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Abstract

In recent years, with the development of deep learning technology, deep neural networks

have been widely used in the field of medical image segmentation. U-shaped Network(U-

Net) is a segmentation network proposed for medical images based on full-convolution and

is gradually becoming the most commonly used segmentation architecture in the medical

field. The encoder of U-Net is mainly used to capture the context information in the image,

which plays an important role in the performance of the semantic segmentation algorithm.

However, it is unstable for U-Net with simple skip connection to perform unstably in global

multi-scale modelling, and it is prone to semantic gaps in feature fusion. Inspired by this, in

this work, we propose a Deep Tensor Low Rank Channel Cross Fusion Neural Network

(DTLR-CS) to replace the simple skip connection in U-Net. To avoid space compression

and to solve the high rank problem, we designed a tensor low-ranking module to generate a

large number of low-rank tensors containing context features. To reduce semantic differ-

ences, we introduced a cross-fusion connection module, which consists of a channel cross-

fusion sub-module and a feature connection sub-module. Based on the proposed network,

experiments have shown that our network has accurate cell segmentation performance.

Introduction

The two most used methods in assisted human reproduction today are artificial insemination

(AI) [1, 2] and in vitro fertilization-embryo transfer (IVF-ET) [3, 4]. Artificial insemination is

a reproductive technique that uses scientific techniques to implant the removed sperm into the

uterus to achieve conception. However [5], its limitation is the uncontrollability after implan-

tation into the mother. Therefore, with the advancement of technology, IVF-ET is created to

assist human reproduction. IVF-ET is a technique in which the removed ovum and sperm are

medically combined outside the body to form a germ cell, which is then developed into an

embryo and implanted into the uterus for conception [6]. It offers help to infertility patients

because of its technical integrity and high success rate, but it may also cause some pregnancy

complications [7]. To reduce complications, advances in assisted human reproduction
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technology can be aided by cell image segmentation techniques [8] that detect germ cells as

they are being formed. Cell segmentation [9] is the process of separating distinct sections of

cell pictures based on attributes including texture, color, grayscale, and geometry. In one

region, the aforementioned characteristics will be consistent or similar. However, in other

regions, they will differ greatly. Numerous techniques, such as threshold segmentation [10],

region expanding method [11], watershed algorithm [12], active contour segmentation [13],

and deep learning-based algorithms [14], have been proposed in the extensive research on cell

segmentation. Below is a description of a few of the most popular segmentation algorithms.

The Ostu [15], entropy [16], p-tile [17], and minimum error approaches are just a few

examples of the many techniques available for choosing thresholds. The fundamental idea of

the threshold [18] segmentation method is to categorize pixel data by setting distinct thresh-

olds. Because of its straightforward implementation procedure and minimal computational

effort, this method is frequently utilized in the first segmentation of blood cells. The theory of

topological mathematical morphology serves as the foundation for the segmentation approach

known as the watershed method [19]. The main idea is to think of the image as a topological

landform in geodesy, where the gray value of each pixel corresponds to the elevation of a

point. Uneven distribution of cell adhesion frequently occurs during the cell segmentation

process, and the watershed technique is effective at resolving this issue. To prevent over-seg-

mentation, it is typically essential to pre-process the image and combine sections. This is

because when the watershed algorithm is used for image segmentation, it is simple to over-seg-

ment the image and the method is more sensitive to noise. Song et al. [20] proposed an image

segmentation technique combining a watershed algorithm with a fuzzy C-mean clustering

approach, and they ran tests on 39 images of three different histological kinds. The issue of

overlapping cell pictures can also be effectively resolved by the active contour line model in

addition to the watershed technique. In order to solve the issue of multiple objects overlapping,

Ali et al. [21] proposed an active contour line model based on boundary and region informa-

tion. However, due to the nonconvexity of the model, the model was sensitive to the initial

position choice and may experience local extra or even divergence during the training process.

