
RESEARCH ARTICLE

Vitamin K2 (MK-7) attenuates LPS-induced

acute lung injury via inhibiting inflammation,

apoptosis, and ferroptosis

Yulian Wang1☯, Weidong Yang1☯, Lulu Liu1, Lihong Liu1, Jiepeng Chen2, Lili Duan2,

Yuyuan LiID
3*, Shuzhuang Li1*

1 College of Basic Medical Science, Dalian Medical University, Dalian, China, 2 Sungen Bioscience Co.,

Ltd., Guangdong, China, 3 Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China

☯ These authors contributed equally to this work.

* shuzhuangli@126.com (SL); liyuyuan831221@163.com (YL)

Abstract

Acute lung injury (ALI) is a life-threatening disease that has received considerable critical

attention in the field of intensive care. This study aimed to explore the role and mechanism

of vitamin K2 (VK2) in ALI. Intraperitoneal injection of 7 mg/kg LPS was used to induce ALI

in mice, and VK2 injection was intragastrically administered with the dose of 0.2 and 15 mg/

kg. We found that VK2 improved the pulmonary pathology, reduced myeloperoxidase

(MPO) activity and levels of TNF-α and IL-6, and boosted the level of IL-10 of mice with ALI.

Moreover, VK2 played a significant part in apoptosis by downregulating and upregulating

Caspase-3 and Bcl-2 expressions, respectively. As for further mechanism exploration, we

found that VK2 inhibited P38 MAPK signaling. Our results also showed that VK2 inhibited

ferroptosis, which manifested by reducing malondialdehyde (MDA) and iron levels, increas-

ing glutathione (GSH) level, and upregulated and downregulated glutathione peroxidase 4

(GPX4) and heme oxygenase-1 (HO-1) expressions, respectively. In addition, VK2 also

inhibited elastin degradation by reducing levels of uncarboxylated matrix Gla protein (uc-

MGP) and desmosine (DES). Overall, VK2 robustly alleviated ALI by inhibiting LPS-induced

inflammation, apoptosis, ferroptosis, and elastin degradation, making it a potential novel

therapeutic candidate for ALI.

Introduction

Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), are

severe respiratory system disease [1]. ALI is characterized by disruption of the lung capillary

endothelium and alveolar-capillary membrane barrier, overactivated inflammatory response,

and pulmonary edema [2]. Lipopolysaccharide (LPS) is the principal component of the outer

membranes of gram-negative bacteria, which can trigger strong inflammatory responses and

cause severe lung injury. The molecular process of ALI is believed to involve complex interac-

tions between inflammation, oxidative stress, apoptosis, and ferroptosis [3, 4]. Cytokine storms

are a result of the markedly elevated proinflammatory cytokines such as tumor necrosis factor-
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α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), which have been proved to be

major factors promoting the development of ALI [5]. These cytokines act on leukocytes to acti-

vate positive feedback of proinflammatory signals [6, 7]. At the same time, a large number of

leukocytes’ influx into the lungs also induces the production of reactive oxygen species (ROS)

in hepatocytes and endoplasmic reticulum stress, leading to hepatocyte apoptosis and ferrop-

tosis [8, 9]. Therefore, inhibiting inflammation, oxidative stress, apoptosis, and ferroptosis is

crucial for alleviating LPS-induced ALI.

However, currently, there are no efficient drugs or therapies for LPS-induced ALI in clinical

practice. A promising strategy to prevent and treat ALI is to suppress the excessive production

of inflammatory cytokines through anti-inflammatory drugs, including corticosteroids, such

as methylprednisolone [10], dexamethasone (DEX) [11], prednisolone [12]. However, the clin-

ical application of corticosteroids is usually accompanied by various severe side effects, such as

hyperglycemia, hypertension, hypokalemia, dyslipidemia, osteoporosis, myopathy and immu-

nosuppression [13–15]. Therefore, it is necessary to find new drugs with better efficacy and

safety for the treatment of ALI patients.

