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Abstract

The genetic complexity of polygenic traits represents a captivating and intricate facet of bio-

logical inheritance. Unlike Mendelian traits controlled by a single gene, polygenic traits are

influenced by multiple genetic loci, each exerting a modest effect on the trait. This cumula-

tive impact of numerous genes, interactions among them, environmental factors, and epige-

netic modifications results in a multifaceted architecture of genetic contributions to complex

traits. Given the well-characterized genome, diverse traits, and range of genetic resources,

chicken (Gallus gallus) was employed as a model organism to dissect the intricate genetic

makeup of a previously identified major Quantitative Trait Loci (QTL) for body weight on

chromosome 1. A multigenerational advanced intercross line (AIL) of 3215 chickens whose

genomes had been sequenced to an average of 0.4x was analyzed using genome-wide

association study (GWAS) and variance-heterogeneity GWAS (vGWAS) to identify markers

associated with 8-week body weight. Additionally, epistatic interactions were studied using

the natural and orthogonal interaction (NOIA) model. Six genetic modules, two from GWAS

and four from vGWAS, were strongly associated with the studied trait. We found evidence of

both additive- and non-additive interactions between these modules and constructed a puta-

tive local epistasis network for the region. Our screens for functional alleles revealed a mis-

sense variant in the gene ribonuclease H2 subunit B (RNASEH2B), which has previously

been associated with growth-related traits in chickens and Darwin’s finches. In addition, one

of the most strongly associated SNPs identified is located in a non-coding region upstream

of the long non-coding RNA, ENSGALG00000053256, previously suggested as a candidate

gene for regulating chicken body weight. By studying large numbers of individuals from a

family material using approaches to capture both additive and non-additive effects, this

study advances our understanding of genetic complexities in a highly polygenic trait and has

practical implications for poultry breeding and agriculture.

Introduction

Phenotypic trait characteristics can be influenced by genetic and environmental factors, con-

tributing to the unique phenotypic repertoire of each individual. Studies aimed at identifying
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factors influencing physical traits, including the genetic architecture of complex traits, have

been carried out in the fields of medical science [1] and agriculture [2,3] for decades. These

endeavors have clarified that the phenotypic segregation pattern of complex traits is different

from that of quantitative traits and makes it difficult to predict with single genetic markers.

Even though human Genome-Wide association studies (GWAS) are sometimes performed

using hundreds of thousands of subjects, statistical power can be restrictive to identifying non-

additive genetic effects on traits, such as gene-by-gene interaction (epistasis) effects. However,

studies have reported significant epistasis, for example, in GWAS for human body mass index

[4]. Nevertheless, we are still in the early stages of knowing how to detect epistasis with statisti-

cal approaches.

Studies have focused on critical economic traits for animals like chickens, and growth-

related characteristics are one of the most crucial. These traits are known to be affected by

many genes [5–8]. Despite mapping has been achieved using commercial breeds in previous

studies, natural variation cannot be fully detected [6,9–11]. As a case study, we focus on an

experimental chicken model system developed by divergent selection for body weight at eight

weeks of age for 40 generations. Growth traits are known to be controlled by genes interacting

with each other and environmental effects [12]. In our experimental system, chickens were

reared in a fixed environment, limiting the extent of environmental impact on growth across

generations. After 40 generations of bidirectional selection, there was a significant nine-fold

difference in body weight between the high-weight (HWS) and low-weight (LWS) selected

lines. Studies on the F2 population resulting from crosses of HWS and LWS have shown that

thirteen growth-related QTLs (Growth1-Growth13) contribute to this difference. Still, they

only explain a small part of the variance, indicating that many genes influence body weight

[13].

From F2 individuals, an advanced intercross line (AIL) was established, to improve the res-

olution for association studies. Through multiple generations of the AIL population (F2-F8 and

F2-F15), various studies have effectively accomplished the task of fine mapping and detecting

selective sweeps. As generations pass and recombination accumulates, the resolution of associ-

ation studies improves [14–16]. Based on parts of the now available data from the AIL popula-

tion, it has been concluded that the genetic basis for 8-week body weight in Virginia lines is

quite complex with presumed epistasis and higher-order interactions [17,18]. Previous studies

have hypothesized that these QTLs are parts of a gene-by-gene radiation network, which may

explain why they are under strong selection despite each QTL on its own having only a mar-

ginal association with weight [19]. Such a situation, where loci contributing to important epi-

static interactions are not revealed in initial single marker additive screens, complicates the

selection of candidate markers for epistatic scans. Meanwhile, searching for epistatic interac-

tions genome-wide in a completely hypothesis-free manner would have quickly exhausted sta-

tistical power due to the vast number of marker-by-marker combinations needed to be tested

[20].

