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Abstract

Deep learning (DL) models have shown promise in detecting chronic kidney disease (CKD)

from fundus photographs. However, previous studies have utilized a serum creatinine-only

estimated glomerular rate (eGFR) equation to measure kidney function despite the develop-

ment of more up-to-date methods. In this study, we developed two sets of DL models using

fundus images from the UK Biobank to ascertain the effects of using a creatinine and cysta-

tin-C eGFR equation over the baseline creatinine-only eGFR equation on fundus image-

based DL CKD predictors. Our results show that a creatinine and cystatin-C eGFR signifi-

cantly improved classification performance over the baseline creatinine-only eGFR when

the models were evaluated conventionally. However, these differences were no longer sig-

nificant when the models were assessed on clinical labels based on ICD10. Furthermore,

we also observed variations in model performance and systemic condition incidence

between our study and the ones conducted previously. We hypothesize that limitations in

existing eGFR equations and the paucity of retinal features uniquely indicative of CKD may

contribute to these inconsistencies. These findings emphasize the need for developing

more transparent models to facilitate a better understanding of the mechanisms underpin-

ning the ability of DL models to detect CKD from fundus images.

Introduction

Chronic kidney disease (CKD) is a systemic condition characterized by the progressive deteri-

oration of kidney function over time and a corresponding decrease in the glomerular filtration

rate (GFR) [1]. CKD risk factors include obesity, diabetes, hypertension, and nephrotoxin

exposure. Although GFR can be measured by methods such as the urinary clearance of inulin

[2], the inherent difficulties in this procedure mean that in practice, clinicians rely on inferen-

tial methods which use surrogate markers [3] such as estimated glomerular filtration rate

(eGFR), in-urine albumin-creatinine ratio, and the underlying physiological context of the

symptoms [4] to assess underlying renal functionality.
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The recent successes of artificial intelligence (AI) and deep learning (DL) have encouraged

the development of alternative methods to screen for CKD. In light of the proposed linkage

between the retina and the kidneys [5–7], along with the plethora of useful biological informa-

tion researchers have extracted from the fundus using DL methods [8–10], research groups

have applied DL to either directly diagnose CKD from fundus photographs [11–15], predict

physiological markers from fundus photographs [16], or to create synthetic markers [17]

indicative of CKD from fundus images.

To date, all publications focusing on the direct diagnosis of CKD from fundus photographs

[11, 12, 15, 18] have used convolutional neural networks (CNN) as the DL architecture of

choice. Furthermore, all groups have elected to use eGFR equations, such as CKD-EPI 2009

[19] or MDRD [20], based on serum creatinine, age, gender, and race as ground truth for renal

function. One limitation of this approach lies in serum creatinine’s sensitivity to factors unre-

lated to kidney function. As serum creatinine is a waste product of muscular degeneration, fac-

tors such as vigorous exercise, chronic glucocorticoid therapy, and hyperthyroidism could also

alter its levels in the bloodstream [21]. To remediate this shortcoming, the research group that

created the serum creatinine eGFR equations [19, 20] has developed more recent versions to

include serum cystatin C alongside serum creatinine [19, 22, 23]. It has been proposed that

serum cystatin C is a more discriminative biological marker when compared to serum creati-

nine [24–26], and the updated equations encompassing both biomarkers are more reliable [22,

27].

This study aims to quantify the influence of these two definitions of eGFRs—creatinine

only and creatinine plus cystatin C on the convolutional neural network’s ability to classify

CKD from fundus photographs. To this aim, we developed and compared an ensemble of

models on the UK Biobank dataset for each eGFR definition. Standard metrics, including

ROC AUC scores, sensitivity, specificity, and F1 scores, were used to measure the performance

of the models.

Methods

Study participants

The UK Biobank is an open-access research resource containing health information for over

half a million participants from the UK that were initially recruited from 2006–2010, with fol-

low-up visits occurring until 2022. During the initial assessment and the first repeated assess-

ment visits, 175,788 non-mydriatic, 45˚ primary field of view, macula-centered fundus

photographs from both the left and right eyes were captured from 85,707 individuals using the

TOPCON 3D OCT 1000 Mk 2.