Vitamin K (VK) is a family of lipid-soluble molecules that exists mainly two forms: vitamin

K1 (phylloquinone) and vitamin K2 (menaquinone). VK2, essential for human metabolism

and health is predominantly present in cheese and fermented soybeans (natto) [16]. In recent

years, VK2 has become a research hotspot for scientists due to its multiple pharmacological

activities, including anti-inflammatory, anti-oxidant, anti-apoptosis, and anti-ferroptosis [17–

19]. However, whether VK2 has a beneficial effect on LPS-induced ALI has not been investi-

gated. Thereby, this study was conducted to evaluate if VK2 administration could offer protec-

tion against ALI/ARDS.

Materials and methods

Reagents

VK2 was provided by Sungen Bioscience Co., Ltd. (Guangdong, China). LPS (from Escheri-

chia coli (055:B5)) and DEX were purchased from Sigma-Aldrich (St. Louis, MO, United

States). Mouse myeloperoxidase (MPO) determination kit was purchased from the Jiancheng

Bioengineering Institute of Nanjing (Nanjing, Jiangsu Province, China). ELISA kits for mouse

TNF-α, IL-6 and IL-10 were purchased from Jiangsu Meimian Industrial Co., Ltd. (Jiangsu,

China) and for uncarboxylated MGP (uc-MGP) and desmosine (DES) were from Shanghai

Lengton Bioscience Co., Ltd. (shanghai, china). The malondialdehyde (MDA), glutathione

(GSH), and Iron determination kits were purchased from Solarbio (Beijing, China). The anti-

bodies against GAPDH, iNOS, and Caspase-3 were obtained from Abcame (Cambridge, MA).

The antibodies against TLR4 and IL-6 were purchased from Wanleibio (Liaoning, China). The

antibodies against P38, p-P38, and Bcl-2 were from Proteintech (Wuhan, China). The antibod-

ies against glutathione peroxidase 4 (GPX4) and heme oxygenase-1 (HO-1) were obtained

from Bioworld (Minnesota, USA). Other chemicals were conformed from reagent grade.

Animal experiments

Specific-pathogen-free (SPF) male C57BL/6 mice (8–10 weeks old, 20–24 g body weight) were

purchased from Liaoning Changsheng Biotechnology Co., Ltd. (Liaoning, China). The mice

were kept in cages with food and water ad libitum during the whole period. The experiment

was conducted with the approval of the Dalian Medical University Animal Care and Use Com-

mittee (AEE20051).

LPS (7 mg/kg) was dissolved in saline and administrated by intraperitoneal injection to

mice and the acute lung injury model was established by LPS administration for 3 days. The
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mice were randomly divided into six groups (7 mice per group): control group, LPS group,

negative control group (LPS + Oil [vehicle]), positive control group (LPS + DEX), and the

VK2 pretreatment groups at two different concentrations. VK2 was dissolved in soybean oil at

different concentrations (0.2 and 15 mg/kg). Before LPS treatment, the VK2 pretreatment

groups were pre-administered intragastrically for 6 days, while the control and model groups

were given the same volume of solvent solution. In the positive control group, mice were Cas-

pase-3. The treatment of mice was shown in Fig 1A. After deeply anesthetized with tribro-

moethanol, the lung and serum were collected from each mouse for further experiments.

Histological evaluation of lung

Lung tissue samples were fixed in 4% (w/v) paraformaldehyde and then dehydrated, embed-

ded in paraffin and stained with hematoxylin / eosin (HE). The severity of lung damage was

semi-quantitatively scored as previously described [20].

Determination of myeloperoxidase (MPO) activity and the content of

ferroptosis biomarkers in lung tissue

Lung homogenate (10%, w/v), obtained by homogenizing the lung tissue and normal saline,

was used for the measurements of MPO activities, and MDA, GSH and Iron content using test

kits in accordance with the manufacturer’s instructions.

Measurement of inflammatory cytokines in serum

The serum was collected and the levels of pro-inflammatory cytokines TNF-α and IL-6, and

anti-inflammatory cytokines IL-10 in the serum were measured by ELISA kits according to the

manufacturer’s recommendations.

Assessment of the degradation level of elastic fibers

To evaluate the level of elastic fiber degradation, the concentrations of uc-MGP in serum and

DES in lung tissue were quantified using ELISA. All measurements were carried out following

manufacturer’s instructions.

