles and torques. Joint angles (left) and joint torques (right) from the original published study from Uhlrich et al.

[49] (gray) compared to the results obtained using AddBiomechanics (blue) for drop jump and squatting activities. The solid lines represent joint angles

and torques averaged over the 10 subjects in the evaluation; the shaded bands represent the standard deviation across subjects.

https://doi.org/10.1371/journal.pone.0295152.g006

Table 1. Synthetic walking data results.

Quantity Average RMSE † Units

Joint Angles 1.6 ± 0.3 degrees

Joint Torques 0.15 ± 0.01 % BW × height

Markers 0.63 ± 0.08 centimeters

Residual Force 0.01 ± 0.01 % normalized force‡

Residual Torque 0.01 ± 0.01 % normalized torque‡

† The average RMSE results are presented as mean ± standard deviation across subjects.
‡ The residual forces are normalized to a percent of the peak ground reaction force, and the residual torques are

normalized to a percent of the peak ground reaction force times the average center of mass height.

https://doi.org/10.1371/journal.pone.0295152.t001
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to more closely match the experimental placement. Second, the optimizer applies a statistical

prior to body segment scales to bring them more in-line with population statistics as repre-

sented by the ANSUR II anthropometric dataset [55]. If the optimizer can find a way to fit the

marker data with a skeleton that is more likely to exist in the ANSUR II population (such as by

tilting the pelvis forward 2 degrees), it will choose that one, even if the “true” underlying skele-

ton was slightly different. The data in ANSUR II is large and detailed, but was collected from

active-duty military personnel, and so is not reflective of many patient populations. A broader

anthropometric dataset could help address this limitation. Finally, AddBiomechanics may not

always find an inverse dynamics solution with sufficiently low residual forces and torques due

to inconsistencies between the marker and ground reaction force data that cannot be

accounted for with a rigid body model.

By creating and sharing this tool, we aim to make quantitative biomechanics results more

accessible, including to clinicians and researchers who do not possess the technical expertise

or time traditionally required to achieve high-quality results. Our method goes from labeled

marker trajectories to a scaled, registered, and physically-consistent musculoskeletal model

and corresponding human motion in less than 30 minutes on a low-end server. We also pro-

vide a web version at AddBiomechanics.org which features a drag-and-drop interface to auto-

matically process human movement data in the cloud. In exchange for sharing the resulting

anonymized motion data with the scientific community under a creative commons license, we

make AddBiomechanics freely available for researchers. As of this writing, over 300 research-

ers have used the prototype tool to process and share more than 14,000 motion files from

almost 1,200 experimental subjects. We hope AddBiomechanics will increase the quality, con-

sistency, and availability of biomechanical data analyses and lead to the creation of a large-

scale public dataset of accurately modeled human motion biomechanics.
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