Ethics statement

This study is a retrospective study of the medical records captured in the UK Biobank. UK Bio-

bank has been granted approval from the North West Multi-Centre Research Ethics Commit-

tee as a Research Tissue Bank approval (RTB). This approval waives the requirement for

informed consent, which means researchers with applications approved by the UK Biobank do

not require separate ethical clearance. The RTB approval was granted in 2011 and was last

renewed in 2021. As per UK Biobank’s de-identification protocol, the UK Biobank provides

de-identified data to researchers in a manner which preserves the anonymity of its partici-

pants, and as far as practically possible, does not enable participants to be inadvertently identi-

fied. A material transfer agreement between our research group and UK Biobank was finalized

on the 28th of March 2022 under application number 86299.

PLOS ONE Alternative eGFR definitions on the performance of DL models for detection of CKD from fundus photographs

PLOS ONE | https://doi.org/10.1371/journal.pone.0295073 November 30, 2023 2 / 13

2.2 of the UK Biobank material transfer agreement

(https://www.ukbiobank.ac.uk/media/p3zffurf/

biobank-mta.pdf), “the applicant shall not share,

sub-license, disclose, transfer, sell, gift or supply

the materials to any other unauthorized third

party.” However, as per clause 2.5 in the MTA, this

link (https://www.ukbiobank.ac.uk/enable-your-

research/apply-for-access) provides the

procedures needed to request the data. The

institutional point of contact for accessing the data

is access@ukbiobank.ac.uk. Once UK Biobank has

granted permission, the minimum dataset can be

accessed from https://huggingface.co/san727-

UOA/PONE-D-23-21560 upon reasonable request.

Funding: S. An was awarded a R&D Fellowship

Grant, TEYES2101/PROP-81260-FELLOW-TEYES

by Callaghan Innovation, https://www.

callaghaninnovation.govt.nz. The sponsor or

funding organization had no role in the design or

conduct of this research.

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests: E. Vaghefi is a co-

founder and CEO of Toku Eyes Limited New

Zealand. D. Squirrell is a co-founder and medical

advisor at Toku Eyes Limited NZ. S. An, S. Yang

and L. Xie are employees of Toku Eyes Limited NZ.

The authors report no other conflicts of interest in

this work.

https://doi.org/10.1371/journal.pone.0295073
https://www.ukbiobank.ac.uk/media/p3zffurf/biobank-mta.pdf
https://www.ukbiobank.ac.uk/media/p3zffurf/biobank-mta.pdf
https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access
https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access
https://huggingface.co/san727-UOA/PONE-D-23-21560
https://huggingface.co/san727-UOA/PONE-D-23-21560
https://www.callaghaninnovation.govt.nz
https://www.callaghaninnovation.govt.nz


Experiment overview

The methodology used in this study is illustrated in Fig 1. A summary of the experimental

method is as follows:

Fig 1. Flow chart illustrating experimental methodology. Flow chart illustrating experimental methodology.

https://doi.org/10.1371/journal.pone.0295073.g001
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1. A training and hold-out testing dataset was created from the collection of fundus images

available from the UK Biobank.

2. Three methodologies were used to define binary patient groups for CKD disease status:

a. Using a single-factor (serum creatinine-only) eGFR.

b. Using a two-factor (serum creatinine and serum cystatin-C) eGFR.

c. Using clinical diagnosis based on ICD 10 codes for CKD.

3. Two ensembles of standard DL models for classifying CKD from fundus images were

trained on the two eGFR definitions.

4. Using the hold-out testing dataset, the two model ensembles were tested for their ability to

predict CKD disease status according to two definitions:

a. CKD as defined by the eGFR method used to develop the model ensemble.

b. CKD as defined by ICD10 codes.

5. ROC AUC, sensitivity, specificity, and F1 were used to measure the models’ performances.

Paired t-tests were used to determine the statistical significance of the results.

All deep learning models were developed using the Pytorch library and trained on a work-

station with AMD Threadripper 3970X CPU, 2 RTX A6000 GPUs connected via NVLink, and

256GB of RAM.

Dataset description

175,788 fundus images from 85,707 individuals were obtained from the UK Biobank. A DL

image screening system similar to the one used in our previous study [28] was created to

screen for poor-quality images. In brief, a random set of images were first sampled from the

UK Biobank dataset. Then based on the New Zealand Diabetic retinal screening, grading,

monitoring, and referral guidance [29], images were manually sorted into good quality, poor,

over-exposure, under-exposure, excessive occlusion, and non-fundus (eyeball). A DL multi-

class classification model was trained on this set of images and then executed over the entire

collection of images.