Western blotting analysis

The lung tissues were lysed with RIPA Lysis Buffer to extract the proteins that were quantified

by the BCA assay. Denatured proteins were separated using sodium dodecyl sulfate-polyacryl-

amide gelelectrophoresis (SDS-PAGE) and then transferred onto polyvinulidene difluoride

(PVDF) membranes. After blocking with 5% fat-free milk, the membranes were incubated

with the primary antibodies of TLR4, P38, p-P38, IL-6, iNOS, Caspase-3, Bcl-2, GPX4, HO-1,

and GAPDH at 4˚C overnight. Next, the membranes were incubated with the secondary anti-

bodies (Santa Cruz, CA; 1:2000) for 1h at room temperature. After the final washes, the protein

bands were scanned using the gel imaging system (BIO-RAD, United States).

Statistical analysis

Data were expressed as the mean ± standard error of the mean (SEM). Statistical significance

of differences was assessed by one-way ANOVA followed by Kruskal-Wallis rank sum test for

multiple groups and two-tailed, unpaired Student’s t test for two groups with the assistance of

GraphPad Prism Program (Version 8.2.1). Significance was set at *p< 0.05, **p< 0.01,

***p< 0.001, ****p< 0.0001.
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Fig 1. VK2 attenuated LPS-induced acute lung injury. (A) Mice were pre-administered intragastrically solvent or

VK2 (0.2 and 15 mg/kg respectively) and subsequent intraperitoneal injection of LPS (7 mg/kg). (B) Histological

analysis of lung tissue sections by HE staining (original multiples: 200 ×, scale = 75 μm). (C) Lung tissue injury was

assessed by histological scores in all groups. (D) Determination of the myeloperoxidase (MPO) activity in lung

homogenates. Values represent means ± SEM, *p< 0.05, **p< 0.01, ***p< 0.001 and ****p< 0.0001.

https://doi.org/10.1371/journal.pone.0294763.g001

PLOS ONE VK2 attenuates inflammation, apoptosis, and ferroptosis in ALI

PLOS ONE | https://doi.org/10.1371/journal.pone.0294763 November 27, 2023 4 / 14

https://doi.org/10.1371/journal.pone.0294763.g001
https://doi.org/10.1371/journal.pone.0294763


Results

VK2 ameliorates LPS-induced histopathological changes and decreases

MPO activity in lung

The treatments of mice were shown in Fig 1A. We first observed the morphological changes of

lung tissues by comparing the HE-stained pathological sections (Fig 1B and 1C). LPS-induced

mice showed alveoli structure destruction, thickening of alveolar interval, and inflammatory

cell infiltration compared with their control counterparts. After VK2 pretreatment, lung injury

induced by LPS gradually resolved and followed a dose-dependent trend. Then, the marker of

neutrophils infiltration in tissues, MPO, has been detected in this study. The results showed

that MPO activity in lung tissues was significantly increased by LPS (p = 0.0052). Pretreatment

with VK2, especially with high dose, significantly inhibited LPS-induced MPO activity

(p = 0.0175) (Fig 1D). Taken together, these results suggest that VK2 protected against LPS-

induced ALI in mice.

VK2 improved LPS-induced inflammation via P38 MAPK signaling

The results of the content of inflammatory cytokines (TNF-α and IL-6) and anti-inflammatory

cytokine (IL-10) in the serum were shown in Fig 2A–2C. Compared with control group, con-

tents of TNF-α (p = 0.0066, Fig 2A) and IL-6 (p = 0.0014, Fig 2B) were drastically increased,

but that of IL-10 (p = 0.0233, Fig 2C) was decreased in LPS-induced model group. Similar to

the positive drug DEX, VK2 administration, especially high dose, displayed the strongest

inhibitory effect on reducing TNF-α (p = 0.0488) and IL-6 (p = 0.0116) and increasing IL-10

(p = 0.004). These results indicated that VK2 could alleviate LPS-induced lung inflammation

by inhibiting the excessive production of pro-inflammatory cytokines and promoting the pro-

duction of anti-inflammatory factors.

MAPK is a common signaling pathway in the LPS-induced inflammatory response [21].

