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Abstract

Over the past few decades, skin cancer has emerged as a major global health concern. The

efficacy of skin cancer treatment greatly depends upon early diagnosis and effective treat-

ment. The automated classification of Melanoma and Nonmelanoma is quite challenging

task due to presence of high visual similarities across different classes and variabilities

within each class. According to the best of our knowledge, this study represents the classifi-

cation of Melanoma and Nonmelanoma utilising Basal Cell Carcinoma (BCC) and Squa-

mous Cell Carcinoma (SCC) under the Nonmelanoma class for the first time. Therefore, this

research focuses on automated detection of different skin cancer types to provide assis-

tance to the dermatologists in timely diagnosis and treatment of Melanoma and Nonmela-

noma patients. Recently, artificial intelligence (AI) methods have gained popularity where

Convolutional Neural Networks (CNNs) are employed to accurately classify various skin dis-

eases. However, CNN has limitation in its ability to capture global contextual information

which may lead to missing important information. In order to address this issue, this

research explores the outlook attention mechanism inspired by vision outlooker, which

improves important features while suppressing noisy features. The proposed SkinViT archi-

tecture integrates an outlooker block, transformer block and MLP head block to efficiently

capture both fine level and global features in order to enhance the accuracy of Melanoma

and Nonmelanoma classification. The proposed SkinViT method is assessed by different

performance metrics such as recall, precision, classification accuracy, and F1 score. We

performed extensive experiments on three datasets, Dataset1 which is extracted from

ISIC2019, Dataset2 collected from various online dermatological database and Dataset3

combines both datasets. The proposed SkinViT achieved 0.9109 accuracy on Dataset1,

0.8911 accuracy on Dataset3 and 0.8611 accuracy on Dataset2. Moreover, the proposed

SkinViT method outperformed other SOTA models and displayed higher accuracy com-

pared to the previous work in the literature. The proposed method demonstrated higher per-

formance efficiency in classification of Melanoma and Nonmelanoma dermoscopic images.

This work is expected to inspire further research in implementing a system for detecting skin

cancer that can assist dermatologists in timely diagnosing Melanoma and Nonmelanoma

patients.
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1 Introduction

Cancer has become a major concern in the healthcare sector, with a projected global inci-

dence of 18.1 million in 2020 [1]. As per World Health Organization (WHO) report [2], can-

cer has emerged as one of the top killers worldwide, responsible for approximately 10

million fatalities in 2020 alone. Nowadays, skin cancer is one of the most common types of

the disease to be detected, with an estimated 1.2 million cases reported globally in 2020.

Among the two primary kinds of skin cancer, that is Melanoma and Nonmelanoma, Mela-

noma is more fatal than the latter. According to American Cancer Society, the estimated

annual incidence rate of Melanoma in United States is about 100,000 people, with around

7,650 succumbing to it [3]. Melanoma has one of the highest incidence rates in New Zealand,

with 6000 people diagnosed annually and accounting for almost 80% of all skin cancer deaths

[4]. Cancer Research UK statistics show that the relative survival rate for skin cancer after 5

year is 90% [5]. The survival rate for skin cancer can be increased by early detection and

treatment.

The healthcare sector has been revolutionized with the recent advancements in Artificial

Intelligence (AI) [6]. The emergence of machine learning in computer vision has opened up

new avenues for Computer Aided Diagnosis (CAD) [7, 8]. Over the years, CAD has made con-

siderable progress, especially in diagnosis of cancer such as lung [9], breast [10], thyroid [11],

brain [12], diabetic retinopathy [13], liver [14] etc. Due to the alarming increase in skin cancer

incidence rate, there is a shortage of experienced dermatologists, which can lead to difficulties

in timely skin cancer identification. Moreover, CAD tools are more efficient compared to

existing clinical approaches, saving both time and cost. Therefore, a CAD system for skin can-

cer detection is essential.

The rapid developments and improvements in deep learning (DL) have exponentially

impacted the performance of CAD systems [15]. Convolutional Neural Network (CNN), a DL

algorithm, has been employed extensively in applications such as classification of images and

object detection. With the advancements in CNN, DL has seen significant rise in real-world

applications such as surveillance [16, 17], smart city applications [18, 19], healthcare [20] etc.

The emergence of self-attention in vision based applications has paved the way for the success

of transformers [21]. Vision Transformer, which employs self-attention mechanism, has dis-

played promising results when trained on large datasets [22].

CNN faces problems distinguishing low-level features that may result in missing crucial

information. Furthermore, minimum false alarms are vital for accurate diagnosis in the

medical field. We propose transformer based approach which employs outlook attention

mechanism to generate fine level features for token representation that helps improve the

model performance. Unlike other vision transformers that use dot product attention com-

putation, outlook attention approach utilizes linear projection to aggregate surrounding

tokens from anchor token features. This characteristic of outlook attention mechanism

enhances the cost-effectiveness of the model. Furthermore, SVM with L2 kernel classifier is

utilized for the classification task. The proposed SkinViT model ensures Melanoma and

Nonmelanoma detection with higher accuracy. The major contributions of this research are

given below:

1. Distinghuising between Melanoma and Nonmelanoma is a significant challenge owing to

considerable visual interclass similarities and intraclass variations. To the best of our knowl-

edge, this is the first work on Melanoma and Nonmelanoma classification using BCC and

SCC in the Nonmelanoma class. Therefore, this work focuses on the different types of skin

cancer detection with the help of CAD.
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2. The datasets used for this research have imbalance class distribution which can lead to the

misinterpretation of the class with the fewer image samples. Thus, we perform data aug-

mentation technique to address the imbalance dataset issue.

3. While the visual differences in skin lesions may seem small and localized, it is crucial to

consider fine level global context information for efficient recognition of the skin lesions.

Therefore, we present a novel DL model named as SkinViT to efficiently integrate fine level

information with outlooker and global information with transformer for more reliable clas-

sification method of Melanoma and Nonmelanoma images.