This study investigates the genetic architecture of one specific QTL region, the Growth1
region on chromosome 1, the most significant loci identified in previous studies performed on

the Virginia lines (S1 Fig). This region was chosen as a case study for dissecting the contribu-

tion of additive- as well as non-additive genetic effects on growth. In contrast to previous work

on the AIL pedigree, we now extend the scope using GWAS instead of QTL mapping. Thus,

no prior assumption is used for allele frequencies in the founder lines, meaning that a larger

fraction of genomic markers can be scrutinized for association. Furthermore, the current

study used all individuals from the AIL pedigree generations F2-F18, for which sequencing data

and phenotypes were collected. Two methods were used to identify candidate markers:

genome-wide association study (GWAS) and variance-heterogeneity GWAS (vGWAS).
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GWAS was used to identify markers that carry mean effects in the model, which may result

from additive effects. Conversely, vGWAS was used to identify markers contributing to pheno-

typic variance, which could be caused by epistatic interaction or haplotype effects [21]. Analy-

sis using only GWAS could fail to expose some genetic contributions to variation in complex

traits. The vGWAS methodology provides an opportunity to map incomplete linkage disequi-

librium between causal polymorphisms and tested markers, multiple functional alleles, GxG

interactions, and GxE interactions, which may result in heterogeneity in variance between

genotypes [22–24]. Lastly, the natural and orthogonal interaction (NOIA) model was used to

detect epistasis. The polygenic response to bidirectional selection combined with the multigen-

erational intercrossing in the AIL makes this system suitable for understanding more about

the relationship between genetic and phenotypic variation resulting from haplotypes, linked

loci, and epistatic interactions.

Materials and methods

The virginia chicken lines

Bidirectional selection and advanced intercross line. The Virginia Chicken Lines were

established in 1957 [25–28]. The base population was produced by crossing seven mildly

inbred lines of White Plymouth Rocks. From this gene pool (S0), they selected chickens with

higher body weights at eight weeks of age (BW8) to be parents of the HWS while lighter indi-

viduals were selected to become parents of the LWS. After undergoing 40 generations of bidi-

rectional selection, the HWS and LWS chickens exhibited a nine-fold difference in their

average BW8 [13,29]. The advanced intercross line (AIL) was started by crossing HWS and

LWS chickens from the 41st generation, and 17 generations of AILs were used in this study

(F2-F18). Body weights of chickens at eight weeks of age were the study trait. All procedures in

this study were carried out in accordance with Virginia Tech Animal Care and Use Committee

protocols.

Sequencing and genome alignment. DNA samples from the F0 generation, i.e, HWS and

LWS from generation 41 and their progeny F1 generation, which resulted from intercrossing

HWS with LWS, were sequenced to high coverage as Illumina TrueSeq libraries on an Illumina

HiSeq X instrument (SciLifeLab SNP&SEQ Technology platform, Uppsala, Sweden). We fol-

lowed the Broad best practice. Reads were mapped to the reference genome galGal 6 using

Burrows-Wheeler Aligner (BWA-MEM, version 0.7.17) [30]. Following alignment, duplicate

reads were flagged with Picard [31]. Quality score recalibration was performed before SNP

calling with HaplotypeCaller (GATK) [32–34]. Later-generation intercross samples (F2-F18)

were sequenced by Illumina HiSeq 4000 with a coverage of approximately 0.4x (~0.8x for F2

full-sib families and ~0.4x for the remaining samples) using a segmentation and pooled library

approach [35]. High to intermediate coverage depths were used for AIL F0 (~30x) and F1

(~5x). A total of 3215 chickens were used in this study. The numbers of sequenced individuals

from each generation are shown in S1 Table. Custom code, software versions, and parameters

can be found in our Github repository at github.com/CarlborgGenomics/AIL-scan [36] The

sequencing data generated for this project can be found in the NCBI sequence read archive,

BioProject PRJNA788343.

Imputation with pedigree information. We used pedigree-based imputation on all gen-

erations of AIL samples to obtain reliable genotypes for the low-coverage later-generation AIL

individuals [37]. When pedigree information and high-coverage sequence samples are avail-

able, the inheritance of the well-characterized founder genomes to offspring can provide help-

ful information for imputation from ultralow-coverage sequenced data. This study includes

founders sequenced at high coverage and offspring sequenced at lower coverage. We used the

PLOS ONE Complex genetic architecture of the chicken Growth1 QTL region

PLOS ONE | https://doi.org/10.1371/journal.pone.0295109 May 13, 2024 3 / 19

https://doi.org/10.1371/journal.pone.0295109


AlphaFamImpute software [38] which leverages pedigree information to impute and phase the

genotypes of individuals. The imputation quality was tested by comparing GoldenGate data

for F15 individuals from Sheng [16] and compared these with our imputed genotypes. The

agreement for homozygous calls was 0.94, and for the heterozygous calls an agreement of 0.97

was observed (S2 Fig). A similar level of agreement was observed in a previous study of the

AIL line F2 individuals [35].