The effect of VK2 on MAPK signaling was assessed by measuring the phosphorylation of p38

and the expression of upstream protein (TLR4). Western blot assays showed that compared

with the control group, the expressions of TLR4 (p = 0.0442, Fig 2D and 2E) and phosphory-

lated p38 (p = 0.0009, Fig 2D and 2F) were significantly increased in the LPS group. However,

VK2 administration, especially high dose, could obviously inhibited LPS-induced increase of

TLR4 (p = 0.0108) and phosphorylated p38 (p = 0.0132). iNOS and IL-6 are important pro-

inflammatory proteins in the cascading inflammatory response, which can be regulated by

MAPK. As shown in Fig 2G–2I, the expressions of iNOS and IL-6 were increased by LPS com-

pared with control groups, but effectively reduced by VK2 with respect to the LPS model

groups (p< 0.05). The results suggest that VK2 alleviated LPS-induced inflammation, and the

activation and regulation of P38 MAPK pathway was involved in these anti-inflammatory

processes.

VK2 inhibits apoptosis in LPS-induced ALI

In this study, expressions of apoptosis related lung proteins were determined via Western blot-

ting (Fig 3). In comparison with the control group, LPS treatment dramatically increased the

pro-apoptotic protein expression of Caspase-3 (p = 0.0077, Fig 3A and 3B), while significantly

downregulated the expression of anti-apoptotic protein Bcl-2 (p = 0.0041, Fig 3A and 3C).

However, VK2 pretreatment significantly reduced Caspase-3 and increased Bcl-2 expression

levels in ALI mice (p< 0.05), suggesting VK2 pretreatment might relieve LPS-induced pulmo-

nary cell apoptosis in ALI mice.
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VK2 mitigates ferroptosis in LPS-induced ALI

Ferroptosis results from the iron-dependent accumulation of lipid peroxides. To explore the

protective role of VK2 pretreatment against LPS-induced ferroptosis, the level of reductive glu-

tathione (GSH), lipid peroxidation products malondialdehyde (MDA) and tissue iron levels

were measured (Fig 4). The GSH level was significantly reduced after LPS challenge

(p = 0.0009), while VK2 pretreatment reversed this situation and increased GSH extent in lung

tissue (p = 0.0462, Fig 4A). In contrast, the MDA level (p = 0.0015, Fig 4B) and tissue iron

(p = 0.0409, Fig 4C) were significantly decreased after VK2 supplementation in high dose

Fig 2. Effects of VK2 on LPS-induced inflammation. (A) TNF-α, (B) IL-6 and (C) IL-10 were measured with ELISA in mouse serum. (D) The protein

expression levels of TLR4, p-P38 MAPK, and P38 MAPK were evaluated by western blotting. (E, F) Quantitative analysis of TLR4 and the ratio of p-P38/P38

normalized with GAPDH were performed using Image J software. (G) The protein expression levels of iNOS and IL-6 were evaluated by western blotting. (H,

I) Quantitative analysis of iNOS and IL-6 normalized with GAPDH. Values represent means ± SEM, *p< 0.05, **p< 0.01, ***p< 0.001 and ****p< 0.0001.

https://doi.org/10.1371/journal.pone.0294763.g002
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compared with LPS group. Lipid peroxidation is the kernel of ferroptosis, and glutathione per-

oxidase 4 (GPX4) is an antioxidant enzyme reported as a critical inhibitor of ferroptosis. In

LPS-induced mice, GPX4 level decreased drastically (p = 0.0002) and could be salvaged by

VK2 pretreatment in high dose (p = 0.0052) but not positive drug DEX (Fig 4D and 4E).

Moreover, we found that LPS induction led to a mild elevation of heme oxygenase-1 (HO-1, a

stress response protein), while VK2 pretreatment in high dose restored the situation to normal

Fig 3. VK2 inhibits apoptosis in LPS-induced ALI. (A) The protein expression levels of Caspase-3 and Bcl-2 were evaluated by western blotting. (B, C)

Quantitative analysis of Caspase-3 and Bcl-2 normalized with GAPDH were performed using Image J software. Values represent means ± SEM, *p< 0.05 and

**p< 0.01.

https://doi.org/10.1371/journal.pone.0294763.g003

Fig 4. Role of VK2 in ferroptosis during LPS-mediated injury. (A) GSH, (B) MDA, and (C) Total iron levels in lung tissues. (D) GPX4 and HO-1 protein

expression were measured by western blotting. (E, F) Quantitative analysis of GPX4 and HO-1 normalized with GAPDH were performed using Image J

software. Values represent means ± SEM, *p< 0.05, **p< 0.01, ***p< 0.001 and ****p< 0.0001.

https://doi.org/10.1371/journal.pone.0294763.g004
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(Fig 4D and 4F). Collectively, these results indicated that VK2 was capable of repressing fer-

roptosis in LPS-induced ALI while DEX was not.