4. Furthermore, a detailed analysis of the proposed SkinViT approach with different optimiz-

ers and classifiers on three datasets to detect Melanoma and Nonmelanoma is presented

and compared with other SOTA models and existing research to validate the efficacy of the

SkinViT model.

The remaining sections are structured as follows: Section 2 presents the related work. Next,

Section 3 describes the datasets used in this research and the proposed method. Further, Sec-

tion 4 presents simulation setup and results, Section 5 provides discussion and conclusion.

2 Related work

Over the past few years, the massive increase in skin cancer cases has overwhelmed dermatolo-

gists. To help in the accurate differentiation and diagnosis of melanoma from other skin

lesions, International Society for Digital Imaging of Skin (ISDIS) took initiative to tackle the

problem of the increasing incidence rate of skin cancer by introducing an annual challenge

known as International Skin Imaging Collaboration (ISIC) [23]. With all these efforts, there

have been considerable interest among researchers in exploring computer vision techniques

for skin cancer detection [24, 25].

In [26], Pham et al. conducted comparative analysis of different data processing methods,

feature extraction methods and classifiers for melanoma classification. In their analysis, Linear

Normalization as data processing, HSV as feature extraction and Balanced Random Forest

classifier performed best with 74.75% accuracy on the HAM10000 dataset. In [27], Shen et al.

proposed high performance data augmentation, which can be integrated to any deep learning

method to classify skin lesions. Their proposed approach with efficienetb0 showed the best

results with 85.3% accuracy on ISIC2018/HAM10000 dataset. In [28], Zhang et al. proposed

convolutional neural network with attention residual learning (ARL-CNN) to classify skin dis-

eases. Their proposed method achieved 91.8% AUC on the ISIC2017 dataset for binary classifi-

cation task. Liu et al. [29] proposed a mid level feature representation method for learning

features, and the CNN model is used as an extractor of ROI images. Their proposed method

achieved 92.1% AUC in classifying melanoma and S. keratosis using the ISIC2017 dataset. In

[30], Zhou et al. proposed convolutional spiking neural networks (SNN) employing spike-

time-dependent plasticity (STDP) learning rate for melanoma skin lesions classification. Their

proposed method showed an accuracy of 87.7% in classifying malignant melanoma and nevus

skin lesions using the ISIC2018 dataset.

Gouda et al. [31] proposed pre-trained deep learning models based on transfer learning

such as CNN, ResNet50, InceptionV3 and Inception ResNet for skin cancer classification. In

their analysis, InceptionV3 showed the highest accuracy of 85.76% in classifying malignant

and benign skin lesions using the ISIC2018 dataset. In [32], Damian et al. proposed MobileNet

based model transfer learning for melanoma and nevus skin lesion classification. Their pro-

posed method an achieved accuracy of 89.7% using the ISIC2018 dataset. In [33], Indraswari

et al. proposed transfer learning technique based on the MobileNetV2 model for melanoma
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classification. Their proposed method showed 85% accuracy on the ISIC archive dataset.

Hoang et al. [34] proposed EW-FCM+ShuffleNet based hybrid method, entropy-based weight-

ing and first-order cumulative moment (EW-FCM) is used for segmentation and wide-Shuf-

fleNet for classification. In their proposed method EW-FCM with wide-ShuffleNet performed

best with 86.33% accuracy for multi-class classification on the HAM10000 dataset. In [35],

Lopez et al. proposed CNN model based on transfer learning such as VGGNet (VGG16), for

skin lesion classification. Their proposed method achieved 81.33% accuracy in classifying

malignant and benign skin lesions using the ISIC2016 dataset.

In [36], Xie et al. proposed a Swin-SimAM based hybrid method for detecting melanoma

where a Swin transformer is used for feature extraction and SimAM is parameter-free atten-

tion module. Their proposed method displayed 90% AUC in classifying melanoma and non-

melanoma (nevus and seborrheic keratosis). In [37], Naeem et al. introduced SCDNet

approach that integrates VGG16 architecture with convolutional neural networks. Their pro-

posed SCDNet method showed the accuracy of 96.91% on ISIC2019 dataset for multi-class

skin cancer classification. Tahir et al. [38] proposed DSCC_Net which utilizes convolutional

neural networks (CNN). Their proposed method demonstrated promising result with an accu-

racy of 94.17% on three publicly available datasets (ISIC2020, HAM10000 and DermIS) for the

task of classification of multi- class skin cancer types. Table 1 details the comprehensive analy-

sis of all the work in the literature.

The reviewed approaches for melanoma detection showed promising results, mainly in

detecting melanoma from benign dermoscopic images. The existing research predominantly

focused on detecting malignant and benign lesions or melanoma and benign with either nevus

or seborrheic keratosis in the benign class which are non-cancerous skin lesion types. To the

best of our knowledge, no existing research considered the Melanoma and Nonmelanoma

(BCC and SCC) classes which are the most common skin cancer types for the classification

task. Discriminating Melanoma and Nonmelanoma is quite challenging due to high intraclass

differences. Although the previous research showed promising results, but for efficient skin

cancer detection, there is a further need to research Melanoma and Nonmelanoma where

Table 1. Comparative analysis of the related work.

Author Method Dataset Classes Accuracy Precision Recall AUC

Pham et al. [26] LN+HSV+Balanced Random

Forest

HAM10000 Melanoma and Benign 74.75% – 90.09% –

Shen et al. [27] Augmentation+EfficientNet HAM10000 Multi-class 85.3% – 78.9% –

Zhang et al. [28] ARL-CNN ISIC2017 Melanoma and S. Keratosis – – – 91.8%

Liu et al. [29] Mid-level features+SVM ISIC2017 Melanoma and S. Keratosis – – – 92.1%

Zhou et al. [30] STDP based SNN ISIC2018/

HAM10000

Melanoma and Nevus 87.7% 84.6% 90.3% 83.6%

Gouda et al. [31] InceptionV3 ISIC2018 Malignant and Benign 85.76% – – 86%

Damian et al. [32] MobileNet ISIC2018/

HAM10000

Melanoma and Nevus 89.7% 92.08% 86.41% 89.64%

Indraswari et al.