Association study

Genome-wide association study (GWAS). All sequenced individuals from F2 to F18 were

used in all genotype and phenotype associations performed. Using a single-marker approach,

we conducted a study in R (v4.2.2) with the linear model function, “lm” function, in the “stats”

package to test the association between BW8 and imputed SNP markers. The linear model we

used considered sex and generation as fixed effects. In our case, we have one batch per genera-

tion every year on the same date.

y ¼ 1mþ SbS þ gbg þ Ajaj þ � ð1Þ

Where y is the body weight vector of all chickens; μ is the intercept and 1 is a column vector of

ones; S is a design matrix of sex effect with effect size βS; g is the design matrix of generation

effect with the effect size vector βg; aj is the effect size of marker j; and the genotype vector Aj is

coded as the number of alternative alleles of marker j for each sample.

Variance-heterogeneity GWAS (vGWAS). By using vGWAS analysis, we could effi-

ciently map quantitative trait loci to variance heterogeneity (vQTL), which can be influenced

by epistasis. This helps us identify additional associations between markers and traits. The

Brown-Forsythe test is a statistical method used to compare the variance between groups. It

involves analyzing the variance of a transformed response variable using ANOVA. For sample

i with genotype j, the absolute deviation from the median body weight of each genotype group

is shown in the following equation.

y∗ij ¼ jyij � φjj ð2Þ

Where φj is the median body weight of sample with genotype j. The Brown-Forsythe test statis-

tic is the F value of the ANOVA on the absolute deviation y∗ij. Similar to the GWAS model, it is

important to account for sex and generation effects, so we normalized phenotype values within

each sex-generation group before the analysis.

Haplotype-based association study. Haplotype-based association analysis should be

more robust than single-marker analysis because the former utilizes information about linkage

disequilibrium (LD) from multiple markers [39,40]. The model, Eq (3), used in our study was

similar to the one used for GWAS. The haplotype effect replaced the marker effect while con-

sidering sex and generation as covariates.

y ¼ 1mþ SbS þ gbg þHjhj þ � ð3Þ

Plink was used to determine haplotype blocks using the default setting across genotypes in

all AIL samples [41–43].

Ancestry haplotype painting and association study. The main ancestry contributors of

current White Plymouth Rock chickens were Dominique, Black Java, and Cochin, while Brah-

mam, Langshan, and Black Minorca have lesser contributions [44]. We used the ChromoPain-

ter software [45] to identify haplotypes most likely inherited from specific ancestor breeds. We
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then performed the haplotype-based association study with Eq (3) using haplotypes classed by

ancestor breed of origin.

Detection of epistasis

Epistasis is the situation in which the effect of an allele in a locus is modified by the presence or

absence of an allele in another locus. Therefore, this effect can be identified by stratifying the

available data set by genotype at one candidate epistasis locus and then comparing the effect of

another locus (or several loci). The natural and orthogonal interaction (NOIA) model was first

applied to identify statistical evidence of epistasis. After that, for each target marker selected

from GWAS and vGWAS, we stratified samples into three subsets by the genotype of the target

marker.

The NOIA model. The NOIA model was developed to estimate the main and interaction

effects among loci while adjusting for unbalanced allele frequencies [46]. Statistically, gene

effects remain orthogonal and provide consistency in reducing models. For a two-loci model

(loci A and B) having a genetic effect vector EAB with a design matrix SAB, the genotype value

GAB can be expressed by the following equation.

GAB ¼ SAB � EAB ¼ SB � SAð Þ � EAB ð4Þ

Therefore, the genetic effect can be estimated by Eq (5)

EAB ¼ S� 1

B � S� 1

A

� �
� GAB ð5Þ

However, this model is insufficient for describing the genetic effects from any given refer-

ence point. To extend this, derivation accounts for genotyping frequencies (p11, p12, and p22).

Considering a one-locus mode, the design matrix SF can be expressed as Eq (6) with the refer-

ence point R = p11 G11 + p12 G12 + p22 G22.

SF ¼ 1 � p12 � 2p22 � p12 1 1 � p12 � 2p22 1 � p12 1 2 � p12 � 2p22 � p12ð Þ ð6Þ

Therefore, the two-loci model can be easily reached by replacing SA and SB in the Eq (4)

with two design matrices in Eq (6). This analysis was performed by the NOIA package (version

0.97.3) in R.

Screening for functional variants

Candidate genes were searched within chromosome 1 150-180Mb area by including associa-

tion study results, sequence ontology, and evolutionary constraint information. Sequence

ontology terms (GRCg6a.105) were annotated to the VCF file by snpEff [47,48]. Conservation

scoring by phylogenetic P-values (PhyloP score) from the PHAST package for multiple align-

ments of 76 genomes to the chicken genome were downloaded from the UCSC database (gal-

Gal6/phyloP77way). Candidates are those markers that have low P-values and high

conservation scores. Minor allele frequencies are considered to avoid increasing false discovery

rates in association studies.