VK2 inhibits LPS-induced lung elastin degradation

Elastin degradation is implicated in the pathology of ALI [22] and is partially regulated by

Matrix Gla Protein (MGP), via a vitamin K-dependent pathway [23]. To evaluate the effect of

VK2 pretreatment on LPS-induced lung elastin degradation, the level of uncarboxylated MGP

(uc-MGP) and DES (an elastin-specific degradation product) were measured (Fig 5). It was

found that LPS stimulation significantly increased uc-MGP level (p = 0.0066, Fig 5A), while

VK2 intervention, especially in high dose, reversed this situation and reduced serum uc-MGP

level (p = 0.0053, Fig 5A). However, it is interested that the positive drug DEX could not

decrease the serum level of uc-MGP after LPS induction. Moreover, we found that DES level

increased drastically in LPS-induced mice (p = 0.0151) and could be decreased by VK2 pre-

treatment in high dose (p = 0.0044) an also positive drug DEX (p = 0.0026, Fig 5B). The above

results indicated that VK2 may alleviate lung injury by inhibiting LPS-induced the pulmonary

elastin degradation through carboxlation of MGP.

Discussion

A recent study reported serum VK2 (MK7) in patients with Coronavirus Disease 2019

(COVID-19) was very low compared with non-COVID-19 pneumonia and healthy controls

[24]. So does VK2 have a role in prevention and treatment of LPS-induced ALI? Based on our

experiment, VK2 could improve LPS-induced ALI. We determined the VK2 intervention dose

for this experiment based on previous studies [18, 19, 25] and on the range of recommended

VK2 intakes in each country [26, 27].

The inflammatory response is an important defense mechanism induced in the host in

response to injury, infection or stimulation [28]. Under LPS induction, the levels of proinflam-

matory cytokines, including interferons (IFNs), tumor necrosis factors (TNFs), interleukins

(ILs), and chemokines [29] were significantly higher than the control group, and the infiltra-

tion of inflammatory cells in lung tissue was upregulated as well, which was consistent with

Fig 5. VK2 alleviates LPS-induced lung elastin degradation. (A) uc-MGP levels in serum. (B) DES levels in lung tissues. Values

represent means ± SEM, *p< 0.05 and **p< 0.01.

https://doi.org/10.1371/journal.pone.0294763.g005
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our results. However, VK2 pretreatment significantly improved these phenomena and gradu-

ally returned to normal levels. VK2 has been investigated as a potential anti-inflammatory and

protective drug in several inflammatory diseases including type 2 diabetes mellitus (T2DM)

[16], inflammatory bowel disease (IBD) [25], atherosclerosis [30], rheumatoid arthritis (RA)

[31], and neurodegenerative diseases, especially Parkinson’s and Alzheimer’s disease [32, 33].

Mitogen-activated protein kinases (MAPKs) are a class of serine/threonine protein kinases

in cells, which mediate cellular responses to extracellular stimulations, including growth fac-

tors, cytokines, hormones, neurotransmitters, cellular stress, and cell adherence [34]. Activa-

tion of the MAPK signaling pathway is also involved in the occurrence of inflammation in

LPS-induced ALI [35]. Further researches suggested that the P38 MAPK pathway played a cru-

cial role in LPS-stimulated inflammatory response and macrophage activation [36]. In this

study, we found that in the LPS model group, VK2 significantly reduced the proportion of p-

P38/P38, thus reducing the expression of inflammatory cytokines IL-6 and iNOS. Therefore,

these data suggested that VK2 might alleviate inflammation by inhibiting the activation of the

P38 MAPK pathway.