With the advent of deep neural networks, this technique has made great progress in the

field of computer vision [22]. Deep neural networks have so far improved the detection and

segmentation of cell pictures. As the pioneer of convolutional neural networks (CNN) [23] in

image segmentation tasks, the full convolutional network (FCN) [24] lays the foundation of

CNN in image segmentation. Similar to the FCN, U-Net [25] was proposed to solve the seg-

mentation problem of medical images, which contains an encoding-decoding layer structure

as well as a jump connection layer structure. In order to help with the supervision of correct

cell segmentation, Chen et al. [26] suggested a deep contour-aware network with a multi-task

learning framework. Regularization was applied to the network training process to further

enhance the network’s discriminative power. The nucleus and cell boundaries were separated

using a deep neural network and a region-growing technique by Kumar et al [27]. To separate

the nucleus from the background, Naylor et al. [28] employed a deep neural network. The pro-

jected probability map was then post-processed using a watershed technique. Cui et al. [29]

created the FCN to predict cell nuclei and cell boundary information simultaneously. They

then post-processed the segmented cell nuclei images by dividing a single image into multiple

image blocks during the prediction process and then stitching them together. This method

accurately segments a 1000 × 1000 size cell image in 5 seconds. In order to accurately segment

overlapping nuclei, Simon et al. [30] developed a new CNN for segmenting cell nuclei. They

started by measuring the distance between each nucleus boundary and the center. Kowal et al.

[31] proposed a method combining the CNN and watershed transform to segment breast can-

cer cells. They used a CNN to semantically segment the pre-processed cell images and then
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tried to separate the nuclei using the watershed segmentation method. Although all of the

aforementioned techniques have produced improved outcomes, they all have certain draw-

backs. These techniques don’t pay attention to global information throughout the image seg-

mentation process and solely concentrate on local semantic information, which makes it

difficult to accurately segment cells.

In order to sufficiently reduce the semantic differences between codec features, we abandon

the use of the skip connection in the U-Net structure and instead design a new module to

replace it. Specifically, on the one hand, we propose a channel-based cross-fusion sub-module

that cross-fuses contextual features from the dimension of channels. This module fuses the

output features from different layers of encoders to achieve an adaptive scheme for reducing

semantic differences through collaborative learning rather than independent connections. On

the other hand, we present the feature connection sub-module for connecting the fused fea-

tures of the encoder with the features of the decoder. To solve the above problem in construct-

ing contextual information, we put forward with a tensor generation module to generate a

low-rank tensor and apply it to the connection of the encoder and decoder. The basic idea is

that the tensor generation module generates low-rank tensors in each of the three dimensions,

feeds them into the channel cross-fusion sub-module for feature fusion, and finally sums their

three-dimensional features. We embed the above two modules into the U-Net network. Our

main contributions to this paper are presented as follows:

• We fuse contextual features with a cross-fusion sub-module in the channel dimension,

which achieves semantic discrepancy reduction by fusing the output features of different

layer encoders through collaborative learning rather than independent connections.

• To solve the problem of insufficient channel attention information when constructing con-

textual information, a low-rank tensor generation module is proposed and applied to the

connection of the encoder and decoder. The three-dimensional low-rank tensor is generated

separately by the tensor generation module and input to the channel cross-fusion sub-mod-

ule for feature fusion, respectively.

• Extensive experimental analyses based on the dataset are conducted to evaluate the perfor-

mance of the proposed framework against the benchmark consisting of state-of-the-art cell

segmentation approaches.

The rest of the paper is organized as follows: Section II presents a review of U-Net, tensor

low ranking, and transformer. Section III shows the model of our proposed algorithm and the

specific structure of each sub-module. Section IV presents extensive experimental simulations,

as well as a detailed discussion of the results. Finally, Section V draws conclusions.