For those individuals who had good-quality images, key biometric parameters, including

serum creatinine, cystatin c, age, sex, ethnicity, and date N18 (chronic renal failure) first

reported (UK Biobank field 132032), were retrieved. Where multiple parameter values were

recorded over multiple sequential visits, they were matched to the corresponding fundus pho-

tographs taken during the same visit. The CKD-EPI 2021 [22] serum creatinine (single-factor)

and serum creatinine plus cystatin C (two-factor) eGFR equations were then used to estimate

kidney function for all individuals.

Down sampling was then implemented to address the potential issues with class imbalance

[30]. Individuals with either of the two eGFR definitions below 60 mL/min/1.73m2 were iden-

tified. All remaining individuals were then randomly down sampled to achieve a 1:8 ratio

between the former and latter groups. A 1:8 ratio was chosen because existing studies showed

models could generalize given a case-to-control ratio of 1:4 to 1:16 [11, 18].

An 80:20 split was carried out to generate the development and hold-out test datasets. The

development dataset was then further subdivided using an 80:20 ratio into the training and

validation subsets. The training subset was used to train the model, and the validation subset
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was used for early stopping to prevent overfitting. A summary of the dataset is given in

Table 1.

Model ensemble construction

Five models were constructed for each model ensemble:

1. Fundus image-only model based on ResNet-50 [31]. The model architecture is illustrated in

Fig 2.

2. Fundus image-only model based on EfficientNetV2S [32]. The model architecture is illus-

trated in Fig 3.

3. Fundus image and patient metadata (age, gender, ethnicity) model. The model architecture

is illustrated in Fig 4.

4. Gaussian blur [33] enhanced fundus image model. The model architecture is illustrated in

Fig 5.

5. Lightness channel contrast-limited histogram equalization (CLAHE) [34] enhanced fundus

image model. The model architecture is illustrated in Fig 6.

Table 1. Dataset summary table.

Overall Development (80%) Hold-out test (20%)

Number of Images 14,040 11,232 2,808

Number of Participants 12,589 10,326 2,750

Individuals with eGFR < 60 mL/min/1.73m2 942 854 285

Corresponding number of images for Individuals with eGFR < 60 mL/min/1.73m2 1,560 1,249 311

Male (%) 46 46.2 45.2

Age 57.2 (8.36) 57.3 (8.34) 56.9 (8.43)

BMI 27.3 (4.8) 27.3 (4.79) 27.4 (4.86)

eGFR (mL/min/1.73m2) 91.6 (18.2) 91.6 (18.1) 91.7 (18.4)

hBA1C (mmol/mol) 36 (6.32) 36 (6.3) 36 (6.39)

Cholesterol (mmol/L) 5.65 (1.14) 5.66 (1.14) 5.62 (1.13)

HDL cholesterol (mmol/L) 1.48 (0.392) 1.48 (0.393) 1.47 (0.386)

Mean systolic blood pressure (mmHg) 137 (18.4) 137 (18.4) 137 (18.2)

Mean diastolic blood pressure (mmHg) 81.3 (10) 81.4 (9.99) 81.2 (10.1)

Diabetes (%) 5.52% 5.36% 6.16%

Summary of data used for study. 14,040 images were used in total, with 11,232 allocated to the development set and 2,808 hold-out test set. Individuals with eGFR < 60

mL/min/1.73m2 was the total number of individuals with either serum creatinine only eGFR or serum creatine and cystatin C eGFR < 60 mL/min/1.73m2.

https://doi.org/10.1371/journal.pone.0295073.t001

Fig 2. ResNet block diagram. Block diagram for baseline ResNet model.

https://doi.org/10.1371/journal.pone.0295073.g002
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Model training and performance evaluation

For all models, input variable normalization was carried out before training. The models were

configured as binary classifiers, utilizing the binary cross entropy loss function. A batch size of

32 and the ADAM optimizer with a learning rate of 1e-3 and learning decay of 1e-6 were

employed for optimization.

Three different CKD definitions were assigned to individuals in the development and hold-

out testing sets. The first definition was based on the single-factor (serum creatinine only)

eGFR, the second definition on the two-factor (serum creatinine and cystatin-C) eGFR, and

the third definition based on the date chronic renal failure first reported.