Results

Genome-wide association study (GWAS)

A genome-wide association study (GWAS) was first performed to determine the top SNP

markers in the previously known QTL Growth1. As shown in Fig 1a, two significant peaks,

gga1_168m (chr1:168200669) and gga1_171m (chr1:170731384), were detected, which was

also the case in a previous study [37]. To study if these two signals were statistically
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independent, the right peak top SNP, gga1_171m, was considered a covariate to the GWAS

model (Fig 1b). Adding the gga1_ 171m SNP marker as a covariate, the significance of the left-

hand peak declined while not vanishing. Furthermore, no peaks were detected in the region

when we used both significant peaks as covariates in the model (Fig 1c). To explain the com-

plex genetic architecture of this region, we provide two possible explanations. First, there

could be distinct haplotype effects due to LD between the functional alleles that are not cap-

tured by individual SNP markers. The LD in the region shows that gga1_171m and

gga1_168m markers are not strongly linked (Fig 2). Second, interactions between the loci

result in nonadditive genetic variance not explained in the additive model but which, instead,

we hypothesize could be captured as genetic variance heterogeneity.

Variance-heterogeneity genome-wide association study (vGWAS)

To investigate the complex genetic architecture of Growth1 QTL, we performed a vGWAS to

screen for SNP markers carrying variance effects. Such markers could represent loci contribut-

ing to genetic interactions [21]. This analysis identified four additional signals downstream of

Fig 1. GWAS results on chromosome 1 150-180Mb region. (a) Result of standard GWAS. Figures (b) and (c) show

the result of adding the top SNP markers as covariates. The result shows that after adding the right peak as a covariate,

the left peak signal remains moderate. This implies that both peaks could carry different effects. The QTL Growth1

region (chr1:165330388–176818938) is annotated with an orange translucent mask.

https://doi.org/10.1371/journal.pone.0295109.g001
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standard GWAS peaks (Fig 3). Selected SNP markers are gga1_171v (chr1:170613341),

gga1_172v (chr1:171761454), gga1_174v (chr1:174370270), and gga1_178v (chr1:177940599).

Individual phenotypic means by genotype groups at gga1_178v are shown in Fig 4.

Haplotype effect

As discussed in the previous section, the haplotype effect is the first possible explanation for

causing the complex genetic architecture of Growth1. In Fig 2, it can be seen that the LD

between the functional alleles is not captured by individual SNP markers. This indicates that

multiple loci contribute to the body weight trait. We conducted a haplotype-based GWAS

analysis to validate the hypothesis that two peaks have independent effects, revealing that the

two previously detected GWAS peaks coincided with those obtained in a haplotype-based

association study (Fig 5a). Additionally, there still exists a region of non-association between

the two peaks. This suggests that two peaks are less likely to exist on the same haplotype.

To further understand the origin of that haplotype, both HWS and LWS samples were

painted by ancestry information [44]. The ancestral haplotype association study yielded similar

results to the haplotype-based association study, with the two main GWAS peaks showing

strong significance, as seen in Fig 5b and 5c, where the latter shows ancestral haplotype blocks.

It was discovered that most of the LWS samples were fixed for one haplotype in the right peak,

corresponding with earlier studies on the haplotype complexity in the Growth1 region with the

bi-directional selected lines [17]. That study revealed that the 55th generation of LWS samples

had only one LWS haplotype in this region. Conversely, HWS samples contained various hap-

lotypes [17]. For the left peak (gga1_168m), three major haplotypes were identified. The high-

est frequency haplotype was present in both HWS and LWS samples but had a higher

frequency in the LWS, while the other two haplotypes existed only in either HWS or LWS

Fig 2. GWAS results and linkage disequilibrium (LD) on chromosome 1 150-180Mb region. LD was painted

related to the marker gga1_171m. Variants in the gga1_168m peak do not show high LD to marker in the gga1_171m.

https://doi.org/10.1371/journal.pone.0295109.g002

Fig 3. Variance-heterogeneity GWAS result. Red lines annotate the position of selected SNPs showing variance

effects.

https://doi.org/10.1371/journal.pone.0295109.g003
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Fig 4. Distributions of normalized body weight stratified by genotype at marker gga1_178v. Violin plots showing

variance differences between genotype groups. The star signs show the pairwise significance of the variance effect.

https://doi.org/10.1371/journal.pone.0295109.g004

Fig 5. Haplotype-based association study. Haplotype-based association study results on chromosome 1 150-180Mb

region. (a) General haplotype-based association study. A negative log of the P-value on the y-axis shows significant

results. (b) Ancestry haplotype association study result. (c) Haplotype mosaic plot for F0 generation of the population.

Each row represents a sample. The color stands for different ancestry donors.

https://doi.org/10.1371/journal.pone.0295109.g005
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samples, with the statistical model estimating that they have significantly different effects of 26

and -3 grams, respectively.

Independent marker effect

The independent marker effects were tested using a stepwise selection across determined SNP

markers. Sex and generation were considered fixed effects in the model. Eventually,

gga1_168m, gga1_171v, and gga1_178v remain in the final model (Table 1).