[33]

MobileNetV2 ISIC Archive Malignant and Benign 85% 83% 85% –

Hoang et al. [34] EW-FCM+ShuffleNet HAM10000 Multi-class 86.33% – 86.33% –

Lopez et al. [35] VGGNet (VGG16) ISIC2016 Malignant and Benign 81.33% 79.74% 78.66% –

Xie et al. [36] Swin-SimAM ISIC2017 Melanoma and Nonmelanoma (Nevus+S.

Keratosis)

– – – 90%

Naeem et al. [37] SCDNet(VGG16+CNN) ISIC2019 Multi-class 96.91% 92.19% 92.18% –

Tahir et al. [38] DSCC_Net ISIC2020 Multi-class 94.17% 94.28% 93.76% 99.43%

https://doi.org/10.1371/journal.pone.0295151.t001
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Nonmelanoma class has BCC and SCC. The previous work primarily focused on CNN models.

CNN faces problems distinguishing low level features that may result in missing crucial infor-

mation. Furthermore, minimum false alarm is vital for accurate medical diagnosis. The focus

of this research is on the automatic and accurate detection of Melanoma and Nonmelanoma,

which can help reduce the mortality rate due to skin cancer by early diagnosis and also help

ease the burden on dermatologists. For efficient Melanoma and Nonmelanoma classification,

we propose the SkinViT model based on outlooker and transformer and further aid in devel-

opment of automated skin cancer detection.

3 Materials and methods

This section details the proposed SkinViT method and dermoscopic image datasets utilized for

Melanoma and Nonmelanoma classification.

3.1 Dataset acquisition

This study considers the binary classification problem of Melanoma and Nonmelanoma. For

this research, we considered three dermoscopic image datasets: Melanoma class and Nonmela-

noma class, where Nonmelanoma comprising of Basal Cell Carcinoma and Squamous Cell

Carcinoma. Dataset1 [39] is a public dataset that contains 25,331 dermoscopic images in 8 dif-

ferent classes. We considered only two classes, with 4521 Melanoma dermoscopic images and

3952 Nonmelanoma images. Dataset2 contains dermoscopic images collected from various

online dermotological database such as DermIS [40], PH2 [41] and Dermnet-NZ [42], to get

more representation of the considered classes for classification task. We considered two classes

with 410 Melanoma images and 672 Nonmelanoma images. For Dataset3, we combined both

datasets, Dataset1 and Dataset2, to have 4930 Melanoma images and 4624 Nonmelanoma

images.

Melanoma is comparatively less common but the most fatal form of skin cancer. It begins

in the melanocytes which is responsible for producing melanin, a pigment that gives color to

the skin. It is usually a dark colored mole and changes shape, size or color over the time. Non-

melanoma is the most common kind of skin cancer and can be categorized as Basal Cell Carci-

noma (BCC) and Squamous Cell Carcinoma (SCC). BCC affects the basal cell of the epidermis

skin layer. BCC can have varied appearances but often appear as small pinkish or pearly-white

bump. It can also be a red scaly patch sometimes with brown or black pigment within the

patch. SCC is the development of keratinocytes in the squamous cell of epidermis skin layer.

SCC can have variety of appearances where it typically appears as red to pink rough or scaly

patch and also look like raised wart-like growth sometimes with a spiky horn-like surface stick-

ing out. The sample images of Melanoma and Nonmelanoma are shown in Fig 1.

Fig 1. Sample Image of a) Melanoma and b) Nonmelanoma (BCC) and c) Nonmelanoma (SCC).

https://doi.org/10.1371/journal.pone.0295151.g001
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Fig 1(a) shows a melanoma skin lesion where it can be seen a dark brown asymmetrical

shape having a diameter greater than 6mm. Fig 1(b) illustrates a BCC skin lesion having a

pinkish bump with a dark brown pigment. Fig 1(c) shows an SCC skin lesion having crusty

raised growth with a spiky surface sticking out.

3.2 Dataset preprocessing

Data preprocessing is one of the key steps in deep learning models. The dermoscopic images

of Melanoma are labelled as 1, whereas the dermoscopic images of Nonmelanoma are labelled

as 0. Dataset1 has a total of 8473 dermoscopic images, with 4521 images for the Melanoma

class and 3952 images for the Nonmelanoma class. Dataset2 comprises 1082 dermoscopic

images for the considered binary classification task, where 410 images are assigned to the Mel-

anoma class whereas 672 images are assigned to the Nonmelanoma class. Dataset3 consists of

4930 images for Melanoma and 4624 images for the Nonmelanoma class, totaling 9554 images.

The datasets are split into training and testing by applying the 80:20 splitting rule, where 80%

is for training and 20% for testing purpose as depicted in Table 2. The images in datasets are of

different sizes so it is essential to convert the images to a single image size to match the input

of the deep learning model. Therefore, all the images in our research are converted to the

image size of 224 × 224.

3.3 Data augmentation

The size of the data has significant impact on the performance of the deep learning models.

The more the data size, the greater the chances of deep learning models to perform better. The

datasets considered for our research have imbalanced data in the considered classes which can

greatly impact the performance of the model. Therefore, data augmentation technique is

applied to handle the imbalanced data, which can cause misinterpretation of the class with

fewer sample images. For our research, we performed geometric, also known as position aug-

mentation, on the training data, as depicted in Table 3. The images are transformed by 180˚

rotation, horizontal flip and shear transformation by a factor of 0.2.