For the two eGFR-based definitions, as per prior research [11, 12, 18], individuals with

eGFR less than 60 mL/min per 1.73 m2 were classified as CKD-positive and labeled 1. For

training, individuals with eGFR greater than 90 mL/min per 1.73 m2 were categorized as CKD

negative and labeled 0. Individuals with eGFR between 60–90 mL/min per 1.73 m2 weren’t

used for training. Internal testing showed that this approach resulted in superior performing

models when compared to a singular 60 mL/min per 1.73 m2 threshold. For the clinical defini-

tion, individuals with a valid date for chronic renal failure were categorized as CKD positive,

and everyone else was classified as CKD negative.

Model performance was then evaluated using eGFR and clinical diagnosis. For evaluation

using eGFR, the two model ensembles were evaluated on their ability to distinguish between

individuals with eGFR lower than 60 mL/min per 1.73 m2 from all other individuals based on

the same eGFR definition they were trained on. For evaluation using clinical diagnosis, the

models were evaluated on their ability to distinguish between individuals with reported ICD10

N18 (chronic renal failure) and all other individuals.

The receiver operating characteristics area under the curve (ROC AUC), sensitivity, speci-

ficity, and F1 scores were used to measure model performance for all models. For metrics,

such as sensitivity, that require a threshold, the optimal threshold was determined using You-

den’s J statistic [35]. The pairwise t-test was then used to determine the statistical significance

between the series metrics generated by the two model ensembles developed under different

eGFR definitions. Prior to t-test execution, the Shapiro-Wilk test was used to determine that

the differences between the pairs were normally distributed.

Fig 4. Metadata model block diagram. Block diagram for metadata model.

https://doi.org/10.1371/journal.pone.0295073.g004

Fig 3. EfficientNet block diagram. Block diagram for EfficientNet model.

https://doi.org/10.1371/journal.pone.0295073.g003
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Results

Tables 2 and 3

Discussion

We found that models trained on labels defined using a two-factor eGFR (serum creatinine and

cystatin C) performed better than those trained on a single-factor (serum creatinine only)

eGFR when evaluated on the same eGFR that was used for training. Pairwise t-tests in Table 2

showed statistically significant differences in ROC AUC sensitivity specificity and F1 scores

across the two model ensembles developed from the respective eGFRs. However, as per Table 3,

the differences were no longer statistically significant when the two model ensembles were eval-

uated on ICD10-based clinical diagnosis. Comparison with existing DL models showed that

our best-performing model, the fundus and metadata model developed using the two-factor

eGFR, was comparable to the model developed by Kang et al. [12], which reported a sensitivity

and specificity of 0.83 and 0.62, respectively. However, our models were inferior to the Chinese

CC-FII [18] and Singaporean SEED [11] studies, which reported ROC AUC above 0.9.

An examination of the demographic distributions of the UK Biobank and the datasets used

by SEED/CC-FII revealed several key differences that might explain the observed differences

in model performance. Firstly, the UK Biobank is predominantly European, whereas the

CC-FII/SEED studies were limited to Asian ethnic groups. Furthermore, noticeable disparities

in the incidence rates of systemic conditions common to CKD and retinal disorders exist

between the UK Biobank and the SEED/CC-FII datasets. For example, the diabetes incidence

in the UK Biobank dataset was 5–6%, compared to 28.6% and 29.2% in the Singaporean SEED

and Chinese CC-FII studies. For reference, the diabetes incidence rate for people aged 55–65

in China is estimated to be 15.98% [36], indicating that the CC-FII and SEED dataset likely

comprise a group of individuals with a higher incidence of diabetes than occurs in the general

population. Similarly, there was also a difference in the hypertension incidence rate between

the UK Biobank and SEED studies, with rates of 35.2% [37] and 62.5%, respectively.

The proposition that systemic condition incidence is related to the apparent performance

of DL classifiers is further supported by inconsistencies in the SEED study’s image-only classi-

fier when applied to external test datasets [11]. The authors reported a drop in ROC AUC

Fig 5. Gaussian blur enhanced model block diagram. Block diagram for gaussian blur enhanced model.

https://doi.org/10.1371/journal.pone.0295073.g005

Fig 6. L-CLAHE enhanced model block diagram. Block diagram for lightness channel CLAHE enhanced model.

https://doi.org/10.1371/journal.pone.0295073.g006
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from 0.911 to 0.733 when the model was used on the external SP2 dataset instead of the inter-

nal SEED validation dataset. It was noteworthy that the SP2 dataset comprised younger indi-

viduals (mean age 49.9 vs. 58.4 in the training set) who had a lower diabetes incidence rate