We calculated the average body weight and standard deviation to evaluate how the mean

effect changed with the number of reference or alternative alleles (Table 2). The least signifi-

cant difference (LSD) analysis was used to test if there was a significant difference in body

weight among genotype groups. For each of the loci gga1_168m, gga1_171m, gga1_174v, and

gga1_178v, body weight decreased with increasing numbers of alternative alleles. For

gga1_168m, the effect size was relatively large, while the numbers of individuals in each group

were not balanced (1691 in the RR group vs. 164 in the AA group). For gga1_171m and

gga1_174v numbers of individuals in opposite homozygote groups were more balanced. For

gga1_171v and gga1_172v, average body weight increased with the number of alternative

alleles.

The NOIA model

The NOIA model fits six markers selected from both GWAS and vGWAS results (S3 Table).

All additive, dominance, and second-order interaction effects are included in the model. Sex

and generation effects are removed by normalizing the phenotype within each sex-generation

group. Fig 6 shows all significant second-order interactions among selected markers. Three

markers obtained highly significant interaction effects by NOIA, and these are positioned in

the upper triangle of the network, which includes gga1_168m, gga1_174v, and gga1_178v.

Markers gga1_171m and gga1_172v showed significant interaction with gga1_174v and

gga1_168m, respectively. The last marker, gga1_171v, had a mild additive interaction effect

with gga1_178v. The significant interactions shown in Fig 6 support that regulation of body

weight by Growth1 QTL cannot be described simply by independent effects of the loci.

Epistasis effects

The NOIA model result shows that several interactions among selected SNP markers are

highly associated with body weight. The average and standard deviation of body weight

grouped by genotypes of two selected markers shows how mean and variance change with the

interaction between two markers. Association analysis was performed with samples grouped

Table 1. Testing results of the linear model fitted with markers selected by stepwise regression.

Effects Mean Square F value P-value

Sex 1.47 × 107 689.47 < 0.001***
Generation 1.32 × 106 61.72 < 0.001***
gga1_168m 1.51 × 106 70.80 < 0.001***
gga1_171v 6.34 × 105 29.65 < 0.001***
gga1_178v* 5.68 × 104 2.66 0.1032

Significant code: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1.

* gga1_178v was included in stepwise regression and was strongly significant in the vGWAS while not significant

after adding covariates in the model.

https://doi.org/10.1371/journal.pone.0295109.t001
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by genotypes of the target markers to observe significant changes under the condition of differ-

ent genotypes (S3–S7 Figs).

The two GWAS peaks, gga1_168m and gga1_170m, remained strong in individuals carry-

ing at least one gga1_178v reference allele, which has a higher frequency in the HWS samples

(two upper panels of Fig 7a). However, both gga1_168m and gga1_170m signals were absent

in alternative allele homozygotes at gga1_178v. Fig 7b gave the same suggestion, while we

group samples by the genotype of the top SNP marker (blue vertical line) and gga1_178v, body

weight has a minor difference between alternative allele homozygotes at gga1_178v. In con-

trast, samples carrying at least one reference allele show a significant difference between

groups. Markers gga1_172v (S6 Fig) and gga1_174v (S7 Fig), on the other hand, show a differ-

ent pattern. Two GWAS peaks were eliminated in both homozygous groups.

Candidate causal genes

To screen associated loci for protein coding and UTR effects, we annotated variants by snpEff

(GRCg6a.105). In addition, we intersected variants with vertebrate PhyloP scores to be able to

prioritize associated variants in non-coding regions based on evolutionary constraints. In S8

Fig, SNP markers are colored by their snpEff classification categories and plotted by increasing

GWAS P-values and PhyloP scores. Minor allele frequency information was added to ensure

the statistical significance is not due to the unbalanced data structure. Markers with minor

allele frequencies greater than 0.1 and PhyloP scores ranking in the top 5% were sorted by the

Table 2. Average body weight grouped by the genotype of the target marker. Genotype coding is given by reference (R) and alternative (A) alleles. Body weight was

normalized within the generation-sex groups to remove effects that we were not interested in. The last column presents the LSD result by grouping notations a to c (signifi-

cance level α = 0.05).

Target Genotype1 Average BW2 STD3 Count4 LSD5

gga1_168m RR 0.1194 0.9893 1691 a

RA -0.1183 0.9861 1075 b

AA -0.4452 0.8843 164 c

gga1_171m RR 0.1979 1.0384 692 a

RA 0.0010 1.0069 1552 b

AA -0.2019 0.8765 686 c

gga1_171v RR -0.1751 0.9158 989 a

RA 0.0375 1.0125 1538 b

AA 0.2865 1.0331 403 c

gga1_172v RR -0.1306 0.8909 705 a

RA 0.0004 1.0117 1574 b

AA 0.1405 1.0418 651 c

gga1_174v RR 0.0770 1.0208 939 a

RA -0.0050 1.0139 1509 b

AA -0.1343 0.8617 482 c

gga1_178v RR 0.0638 1.0719 1071 a

RA -0.0053 0.9631 1426 a

AA -0.1404 0.8803 433 b

1 The frequencies of reference and alternative alleles in the HWS and LWS population is shown in S2 Table.
2 Average normalized body weight.
2 Standard Deviation of average normalized body weight.
3 Number of chickens in each group.
4 Least significant difference. Genotype groups having a different letter have a statistically significant difference in body weight.