3.4 Proposed SkinViT architecture

The proposed SkinViT model is designed to classify Melanoma and Nonmelanoma. The archi-

tecture of the proposed SkinViT model is depicted in Fig 2. Inspired by VOLO [43] and ViT

[44], the proposed SkinViT model combines the outlooker block, transformer block and Skin-

ViT multi-layer perceptron (MLP) head block. The proposed method first converted images

into patches of size 8 × 8 which are then passed through the outlooker for generating the fine-

level token representation. After that, the tokens are further down sampled using a patch

embedding module which is then passed to the Transformer encoder for processing. Then the

Table 2. Splitting of data.

Dataset Classes Training Testing Total

Dataset1 Melanoma 3616 905 4521

Nonmelanoma 3162 790 3952

Dataset2 Melanoma 328 82 410

Nonmelanoma 538 134 672

Dataset3 Melanoma 3944 986 4930

Nonmelanoma 3700 924 4624

https://doi.org/10.1371/journal.pone.0295151.t002
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output is passed into the Multi-Layer Perceptron (MLP) head, which in our proposed SkinViT

consists of flatten layer, dense layer with Swish function and a classification layer with SVM

linear kernel L2 to output the prediction for skin cancer type. The details of the proposed Skin-

ViT architecture is presented as follows:

1. Outlooker: The outlooker is responsible for generating fine level features for tokenization.

The outlooker comprises of outlook attention layer, which encodes spatial information and

MLP, which is responsible for inter-channel information interaction. The outlook atten-

tion, unlike self-attention, computes the similarity between each spatial location (i, j) and

neighboring elements to focus on fine level features. For given input X, each C–dimensional

feature is projected with two layers of linear weights; A 2 RH�W�K4

as outlook weights and

V 2 RH×W×C as value representations.

Suppose the value representations within the local window at (i, j) are VDi;j 2 RC�K2

where

VDi;j ¼ Viþp� K
2b c;jþq�

K
2b c

n o
; 0 � p; q < K ð1Þ

The outlook weight is reshaped into Âði;jÞ 2 RK2�K2

to obtain the aggregated value of atten-

tion weight. The value projection is the weighted average of outlook weights and can be cal-

culated as follows:

YDi;j ¼ MatMulðSoftmaxðÂi;jÞ;VDi;jÞ ð2Þ

Table 3. Data augmentations.

Augmentation Value

Rotation 180˚

Shear Transformation 0.2

Horizontal Flip True

https://doi.org/10.1371/journal.pone.0295151.t003

Fig 2. Architecture of SkinViT.

https://doi.org/10.1371/journal.pone.0295151.g002
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The outlook weight is reshaped into Âði;jÞ 2 RK2�K2

to obtain the aggregated value of atten-

tion weight. The value projection is the weighted average of outlook weights and can be cal-

culated as follows:

YDi;j ¼ MatMulðSoftmaxðÂi;jÞ;VDi;jÞ ð3Þ

Unlike self-attention, which is dependent on query key matrix multiplications, the outlook

attention matrix can be generated by attention weights within the local window located at

(i, j) followed by reshape operation. Each layer of Outlooker can be written as;

~X ¼ OutAttðLNðXÞÞ þ X ð4Þ

Z ¼ MLPðLNð~XÞÞ þ ~X ð5Þ

2. Transformer: The transformer encoder consists of multi-head outlook attention layers,

layer normalization and MLP. The architecture of the transformer is similar to ViT, but

unlike the ViT, which uses self-attention mechanism, it uses outlook attention mechanism.

The multi head outlook attention is obtained by combining the computed outlook weight

An and value embedding Vn. For N number of heads, the outlook weight and value embed-

dings are given as An 2 RH�W�K4

and Vn 2 RH�W�CN respectively. Here n = 1, 2, . . ...,N rep-

resents the dimensions of each head. The MLP in the transformer encoder in the proposed

model has two layers with GeLU. Layer normalization is added before each block which

helps to enhance the training performance.

3. SkinViT MLP head: The transformer encoder output is fed into the newly designed Skin-

ViT MLP head to classify Melanoma and Nonmelanoma skin cancer. The MLP head com-

prises of flatten layers to flatten the output, a dense layer with Swish activation function and

SVM linear kernel L2 as a classifier. Swish is a nonlinear and continuous function. It has a

non-zero gradient for negative inputs, which allows better optimization during training.

The Swish function can be written as:

f ðXÞ ¼ X � sigmoidðXÞ ð6Þ

Where X is the input and sigmoid(X) is a sigmoid function that outputs the value between

(0, 1).

SVM with L2 Kernel: We employed linear kernel L2 [45] to implement SVM in our pro-

posed method because it helps to handle the multicollinearity issue (correlated independent

variables) by reducing the coefficient and maintaining all the variables. The linear kernel

performs the best in the case of a large number of features. In contrast to L1 which uses the

median of the data to estimate, linear kernel L2 makes a prediction based on the mean of

data to prevent overfitting. L2 kernel includes the penalty to the cost function as the squared

value of weights and learns complex patterns. L2 is computationally efficient and improves

prediction accuracy when the output is the function of all input variables. L2 kernel can be

calculated by:

L2reg ¼ l
Xn

i¼0

w2

i ð7Þ

Where Wi is the weight and λ represents the regularization parameter.
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4. Optimizer: The proposed SkinViT model used Adam as an optimizer. The Adam optimizer

works by computing the exponential moving average of the gradients of the parameters

with respect to the loss function. It is the combination of gradient descent and momentum.

The equation for the Adam optimizer is as follows:

Wt ¼Wt� 1 � Z
M̂tffiffiffiffiffiffi

V̂ t

q

þ �
ð8Þ

Here W is the model weights, η is the step size, M̂t is the unbiased estimate of the moving

average of the gradient, V̂ t is the unbiased estimate of the moving average of the squared

gradient and � is the constant used for numerical stability having a value of 10−8.