(9.8% vs. 28.6% in the training dataset) and a lower hypertension rate; (40.6% vs. 62.5%). A

similar decrease in performance was also observed on the second BES external validation data-

set. A more modest reduction from 0.911 to 0.835 ROC AUC was observed in this case. The

review also revealed that the demographics of the BES dataset were more similar to the internal

SEED validation set, with older individuals (mean age 64.3) and elevated diabetes (16.8%) and

hypertension rates (51%). Signs of this relationship were present in Kang et al.’s study, whereby

the authors reported an improvement in model performance (ROC AUC 0.81 to 0.87) by

enriching their base dataset with individuals that have poorer glycemic control and higher

average HbA1Cs (>10%). In summary, these findings collectively paint a situation where the

performance of fundus image-based DL CKD predictors appears to be linked to the incidence

of systemic conditions known to be associated with an increased incidence of CKD.

Finally, our results suggest that seeming improvements in metric performance have a lim-

ited impact on actual patient diagnosis. Despite statistical differences in metric performance

between models developed using a one-factor eGFR and a two-factor eGFR when evaluated on

their respective labels, these differences ceased to be statistically significant when the models

were assessed on clinically diagnosed CKD as per ICD 10. The behavior implies that despite

the apparent performance gains in switching from a one-factor to a two-factor eGFR, the qual-

ity and generalizability of the features learned by the models likely remained the same.

We hypothesize that the susceptibility of fundus image-based DL CKD predictors to varia-

tions in labeling strategy and systemic disease incidence can be attributed to two inherent limi-

tations in the modeling process. Firstly, eGFR has a P30 value of 67–87% compared to gold

standard indices for kidney function [19]. When binary disease state labels are defined using

thresholds based on noisy measures, there will be inherent uncertainty in the labels, particularly

for individuals close to the decision thresholds. Secondly, despite the widely substantiated

pathophysiological connections between the eye and the kidney, including the shared expres-

sion of the renin-angiotensin-aldosterone-system (RAAS) [38], structural similarities in base-

ment membranes, and common pathways in oxidative stress, inflammation, and atherosclerosis

[5] there is still a paucity of retinal features discernable in color fundus photographs that

unequivocally signify CKD while being unrelated to other concomitant systemic conditions,

such as hypertension and diabetes. The lowered certainty in ground truth likely makes classify-

ing CKD from fundus photographs inconsistent and dependent on the prevalence of other

Table 3. Model performances for evaluation using reported renal failure.

Models developed using single-factor eGFR (creatinine

only)

Models developed with two-factor eGFR (serum

creatinine and cystatin C)

Pairwise T-test results

(1)

ResNet

(2)

EfficientNet

(3)

Metadata

(4)

Gaussian

blur

(5)

CLAHE

(1)

ResNet

(2)

EfficientNet

(3)

Metadata

(4)

Gaussian

blur

(5)

CLAHE

Test

statistic

DOF P

value

Mean

difference

ROC

AUC

0.677 0.690 0.745 0.699 0.666 0.707 0.712 0.749 0.688 0.693 1.860 4 0.136 0.014

Sensitivity 0.704 0.785 0.806 0.785 0.765 0.781 0.838 0.785 0.810 0.721 0.793 4 0.472 0.018

Specificity 0.606 0.558 0.587 0.545 0.522 0.571 0.503 0.622 0.510 0.623 0.067 4 0.950 0.002

F1 score 0.244 0.247 0.265 0.241 0.228 0.251 0.240 0.275 0.235 0.256 1.008 4 0.371 0.007

This table compares model ensembles developed using single-factor eGFR vs. two-factor eGFR in classifying binary groups defined by reported ICD10 N18 (chronic

renal failure). Individuals with reported N18 were labeled as 1. All other individuals were labeled as 0.

https://doi.org/10.1371/journal.pone.0295073.t003
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systemic conditions in the dataset’s population. This contrasts with DL models for diabetic reti-

nopathy, which report consistently good classification performance [39], partly due to features

and labels being defined by rigid, visually identifiable physical signatures [8].