https://doi.org/10.1371/journal.pone.0295109.t002
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P-value and are presented in S4 Table. None of the SNP markers showing most strongly associ-

ated with body weight were predicted to change coding parts of genes (Tables 3 and S4), and

were clustered in introns of or intergenic to the genes Ecto-NADPH Oxidase Disulfide-Thiol
Exchanger 1 (ENOX1), ENSGALG00000050514, ENSGALG00000052226

ENSGALG00000053256. Interestingly, ENSGALG00000053256, a novel long non-coding

RNA has previously been implicated as a candidate gene for regulating chicken body weight

[49]. Several strongly associated SNP variants were predicted to cause amino acid substitutions

in genes (Tables 3 and S5). Of these the protein encoded by TNF superfamily member 11
(TNFSF11) has known effects on bone growth and ribonuclease H2 subunit B (RNASEH2B)

has previously been implicated as a candidate gene for body weight in chicken [52].

Fig 6. Significant interaction effect among selected markers. A and D stand for additive effects and dominance effects. Line colors indicate the

degree of statistical significance, with darker colors indicating lower P-values.

https://doi.org/10.1371/journal.pone.0295109.g006

Fig 7. Epistasis effects conditioned on gga1_178v. (a), samples were grouped by genotype of gga1_178v (red vertical

line), in which 0, 1, and 2 represent the number of alternative alleles. The top SNP marker is annotated by the blue

vertical line. (b) shows the normalized average and standard deviation body weight in different conditions.

https://doi.org/10.1371/journal.pone.0295109.g007
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Discussion

Gallus gallus autosomal chromosome 1 (GGA1) contains one known QTL, Growth1, which

includes two strongly associated peaks confirmed by studies using early generations of the AIL

population [14,37]. With more generations included, recombination accumulation will

increase the resolution of association studies. Our study focused on an extended region on

chromosome 1 (chr1:150–180 Mb), including the Growth1 peak (chr1:165.3–176.8 Mb).

This study advanced the fine mapping of body weight-related variants in chickens. In previ-

ous research, suggestive QTL regions [13,14,50–52] and epistasis between QTLs [15,19,53]

were consistent with the thesis that in chickens, body weight is highly polygenic, moderate to

highly heritable, and influenced by non-additive effects. However, previous studies did not

fully consider local epistasis. Because recombination accumulates with each additional genera-

tion of the AIL population, we have a higher resolution than our previous association studies,

which used only parts of the genetic data that are now available for the AIL. Here, we focus on

one of the suggestive QTLs, the Growth1 region, and describe a complex genetic architecture

within the region.

Haplotype effects may be considered major effectors of the complex genetic architecture

observed in the Growth1 region. When we added two top SNP markers selected by GWAS as

covariates, they explained most variants, and the remaining significance signal was weak.

Table 3. The top associated overall- and missense-variants. Refer to the supplementary files, S4 and S5 Tables, for accessing a more complete table.

POS REF ALT GWAS1 PhyloP AAF2 Effect GeneName Transcript change Protein change

Overall variants

168203470 A T 16.61 2.84 0.23 intron_variant ENOX1 - -

168203263 A C 16.61 1.72 0.23 intron_variant ENOX1 - -

170835310 A G 16.22 1.32 0.48 upstream_gene_variant ENSGALG00000050514 - -

170835310 A G 16.22 1.32 0.48 intergenic_region ENSGALG00000050514-
ENSGALG00000053256

- -

168216902 G T 16.21 1.22 0.22 intron_variant ENOX1 - -

170812758 T C 16.17 1.24 0.5 intron_variant ENSGALG00000050514 - -

170808018 T C 16.06 2.58 0.49 intron_variant ENSGALG00000050514 - -

168211327 A G 16.01 1.37 0.22 intron_variant ENOX1 - -

168228062 A G 15.98 1.41 0.23 intron_variant ENOX1 - -

168223991 T C 15.89 2.12 0.23 intron_variant ENOX1 - -

Missense variants
170685654 G T 14.93 1.3 0.38 missense_variant SPRYD7 c.47C>A p.Ala16Asp

169127401 C G 10.32 3.74 0.21 missense_variant COG3 c.1489C>G p.Gln497Glu

167844491 T C 9.44 2.14 0.19 missense_variant TNFSF11 c.281T>C p.Ile94Thr

168961702 C T 8.3 1.99 0.28 missense_variant GPALPP1 c.440C>T p.Thr147Ile

168962167 A G 8.15 3.26 0.28 missense_variant GPALPP1 c.677A>G p.Lys226Arg

171246434 A G 7.57 4.43 0.43 missense_variant RNASEH2B c.470A>G

c.467A>G

p.Tyr157Cys p.