5. Loss function: The binary cross entropy (LBCE) loss or log loss (LL) is often used for binary

classification tasks. The LBCE helps evaluate the model accuracy by determining prediction

probability. The LBCE computes the difference between actual probability and prediction

probability and can be calculated as:

LBCE ¼ x � logðx̂Þ þ ð1 � xÞ � logð1 � x̂Þ ð9Þ

Where x is the label i.e. 1 for Melanoma and 0 for Nonmelanoma, and x̂ is the predicted

probability of x.

Pseudocode:

Step 1: Data Preparation

dataset = preprocess_images(labeled_images) // [N ×H ×W × C] array of preprocessed

images

training_set, test_set = split_dataset(dataset) // [N_train, H, W, C], [N_test, H, W, C] arrays

Step 2: Model Architecture

model = create_SkinViT(num_transformer_blocks, num_outlooker_blocks, embedding_-

size, num_attention_heads) // SkinViT model

Step 3: Training

initialize_weights(model) // initialize model weights randomly

for epoch in 1 to num_epochs:

for batch in training_set:

accuracy = calculate_accuracy(model, batch) // calculate accuracy between model predic-

tions and ground truth labels

update_weights(model, accuracy) // update model weights using Adam

test_accuracy = evaluate(model, test_set) // calculate test accuracy

if test_accuracy does not improve for num_epochs_to_stop:

break // Early stopping

end

end

end

Step 4: Hyperparameter Tuning

hyperparameters = learning_rate: [1e-2, 1e-5], batch_size: [16, 32, 64], num_transformer_-

blocks: [6, 12] // candidate hyperparameters

best_hyperparameters = grid_search(model, hyperparameters, training_set, test_set) // find

best hyperparameters using grid search

Step 5: Evaluation
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test_accuracy = evaluate(model, test_set) // calculate test accuracy

metrics = calculate_metrics(model, test_set) // calculate precision, recall and F1 score

3.5 Performance metrics

To evaluate the performance of the proposed SkinViT, we considered performance metrics

which are as follows:

Accuracy ¼
Tpos þ Tneg

Tpos þ Tneg þ Fpos þ Fneg
ð10Þ

Recall ¼
Tpos

ðTpos þ FnegÞ
ð11Þ

Precision ¼
Tpos

ðTpos þ FposÞ
ð12Þ

F1score ¼ 2 ∗
ðPrecision∗RecallÞ
ðPrecisionþ RecallÞ

� �

ð13Þ

The Tneg represents the true negative, which means the accurate classification of Nonmela-

noma images and Tpos shows the true positive, meaning the accurately classified Melanoma

images by the proposed model. False positive Fpos is the wrongly classified Nonmelanoma

image as Melanoma while false negative Fneg is the opposite of Fpos, meaning misclassification

of the Melanoma image as Nonmelanoma. Recall measures how often it correctly predicts a

result for all samples that should have been classified positive, whereas Precision measures how

often a method predicts a positive result. The F1 − score is the harmonic mean of precision and

recall, which shows how the classifier predicts correctly.

4 Simulation setup and results

This section details the simulation setup and results of the proposed SkinViT.

4.1 Simulation setup

The proposed SkinViT model is implemented in the Anaconda environment using Python 3.8

with Tensorflow, Keras, Scikit-Learn, Matplotlib and Numpy libraries installed on Windows

OS with system configuration Intel Core i7-11800H @2.3GHz, 16GB DDR4, NVIDIA RTX

3060. The SkinViT model is trained on 3 datasets, as described in the dataset acquisition sec-

tion with 8473 dermoscopic images in dataset1, 1082 in dataset2 and 9555 in dataset3, as

depicted in Table 2. Moreover, we augmented the dataset as mentioned in data augmentation

section to avoid overfitting at the same time increase the classifier’s efficiency on unseen

images. Furthermore, Adam is employed as an optimizer to update SkinViT parameters in the

proposed work during the model training. The epochs and batch size are set to 70 and 16,

respectively. The learning rate for the proposed work is set to 1e − 5.

4.2 Simulation results

This section first discusses various ablation studies related to the proposed SkinViT model.

Next, a comprehensive analysis of the performance of the proposed SkinViT is carried out and

compared with other SOTA models.
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4.3 Ablations

The ablations of this work comprise of 1) determining the best value of the L2 kernel; 2) train-

ing the model with different optimizers to determine the optimum one; 3) the effect of aug-

mentations and without augmentations on the proposed method; 4) comparative analysis with

different kernels classifiers.

1. Tuning the L2 kernel classifier: In this simulation, we experimented with different values of

L2 to select the best value of L2 (Eq 6) for the proposed model. We changed the value of L2

from 0.01 to 1.0 with five intervals in total to select the best result. Table 4 depicts the per-

formance of the proposed SkinViT on different values of L2. From Table 5 it can be

observed the best result was obtained on 0.1 with 0.9109 on dataset1, 0.8611 on dataset2

and 0.8911 on dataset3.

2. Selection of Optimizer: In this simulation, the proposed model is trained by employing dif-

ferent optimizers to evaluate the classification performance as given in Table 5. The Skin-

ViT performed best with the Adam optimizer achieving the classification accuracy of

0.9109 on Dataset1, 0.8611 on Dataset2 and 0.8911 on Dataset3, which is superior to

RMSprop, achieved 0.8996 on Dataset1, 0.8518 on Dataset2 and 0.8733 on Dataset3.

3. Effect of Augmentations on Proposed SkinViT: In this simulation, we evaluated the effect

of classification accuracy using the augmentations on training datasets. It can be observed

from Table 6 that the proposed SkinViT performed better while using augmentations, this

is due to the fact that there was more representation of the training samples for generaliza-

tion. From the results, it can be seen that augmentations helped the proposed SkinViT to

exceed accuracy by 2.72% on Dataset1, 3.24% on Dataset2 and 1.52% on Dataset3.