In an attempt to account for the inherent noise in a CKD state label defined only by eGFR,

we employed the basic strategy of omitting individuals with eGFR values corresponding to

stage 1 and stage 2 CKD during model training. However, due to our decision to use an eGFR

threshold of 60 mL/min per 1.73 m2 for model evaluation, our overall methodology remains

susceptible to this limitation. In clinical practice, the diagnosis of CKD entails a comprehensive

assessment that considers eGFR, albuminuria and underlying cause [1, 40]. Neglecting these

essential components in favor of a decision threshold purely based on eGFR increases the risk

of misclassification. However, to facilitate a meaningful comparison with prior research, we

opted to use an eGFR-only method that is consistent with previous studies. Nonetheless, future

experiments should look at incorporating albuminuria and supporting clinical data alongside

eGFR when defining a label for CKD.

Other factors that affect the pathophysiological connection between the kidney and retina

and the robustness of the CKD state labels include the use drugs such as angiotensin converter

enzyme (ACE) inhibitors. ACE is a component of the RAAS that regulates both renal and reti-

nal vasculature. As such, the use of ACE inhibitors can impact renal function and retinal

appearance. Ideally, the use of ACE inhibitors should then be considered in this study. How-

ever, as medication history (field 6177) in UK Biobank is self-reported with only 323 out of

683 individuals with a creatinine only eGFR< 60 mL/min per 1.73 m2 providing information

about any medication usage at all, this raised questions about the representativeness of such

data. When this shortcoming was evaluated in context of the core aims of this study, we

thought it was appropriate to omit this information. Nonetheless, future methods that seek to

infer more reliable drug usage statistics from multiple points of reference would be important

and could offer valuable insights into the problem. Similarly, despite factors such as the use of

steroids, insulin, and dietary habits impacting creatinine levels and eGFR, due to comparable

limitations in obtaining this information reliably from the UK Biobank, we did not consider

their influence in this study.

The characteristics of the retinal images in the UK Biobank dataset were also a point of

interest. The fundus images from the UK Biobank are single field images acquired using non-

mydriatic retinal photography. When compared to mydriatic multi-field fundus photographs,

as typically used in diabetic retinopathy screening programs, single field images are limited to

capturing lesions within a 45-degree view angle. However, to the best of our understanding,

there has been no reported correlation between cystatin-C and the propensity for an individual

to develop lesions in the peripheral retina. Consequently, using non-mydriatic single field reti-

nal images for model training will likely reduce the sensitivity of all developed models, rather

than being biased toward models developed on any specific definition of eGFR. As such, this

limitation does not undermine the validity of our study. Further investigation using multi-

field, or ultra widefield fundus photographs is required to quantify the possible effects of

peripheral lesions on the performance of DL models designed to diagnose CKD.

Finally, it is important to consider the inherent limitations of a DL approach. One such

constraint is DL’s reliance on large volumes of well-labeled data. This reliance presents both

financial and resourcing challenges when attempting to replicate a fundus photograph model

intended to classify CKD on new population groups, particularly when non-standard bio-

markers such as cystatin-C are used. One future direction to address this limitation could be

the application of transfer-learning methodologies. Transfer-learning could provide a pathway

to leverage models trained on existing and readily available clinical data (for example hyper-

tension, retinopathy or drusen) to solve the more specialized and data scarce task of classifying
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CKD. Furthermore, the black box nature of DL models makes it challenging to conduct a

methodical investigation of the mechanisms that underpin the models’ outputs. Despite previ-

ous studies [11, 12, 15, 18] demonstrating the possibility of utilizing attention maps based

methods [41–43] as an approach to explain the workings of their model, this technique is not

without issue [44]. Specifically, attention maps highlight a broad fundus area and lack specific-

ity. This makes them open to interpretation bias, especially on a task involving indeterminate

features such as the classification of CKD. As such, there is still a need to develop more deter-

ministic methods for DL model explanation that will enable researchers to better understand

the impact of systemic conditions and label definitions on the generalization performance of

fundus image-based DL CKD predictors.

Conclusions

Our results show that despite a seeming increase in performance when fundus image-based

DL CKD predictors are trained on a two-factor (cystatin C plus serum creatinine) instead of a

single-factor (serum creatinine only) eGFR, further evaluation on actual CKD diagnosis

showed that differences were no longer significant. We hypothesize that due to a paucity of ret-

inal features uniquely indicative of CKD and a ground truth based on a noisy physiological

surrogate of the pathological state, the fundus image-based DL CKD predictor’s performance

is likely to be influenced by variations in systemic condition incidence, which could vary across

different datasets. The development of methods that facilitate a better understanding of DL

model behavior, as well the application of a transfer-learning approach to reduce the reliance

on scarce clinical data may provide opportunities for further improvement of DL models for

classifying CKD from fundus images.
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