Tyr156Cys

171405714 G A 7.29 3.25 0.43 missense_variant SERPINE3 c.530G>A p.Arg177Gln

171411240 C T 7.22 2.6 0.43 missense_variant SERPINE3 c.920C>T p.Ala307Val

167751114 G A 6.23 3.84 0.19 missense_variant AKAP11 c.5336G>A p.Ser1779Asn

175921491 A G 5.06 1.3 0.13 missense_variant BRCA2 c.4879T>C p.Tyr1627His

1 -log(10) GWAS P-value.
2 Frequency of the alternative allele.

https://doi.org/10.1371/journal.pone.0295109.t003
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Forward selection and backward elimination also supported that the three selected markers

were a better combination for explaining observed phenotype differences. As shown by Guo

et al. [44], the admixture process involved in developing the White Plymouth Rock breed can,

150 years later, be used to trace haplotype breeds of origin in HWS and LWS lineages. To eval-

uate the potential of using the ancestral information, and hence the historical recombination

that has occurred, in the fine mapping of the QTL in the Virginia AIL population, we explored

the mosaic of the lines using this breed formation event as the reference of analysis. The ances-

tral haplotype analysis provided support to the haplotype analysis. Both analyses resulted in

consistent association results where haplotypes close to two selected GWAS peaks were signifi-

cantly associated with body weight. As mentioned in Guo’s study [44], 89% of the autosomal

genome was from 4 major donors (Dominique, Buff Cochins, Partridge Cochins, and Black

Java); the rest of them were donated by Light Brahma (4% in HWS and 7% in LWS) and Lang-

shan (7% in HWS and 4% in LWS). In the left peak (gga1_168m) of the Growth1 region, most

samples carried the most common ancestral haplotype, and we found a significant difference

in body weight between samples that carried either the second (26 g) or third (-3 g) most com-

mon ancestral haplotypes that could only be found in HWS and LWS, respectively.

To evaluate putative intra-chromosomal interactions between loci and haplotypes signifi-

cantly associated with body weight and its variance, we screened for epistasis. NOIA is a model

with the benefit of orthogonality, and variant effects can be easily estimated by a given refer-

ence point. All additive, dominance, and interaction effects lower than second order were

added to the model. If performed genome-wide, because of multiple testing, adding many

coefficients could drastically lower the significance of NOIA results. Thus, we chose a small

number of significant loci for inclusion in the model. The NOIA model provides another way

of explaining the architecture in this region, which was found to be a radiation network with

the gga1_178v marker sitting in the center (Fig 6). Epistasis was further explored by pairwise

grouping of individuals by their genotypes at each conditioned marker. Markers detected in

vGWAS analysis appear to modulate the gene-by-gene effect of gga1_168m and gga1_171m

on body weight. GWAS signals were eliminated, while gga1_178v is homozygous in the refer-

ence genome, and the reference genome has a higher frequency in the LWS samples. In con-

trast, gga1_172v and 174v eliminate GWAS signals while having a homozygous genotype in

either reference or alternative alleles.

Using association P-values, gene annotation by the software snpEff and evolutionary con-

straint information, we screened associated variants for those most likely to be causal of the

observed GWAS associations. As seen in S8 Fig, the lowest P-value SNPs occur in the non-cod-

ing category, where several of the markers with the lowest P-values also show strong evolution-

ary constraints. It is likely that this set harbors one or several causal alleles underlying the

effects of the Growth1 QTL.

The gene ribonuclease H2 subunit B (RNASEH2B) (chr1:171220990–171264767) within

Growth1 has been implicated as a candidate gene in a GWAS for growth performed in an F2

pedigree from an intercross between fast-growing broiler and slow-growing Chinese indige-

nous breeds [52]. In that study, RNASEH2B was the second closest gene to the top marker.

Furthermore, RNASEH2B recently emerged as the main candidate gene for a GWAS peak reg-

ulating beak size and shapes in Darwin’s finches [54]. RNASEH2B encodes one of two non-cat-

alytic subunits of RNAse H2, an RNAse thought to play a role in DNA replication, which

removes ribonucleotides from DNA to maintain genomic integrity and is mutated in the

human neuroinflammatory syndrome Aicardi-Goutieres syndrome type 2 [55,56]. We found

one highly associated, strongly conserved missense variant (rs737861556) in RNASEH2B (S9

Fig, Table 3) which is predicted to change a strongly evolutionary conserved Tyrosine to a Cys-

teine at amino acid position 156 whereas Tyr is almost exclusively observed across birds,
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mammals, reptiles and amphibians. The repeated implications of RNASEH2B with growth-

related phenotypes in birds make it a promising candidate gene, but the exact mechanisms by

which the identified amino acid change in RNAse H2 may control growth are obscure based

on the known functions of this gene.

One of the most strongly associated variants we observed (chr1:170835310) (Table 3) was

located 62 kb upstream of the long non-coding RNA ENSGALG00000053256, which was

recently identified as one of the top candidate genes for controlling growth traits in chicken by

intersections of ATAC-sequencing peaks with growth GWAS data [49]. Notably, several of the

most strongly significant variants observed in our study clustered to introns of ENOX1, whose

gene product is involved in plasma membrane transport pathways, but to our knowledge, this

gene has not previously been linked directly with growth traits. In order to go beyond the

results provided here, which are solely based on genetics, and to ultimately pinpoint causal var-

iants in the Growth1 region, we suggest that functional genomics assays should be employed.