4. Selection of classifier: In this simulation, we used various classifiers to select the optimal

classifier to classify Melanoma and Nonmelanoma and to achieve the best results on the test

set. Table 7 details the results of different classifier, it can be observed that the proposed

SkinViT achieves the best performance using L2 kernel for the classification task which

exceed using the Gaussian kernel by 1.72% on Dataset1, 7.4% on Dataset2 and 0.37% on

Dataset3. Here it can be observed SkinViT on Dataset2 achieved better accuracy while

using the L1 kernel than the Gaussian kernel, which is due to the fact that Dataset2 has a

Table 4. Performance comparison of SkinViT using different values of L2.

Dataset 0.01 0.05 0.1 0.5 1.0

Dataset1 0.8961 0.8991 0.9109 0.8943 0.8872

Dataset2 0.8148 0.8148 0.8611 0.8564 0.8379

Dataset3 0.8838 0.8905 0.8911 0.8942 0.8832

https://doi.org/10.1371/journal.pone.0295151.t004

Table 5. Performance comparison of SkinViT using different optimizers.

Optimizer Dataset Melanoma Nonmelanoma Overall

Adam Dataset1 0.9082 0.9139 0.9109

Dataset2 0.7683 0.9179 0.8611

Dataset3 0.9087 0.8723 0.8911

RMSprop Dataset1 0.8894 0.9114 0.8996

Dataset2 0.8902 0.8283 0.8518

Dataset3 0.9402 0.8019 0.8733

https://doi.org/10.1371/journal.pone.0295151.t005
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small number of training samples, so the more complex Gaussian kernel performed poor

while L1, which is not complex kernel achieved better accuracy. Overall from Table 8, it can

be seen that using the L2 kernel has increased the performance of the proposed SkinViT.

4.4 SkinViT performance analysis

This section describes the performance analysis of the proposed SkinViT on considered data-

sets. The feasibility of using pretrained model on our custom dataset is dependent upon the

nature and characteristics of the dataset on which the model was trained. The lack of unique

medical related features means that transfer learning cannot achieve higher level of classifica-

tion accuracy. Therefore, the proposed SkinViT model is trained from scratch on considered

datasets. From Table 8, it can be noticed that SkinViT performed best on Datasset1 with an

overall accuracy of 0.9109, whereas it achieved 0.9082 accuracy for Melanoma class and 0.9139

accuracy for the Nonmelanoma class. Dataset1 displayed overall recall of 0.9082, precision of

0.9235 and F1-score of 0.9158. Dataset2 achieved an accuracy of 0.7682 in the Melanoma class

and 0.9179 in the Nonmelanoma class, which is the highest accuracy of Nonmelanoma. The

overall accuracy of SkinViT on Dataset2 came out to be 0.8611 with an overall recall of 0.7683.

Moreover, SkinViT achieved on Dataset2 overall precision of 0.8514 and F1-score of 0.8077.

Dataset3 achieved an accuracy of 0.9087 in the Melanoma class, which is slightly higher than

Table 6. Performance comparison of SkinViT using different optimizers.

Dataset With Augmentation Without Augmentation

Dataset1 0.9109 0.8837

Dataset2 0.8611 0.8287

Dataset3 0.8911 0.8759

https://doi.org/10.1371/journal.pone.0295151.t006

Table 7. Comparison of SkinViT performance on different kernels classifiers.

Dataset SVM (L2 Kernel) SVM (Gaussian Kernel) L1 Kernel

Dataset1 0.9109 0.8937 0.8931

Dataset2 0.8611 0.7870 0.8425

Dataset3 0.8911 0.8874 8780

https://doi.org/10.1371/journal.pone.0295151.t007

Table 8. Performance Comparison of SkinViT on different datasets.

Dataset Classes Accuracy Recall precision F1-score

Dataset1 Melanoma 0.9082 0.9082 0.9235 0.9158

Nonmelanoma 0.9139 0.9139 0.8969 0.9053

Overall 0.9109 0.9082 0.9235 0.9158

Dataset2 Melanoma 0.7682 0.7683 0.8514 0.8077

Nonmelanoma 0.9179 0.9179 0.8662 0.8913

Overall 0.8611 0.7683 0.8514 0.8077

Dataset3 Melanoma 0.9087 0.9087 0.8836 0.8960

Nonmelanoma 0.8723 0.8723 0.8996 0.8857

Overall 0.8911 0.9087 0.8836 0.8960

https://doi.org/10.1371/journal.pone.0295151.t008
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Dataset1 and 0.8723 in the Nonmelanoma class with an overall accuracy of 0.8911. Moreover,

SkinViT on Dataset3 displayed an overall precision of 0.8836, recall of 0.9087 and F1-score of

0.8960. Dataset1 displayed the highest accuracy, precision and F1-score, while Dataset3 slightly

higher recall compared to Dataset1, which is due to higher false negatives because of the mini-

mum similar representation in the training samples of those false classified. Subsequently,

Dataset3 displayed the second-best accuracy with the second-best precision and F1-score.

Sometimes accuracy alone does not give the complete picture of how well the model is per-

forming. To answer this, the confusion matrix which is graphical representation of the model

performance on individual classes, is plotted. From Fig 3, it can be noted that SkinViT on

Dataset1 has 821 Tpos, 722 Tneg, 83 Fneg and 68 Fpos. The proposed SkinViT on Dataset2 has 63

Tpos, 123 Tneg, 19 Fneg and 11 Fpos, whereas on Dataset3, SkinViT has 896 Tpos, 806 Tneg, 90 Fneg
and 118 Fpos. It can be seen that the proposed SkinViT has the highest accuracy of 0.9109 on

Dataset1, followed by 0.8911 on Dataset3 and 0.8611 on Dataset2.