Related work

U-Net

U-Net [25], which was initially proposed to address the cell wall segmentation problem, is one

of the earliest and most well-known techniques for segmenting medical images. U-Net is a

fully symmetric U-shaped structure that can be separated into two halves. The first section

uses a normal CNN architecture to represent a systolic path. A ReLU activation unit, a maxi-

mum pooling layer, and two consecutive 3 × 3 convolutions make up each block of the systolic

path. The uniqueness of U-Net lies in his extended path, where feature maps are upsampled

using 2 × 2 convolution at each level before being cropped and stitched to the upsampled fea-

ture maps from the corresponding layers in the shrinkage path. An additional 1 × 1 convolu-

tion is used to decrease the feature map to the required number of channels and create the
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segmented image after two consecutive 3 × 3 convolutions and ReLU activations. In addition,

pixel features with little contextual information at their boundaries must be removed, necessi-

tating network cropping of the feature map. More significantly, it disseminates contextual

information throughout the network, enabling it to use context to separate items from more

extensive overlapping regions. The energy function of U-Net is given by the following equa-

tion:

E ¼
P

wðxÞ log ðpkðxÞðxÞÞ ð1Þ

pkðxÞ ¼
eakðxÞ

Pk
k¼1

eakðxÞ
ð2Þ

where pk denotes the softmax function, which is applied to the output feature map of the net-

work, and ak(x) denotes the activation function in the kth channel.

Compared with FCN, U-Net creatively implements one-to-one correspondence between

the encoder module and decoder module, passes the low-level feature map to the high-level

feature map part through the skip connection (SC) structure. It fuses the low-level feature map

with the high-level feature map for processing, and these operations help U-Net achieve excel-

lent performance in the field of medical image segmentation. However, U-Net has some obvi-

ous flaws. A simple fusion method of splicing the lower-level information with the higher-level

information does not fully consider the association between the lower-level information and

the higher-level information.

Low rank and tensor

Due to image redundancy and self-similarity, there are frequently many regular geometric tex-

tures and detailed structural features locally, causing the image matrix to exhibit local low-

rank properties [32]. The matrix rank minimization has a strong global constraint and can

accurately depict two-dimensional sparsity [33]. However, as modern information technology

has advanced, the acquired high-dimensional data have more complex structures, such as

color images, video sequences, HSI and MRI data, and so on. Traditional data representations

(vectors or matrices) are incapable of accurately capturing the essential structure of these data.

Tensor [34] can better express the complex essential structure of higher-order data as a higher-

order extension of vector (first order) and matrix (second order) representations (data greater

than or equal to third order is called higher-order data). Tensor, as a high-dimensional exten-

sion of the matrix, provides an efficient way to represent the structural properties of higher-

order data. There is no consensus on the most appropriate definition of tensor rank, so it is

common practice to design convex or non-convex alternative optimization schemes based on

different definitions.

Transformer

Following the introduction of transformer in recent research for visual identification tasks to

model remote dependencies, numerous transformer variants, including Swin-Transformer

[35], DieT [36], and TiT [37], have shown remarkable success in natural image recognition

tasks. Using the powerful representation capability of transformer, several works have

attempted to replace or combine CNNs to achieve better results for medical image segmenta-

tion. The transformer is an attention-based model that was previously designed for sequence

prediction [38]. The key component of transformer, self-attention (SA), models the correlation

between all input tokens, allowing the Transformer to handle dependencies over time.
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Although some of these works have produced satisfactory results, they typically rely on large-

scale pre-training, making the use of these methods inconvenient [39, 40].

Materials and methods

Overview

The most used segmentation design in the medical industry is the U-Net network. The contex-

tual information in the image is primarily captured by the encoder component of the U-Net

network, which is crucial to the efficiency of the semantic segmentation method. Due to the

diversity of the contextual information, the features must be represented by a tensor of high

rank, which necessitates the use of numerous parameters, which can be quite expensive. We

can extract contextual information using a tensor low-ranking module, which is inspired by

tensor decomposition theory. The features produced by our encoder will be transmitted to a

decoder at a higher tier than the original network when this module is used in a skip connec-

tion of a U-Net network. We do away with the straightforward skip connection and design a

new cross-fusion connection module to cross-fuse the encoder features with the connected

codec features, thereby reducing the differences between encoder and decoder features because

jump connections are not always effective and sometimes even have negative effects, which we

analyze are due to the differences between encoder and decoder features. A channel cross-

fusion sub-module and a feature connection sub-module make up our cross-fusion connec-

tion module. Fig 1 shows the structure of our proposed DTLR-CS network.