Such assays could include thorough RNA sequencing, single-cell RNA sequencing, in vitro

reporter assays, ATAC-sequencing and Hi-C or Capture-C to investigate gene expression, reg-

ulatory potential of variants and chromatin interactions within the region for different geno-

type groups.

Supporting information

S1 Table. Number of sequenced samples in each generation. Body weight information for

the F1 population was not measured. From F2 to F18, individuals with bodyweight measure-

ments were counted. Average body weight and its standard deviation are presented in grams.

(PDF)

S2 Table. Allele frequencies in the HWS and LWS samples. This table shows reference

(RAF) and alternative (AAF) allele frequencies calculated in the HWS and LWS populations.

(PDF)

S3 Table. Significant effects of the NOIA model. A and D represent additive and dominance

effects.

(PDF)

S4 Table. Candidate markers. Top 30 markers out of 1029 that passed the threshold. These

markers were sorted based on their GWAS P-value and had a minimum MAF of 0.1 and a

PhyloP score in the top 5% across the genome.

(PDF)

S5 Table. Missense variants. Missense variants with the top 5% PhyloP score were sorted by

GWAS significance.

(PDF)

S1 Fig. Genome-wide association study. The y-axis shows the significance of the association

study by negative log P-value. The strongest significance signals lay in the Growth1 region.

(PDF)

S2 Fig. Agreement between GoldenGate assay and imputed genotype. The result shows a

97% average agreement of heterozygous and 94% agreement of homozygous between Golden-

Gate assay and imputed genotype of F15 samples.

(PDF)

S3 Fig. Epistasis effects conditioned on gga1_168m. Figure (a), samples were grouped by the

genotype of gga1_168m (red vertical line), in which 0, 1, and 2 represent the number of
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alternative alleles. Figure (b) shows the normalized average and standard deviation body

weight in different conditions. The top SNP marker is annotated by the blue vertical line in

Figure (a).

(PDF)

S4 Fig. Epistasis effects conditioned on gga1_171m. Figure (a), samples were grouped by the

genotype of gga1_171m (red vertical line), in which 0, 1, and 2 represent the number of alter-

native alleles. Figure (b) shows the normalized average and standard deviation body weight in

different conditions. The top SNP marker is annotated by the blue vertical line in Figure (a).

(PDF)

S5 Fig. Epistasis effects conditioned on gga1_171v. Figure (a), samples were grouped by the

genotype of gga1_171v (red vertical line), in which 0, 1, and 2 represent the number of alterna-

tive alleles. Figure (b) shows the normalized average and standard deviation body weight in

different conditions. The top SNP marker is annotated by the blue vertical line in Figure (a).

(PDF)

S6 Fig. Epistasis effects conditioned on gga1_172v. Figure (a), samples were grouped by the

genotype of gga1_172v (red vertical line), in which 0, 1, and 2 represent the number of alterna-

tive alleles. Figure (b) shows the normalized average and standard deviation body weight in

different conditions. The top SNP marker is annotated by the blue vertical line in Figure (a).

(PDF)

S7 Fig. Epistasis effects conditioned on gga1_174v. Figure (a), samples were grouped by the

genotype of gga1_174v (red vertical line), in which 0, 1, and 2 represent the number of alterna-

tive alleles. Figure (b) shows the normalized average and standard deviation body weight in

different conditions. The top SNP marker is annotated by the blue vertical line in Figure (a).

(PDF)

S8 Fig. SNPs on chromosome 1 150-180Mb region colored by sequence ontology terms.

The y-axis shows the PhyloP score, and the x-axis shows the significance of the GWAS result.

The dot size indicates the minor allele frequency.

(PDF)

S9 Fig. Markers nearby RNASEH2B gene. Markers simultaneously satisfy the top 5% GWAS

and PhyloP score threshold near the ribonuclease H2 subunit B (RNASEH2B) gene (annotated

by orange background).

(PDF)

Acknowledgments

Computations and data handling were enabled by resources in project SNIC 2017/7-53, SNIC

2018-3-170, and SNIC 2020-5-14 provided by the Swedish National Infrastructure for Com-

puting (SNIC) at UPPMAX. Sequencing was performed by the SNP&SEQ Technology Plat-

form in Uppsala. The SNP&SEQ facility is part of the National Genomics Infrastructure (NGI)

Sweden and Science for Life Laboratory.

Author Contributions

Conceptualization: Jen-Hsiang Ou, Örjan Carlborg, Carl-Johan Rubin.
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Supervision: Örjan Carlborg, Carl-Johan Rubin.

Validation: Tilman Rönneburg, Carl-Johan Rubin.

Visualization: Jen-Hsiang Ou.

Writing – original draft: Jen-Hsiang Ou.

Writing – review & editing: Tilman Rönneburg, Örjan Carlborg, Christa Ferst Honaker, Paul
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