We have also plotted the Receiver Operating Characteristic (ROC) curve, which tells the

model’s ability of predicting over a range of thresholds. The ROC curve is plotted by TPR
(True Positive Rate) on the y-axis while FPR (False Positive Rate) is on the x-axis. The area

under the curve (AUC) represents how well the model distinguishes the classes. The AUC of

0.9711 on Dataset1, as illustrated in Fig 4(a), shows that SkinViT has 97.11% chance to accu-

rately classify Melanoma and Nonmelanoma classes. The AUC of 0.9459 on Dataset2, as illus-

trated in Fig 4(b), means SkinViT has 94.59% chance to accurately classify Melanoma and

Nonmelanoma classes. The AUC of 0.9595, as illustrated in Fig 4(c), shows that SkinViT has

95.95% chance to accurately classify Melanoma and Nonmelanoma classes. We also plotted

the Precision-Recall (PR) curve, unlike ROC, which considers TN, to examine how well the

proposed SkinViT performed while predicting Melanoma images. It can be noted from Fig 5

that the curves are near the top right corner which shows that SkinViT performed well in iden-

tifying Melanoma images. SkinViT on Dataset1 achieved 0.9657 AP (Fig 5(a)) while on Data-

set2 achieved 0.9649 AP (Fig 5(b)) and on Dataset3 achieved 0.9509 (Fig 5(c)).

4.5 Comparative analysis with SOTA models

In this section, we present the performance comparison of the proposed SkinViT with other

SOTA models to validate the efficiency of the SkinViT in terms of accuracy metric. We evalu-

ated the performance of different models such as EfficientNetv2 [46], MaxViT [47], Mobile-

ViTV2 [48] and ViT [44] on all the considered datasets. It can be seen from Table 9 that the

proposed SkinViT performed best on Dataset1 with an accuracy of 0.9109, followed by the sec-

ond best on ViT 0.8636 which is a gain of 4.73%, recall of 0.9082 which is a gain of 0.77% from

Fig 3. Confusion Matrix of SkinViT on a) Dataset1, b) Dataset2 and c) Dataset3.

https://doi.org/10.1371/journal.pone.0295151.g003
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ViT with 0.9004, precision of 0.9235 which is a gain of 2.81% from the second best 0.8954 dis-

played by EfficientNetV2 and the F1-score of 0.9158 which is a gain of 4.01% from the second

best 0.8757 by ViT. SkinViT on Dataset2 displayed an accuracy of 0.8611, followed by the sec-

ond best on ViT 0.8241, which is a gain of 3.7%, recall of 0.7683 which is a gain of 10.98%

from the second best 0.6585 displayed by EfficientNetV2, the precision of 0.8514 which is loss

of 2.79% from the best 0.8793 achieved by ViT and F1-score of 0.8077 which is gain of 8.17%

from the second best 0.7286 achieved by ViT. Similarly, SkinViT on Dataset3 showed the best

accuracy of 0.8911, which is a gain of 4.55% from the second best accuracy of 0.8456 displayed

by MaxViT, recall of 0.9087 which is a gain of 9.73% from the second best 0.8114 by Efiicient-

NetV2, the precision of 0.8836 which is a loss of 0.59% from the best 0.8895 by MaxViT and

F1-score of 0.8960 which is a gain of 5.35% from the second best of 0.8425 displayed by

MaxViT.

4.6 SkinViT performance on HAM10000

Further, to validate the performance of our proposed SkinViT, we evaluated the performance

of the HAM10000 dataset which is used by most of the previously published work. It can be

seen from Table 10 that the proposed SkinViT obtained an accuracy of 0.9254, followed by

MobileNet by Damian et al. with 0.897 accuracy and STDP based SNN by Zhou et al. with

0.877 accuracy. The higher accuracy of SkinViT is due to the lesser false classifications, which

Fig 4. ROC curve of SkinViT on a) Dataset1, b) Dataset2 and c) Dataset3.

https://doi.org/10.1371/journal.pone.0295151.g004

Fig 5. PR curve of SkinViT on a) Dataset1, b) Dataset2 and c) Dataset3.

https://doi.org/10.1371/journal.pone.0295151.g005
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is because of the attention mechanism that helps model learn the desired features more

efficiently.

4.7 Discussion

In this work, SkinViT displayed the ability of outlooker and self-attention to diagnose Mela-

noma and Nonmelanoma through dermoscopic images. It can be seen from the results that

SkinViT performed better compared to the other CNN and Transformer based models. In

contrast to transformers, which can compute the attention of any patch, regardless of its dis-

tance, a CNN alone needs to perform additional convolutions to increase the receptive field in

order to determine the relationship between any two neighboring pixels, resulting in difficult

to possess the ability to perform long-range computation. In SkinViT, outlooker block is used

instead of patch embedding component in ViT to learn features whereas self-attention is used

to learn important features and ignoring the noisy ones. Results show that the SkinViT per-

formed better compared to CNN and Transformer based models, which validates its superior-

ity over other models.

From the results, it can be noted that the SkinViT performed better on both Melanoma and

Nonmelanoma classes. However, CNN model EfficientNetV2 was better in predicting Nonme-

lanoma images while performed poor in classification of Melanoma as given in Table 9. More-

over, Transformer based method MaxViT and ViT performed better in classifying Melanoma

images whereas another hybrid model MobileViTV2 performed well on classifying Nonmela-

noma images compared to the Melanoma images. Whereas, SkinViT was equally good in clas-

sifying both the classes indicating that SKinViT is robust than using CNN or transformer

based models alone in dealing with imbalanced datasets. We also observed from the results

Table 9. Comparative analaysis of SkinViT and other models.