Apoptosis is the process of programmed cell death that occurs under normal physiological

or pathological conditions [37]. Excessive apoptosis plays an important role in the develop-

ment of ALI [38, 39]. LPS can promote increased cell apoptosis by triggering inflammatory

responses [40]. Bcl-2 controls the cell proliferation or apoptosis through inhibiting cell apopto-

sis and the activation of downstream Caspase-3 proteases [41]. The results of this study indi-

cated that VK2 exerted its protective effect on ALI through the upregulation of Bcl-2 and

downregulation of Caspase-3 in LPS-induced ALI. Indeed, VK2 administration has been

reported to exert anti-apoptotic and anti-inflammatory effects [18, 42]. Furthermore, P38

MAPK pathway has been evidenced to mediate apoptosis [43]. Studies have shown that phos-

phorylated P38 MAPK can activate caspase-3 and promote apoptosis by downregulating Bcl-2

[44–46]. Thereby, VK2 reduced lung cell apoptosis by inhibiting LPS-induced activation of

P38 MAPK.

Recent studies have found that ferroptosis also has a crucial function in the progression of

ALI, and its inhibition is effective in alleviating ALI [47–50]. Ferroptosis is a unique iron-

dependent lipid-peroxidation, which is different from traditional necrosis, apoptosis, autop-

hagy, or other forms of cell death [51]. It is mainly characterized by the accumulation of free

iron, drastic lipid peroxidation, and ROS production [52]. According to the occurrence pro-

cess of ferroptosis, various key factors including GSH, MDA, iron, and GPX4 are often used to

comprehensively evaluate lipid peroxidation and ferroptosis [53]. In this study, we also found

significant ferroptosis in LPS-induced ALI, characterized by increased MDA and iron levels,

and reduced GSH and GPX4 levels. After VK2 administration, the accumulations of MDA

and iron were significantly reduced while the expression of GPX4 was obviously increased,

suggesting that VK2 could inhibit the LPS-induced ferroptosis. Heme oxygenase 1 protein

(HO-1), an important stress response protein highly expressed in lungs, is encoded by

HMOX1 gene and decomposes heme into iron, carbon monoxide (CO), biliverdin, and biliru-

bin, which is essential in the balance of intracellular iron and ROS [54]. HO-1-deficient mice

exhibit high oxidative damage, tissue injury, and chronic inflammation, as well as hepatic and

renal iron accumulation [55]. However, HO-1 has not only beneficial role to protect against

oxidative stress but also detrimental role to promote ROS generation by releasing free ferrous

iron and subsequent expression of ferritin [56–59]. Moreover, HO-1-induced ferroptosis may

be related to the reduction of free iron-binding ability of ferritin induced by oxidative stress,

such as iron accumulation and lipid peroxidation [60]. In this study, we found that administra-

tion of VK2 effectively inhibited LPS-induced elevation of HO-1. According to these data, it
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can be inferred that the protective effect of VK2 on LPS-induced lung injury might be related

to ferroptosis.

Elastic fibers are important components of the extracellular matrix of dynamic tissue, con-

ferring resilience of the lungs and arteries, subsequently promoting breathing and circulation

[61]. DES is formed during the crosslinking process of nourishing layer-elastin polymers,

which is a product of elastin degradation, releasing into the blood after elastic fibers degrada-

tion [62]. MGP has an important role in elastic fibers degradation and requires VK for its acti-

vation [63]. Uncarboxylated MGP (uc-MGP) is a biomarker of the VK status in the body, and

high level of uc-MGP reflect the low vitamin K status [64]. In current study, we found that uc-

MGP concentration was significantly increased by LPS, while after VK2 pretreatment, it was

significantly decreased, which was consistent with the results of DES. These results suggested

that VK2 supplementation could carboxylate uc-MGP into MGP, effectively preventing the

degradation of elastic fibers and protecting the lungs.

In summary, the findings of the current study suggest that VK2 effectively protects against

ALI caused by LPS through suppression of P38 MAPK signaling pathway and ferroptosis as

depicted in Fig 6. Our work suggested that VK2 supplementation might be a cheap and effec-

tive intervention or prevention measures against serious courses of ALI. Nevertheless, despite

widespread adoption, the LPS-induced ALI model may not entirely encompass the complexity

and heterogeneity of human ALI. It is essential to bolster animal studies with clinical research

and validation. In the future, we will carry out relevant in-depth work to solve this problem.

Supporting information
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Fig 6. Schematic representation of VK2 action on LPS-induced ALI.

https://doi.org/10.1371/journal.pone.0294763.g006
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