Dataset Method Accuracy Recall Precision F1-score

Dataset1 EfficientNetV2 [46] 0.8412 0.7954 0.8954 0.8424

MaxViT [47] 0.8418 0.8252 0.8715 0.8477

MobileViTV2 [48] 0.8141 0.8695 0.7996 0.8331

ViT [44] 0.8636 0.9004 0.8524 0.8757

SkinViT (ours) 0.9109 0.9082 0.9235 0.9158

Dataset2 EfficientNetV2 [46] 0.8102 0.6585 0.8060 0.7248

MaxViT [47] 0.7638 0.5365 0.7719 0.6328

MobileViTV2 [48] 0.8009 0.6707 0.7746 0.7139

ViT [44] 0.8241 0.6219 0.8793 0.7286

SkinViT (ours) 0.8611 0.7683 0.8514 0.8077

Dataset3 EfficientNetV2 [46] 0.8424 0.8114 0.8743 0.8417

MaxViT [47] 0.8456 0.8002 0.8895 0.8425

MobileViTV2 [48] 0.8031 0.7809 0.8280 0.8038

ViT [44] 0.8099 0.7769 0.8427 0.8084

SkinViT (ours) 0.8911 0.9087 0.8836 0.8960

https://doi.org/10.1371/journal.pone.0295151.t009

Table 10. Comparative analysis of SkinViT with previous work.

Performance Metrics SkinViT (ours) MobileNet (Damian et al.) [32] STDP based SNN (Zhou et al.) [30]

Accuracy 0.9254 0.897 0.877

https://doi.org/10.1371/journal.pone.0295151.t010
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that the EfficientNetV2 performed well compared to other Transformer based methods such

as MaxViT and ViT.

Most of the researcher used CNN models for Melanoma and Nonmelanoma detection

while some used transformer alone architecture for the considered task. To the best of our

knowledge this is the first time to use outlooker and transformers for skin cancer detection

task with Melanoma and Nonmelanoma (SCC and BCC) classes which are the most frequently

diagnosed skin cancer types. Additionally, previous research results were compared with the

proposed work as depicted in Table 10. It is essential to point out that each researcher used dif-

ferent classes for their respective problems. Although MobileNet and STDP based SNN

showed good accuracy of 0.897 and 0.877 compared to others which took into account Mela-

noma and Nonmelanoma (Nevus) and our proposed method outperformed both with an

accuracy of 0.9254 on the same dataset which validates the efficiency of our proposed method

SkinViT. However, our work focused on binary classification problem of Melanoma and Non-

melanoma (BCC and SCC). Moreover, the high accuracy by the proposed method can help

early diagnosis of skin cancer and ease burden on dermotologist. This research can benefit

researchers to further improve the methodology for the image segmentation to detect abnor-

malities in dermoscopic images in terms of Melanoma and Nonmelanoma.

Despite the great performance of the proposed SkinViT model compared to SOTA, there

are some limitations and challenges in this research. Firstly, the data used for training the pro-

posed SkinViT model from scratch is of moderate size. The size of data significantly impacts

the efficacy of training a deep learning model for optimal performance. The greater the

amount of data, the higher the efficiency of the model. Therefore, for future research, a large

dataset should be curated by combining the publicly available datasets (ISIC archive,

HAM10000 etc.) to improve the model efficiency. Furthermore, the dataset used has huge

class imbalance which can highly impact the performance of the proposed model. The current

research employed the geometric data augmentation technique to handle the class imbalance

issue. The future research will explore the use of generative adversarial network (GAN) or

advanced data augmentation techniques like MixUp and CutMix which involves combining

the multiple images or patches to create new training samples for representation and enhance

the model generalization.

5 Conclusion

The focus of this research is on the automated detection of skin cancer types, Melanoma and

Nonmelanoma (BCC and SCC), which can help reduce the mortality rate by early diagnosis

and also help ease the burden on dermatologists. To achieve this goal, we devised a novel deep

learning model named SkinViT, which employs transformer blocks, outlooker blocks and

MLP Head for classification. Further, the proposed SkinViT eliminates the requirement for

high computational power due to its fewer params (around 27.1million), as opposed to other

popular classification models such as ViT and MaxViT.

The total number of training samples were enhanced by employing augmentations such as

horizontal flip, shear transformation and rotation to resolve class imbalance problem. More-

over, the use of an SVM classifier, specifically the L2 kernel, has increased the optimality of the

prediction value by taking the mean of the data to avoid overfitting. We performed multiple

simulations to assess SkinViT model performance. It is evident from Tables 9 and 10 that the

SkinViT achieved higher classification accuracy in comparison to other methods. This is per-

haps due to the outlooker block in SkinViT, unlike ViT, efficiently encodes fine level features

by measuring the likeness between token pair representations which is efficient in terms of

parameters learning features than convolutions. Moreover, the sliding window adopted in
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outlook attention locally encodes token representations and preserves important positional

information for classification task. Furthermore, the outlook attention weight generation is

simple reshaping operation, unlike self-attention which is dependent on query key matrix mul-

tiplications. Finally, the proposed MLP head has the SVM L2 kernel classifier that further opti-

mizes the model, which takes the mean of the values for the prediction score. This provides the

SkinViT with better feature learning ability which results in higher accuracy in classifying Mel-

anoma and Nonmelanoma in this proposed work.

For the skin cancer detection problem, it is crucial that the false classifications should be

minimal to ensure the model’s applicability and reliability in the real-world scenarios. For Mel-

anoma detection, it is imperative to minimize false negative as it may lead to treatment delays

and subsequently diminish the 5-year survival rate. While the false positive would only necessi-

tate further diagnostic procedures such as biopsy. The reason for the false classification of Mel-

anoma images as Nonmelanoma (Fneg) could be due to insufficient representation of the

Melanoma images. As it can be observed from Table 2 that the number of images is Melanoma

is significantly lower than that of Nonmelanoma. This can make it difficult for the model to

generalize the instances for which it is not trained. Another reason for the false classification

can be the excessive noise such as hair and air bubble in the images which make it challenging

for the model to learn the important features. The proposed SkinViT method can further be

improved in the future using additional datasets available publicly with segmentation task to

detect skin diseases. Furthermore, the image quality of the dermoscopic images for Melanoma

and Nonmelanoma can further be improved. Also, the classification results of SkinViT can be

utilised for implementing a Melanoma and Nonmelanoma recognition system to assist the

dermatologists in diagnosis.
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