Tensor low ranking module

The output of the context fragments, which are made up of vectors of rank 1 in the three direc-

tions of height, breadth, and channel, is the goal of our tensor low-ranking module. Therefore,

in order to extract the context information in the three directions, we need three feature

Fig 1. The structure of our proposed network. The original skip connection is replaced by a cross-fusion connection module

after tensor low-ranking, which consists of a channel cross-fusion sub-module and a feature connection sub-module.

https://doi.org/10.1371/journal.pone.0294727.g001
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extractors. A pooling layer, a convolutional layer, and an activation function make up our fea-

ture extractor. Our feature generator uses global average pooling as a means of obtaining con-

textual information because it is effective. These outputs must be nonlinear in order for each

to reflect distinct information. In order to meet the requirements of attention, we employ the

Sigmoid function, which rescales the features that pass through the convolutional layer into

the range [0, 1]. We obtain 3L vectors of rank 1 by putting the input features through L differ-

ent height feature generators, width feature generators, and channel feature generators, respec-

tively. A component of the context fragment is present in each of these vectors. Fig 2 shows the

structure of the tensor low-ranking module.

Channel cross-fusion module

We suggest a three-step channel cross-fusion sub-module that combines contextual feature

embedding, channel cross-fusion attention, and perceptron to solve the instability of skip con-

nections. Fig 3 shows the structure of the channel cross-fusion. Incorporating contextual fea-

tures. We first want to process these characteristics of distinct encoder layers by reconstructing

them as patches sizes Ps, PS2 ,
PS
4

, and
PS
8

for the output Ed,i(d = height, width, channel, i = 1, 2, 3,

4) of the tensor low-ranking module of four separate encoder layers. The goal is to make it pos-

sible for these features to map to the same cluster of features with low rankings on four scales.

After that, d will separate these Td,i and Td;
P

i
attributes into three categories.

The channel cross-attention sub-module then receives inputs from the Td,i and Td;
P

i
, fol-

lowed by a perceptron. The structure of the channel cross-attention sub-module is shown in

Fig 4. It has 5 inputs, including Td,i and Td;
P

i
. The outcome Oi can be described as follow:

Oi ¼
X

d

ðNCAd;i þ LPðQd;i þ NCAd;iÞÞ ð3Þ

The goal of this summing process, where LP is the perceptron, is to retrieve the high-rank

tensor together with the low-rank tensor, and NCAd,i can be written as:

NCAd;i ¼ ðCA1
d;i þ CA2

d;i þ � � � þ CAd;i
2Þ=N ð4Þ

where N stands for the quantity of channel cross-notice submodules, and CAd,i is represented

Fig 2. The structure of the tensor low-ranking module. This module consists of three parts: height feature generator,

width feature generator, and channel feature generator.

https://doi.org/10.1371/journal.pone.0294727.g002
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Fig 3. The structure of the channel cross-fusion sub-module. It consists of contextual feature embedding, channel

cross-fusion attention, and perceptron.

https://doi.org/10.1371/journal.pone.0294727.g003

Fig 4. Channel cross-fusion attention sub-module.

https://doi.org/10.1371/journal.pone.0294727.g004
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by:

CAd;i ¼ s φ
Qd;i

TKd
ffiffiffiffiffiffiffiffiffi
Td;Si

p

 !" #

VT
d ð5Þ

where φ(�) and σ(�) denote the normalization operation and the activation function, respec-

tively, and Qd,i, Kd, and Vd can be expressed as:

Qd;i ¼ Td;iWd;Q

Kd ¼ Td;SiWd;K

Vd ¼ Td;SiWd;V

ð6Þ

where Td,i and Td;
P

i
are the characteristics we provide into the channel cross-attention sub-

module, and Wd,Q, Wd,K, and Wd,V are the weights of the various inputs. In the derivation

above, we simplified things by leaving out the normalizing layer from the equation.

Feature connection module

In order to address the issue of incompatibility between the shallow feature set output from

the encoder and the feature set output from the decoder, we create a feature connection sub-

module to connect the fused features of the encoder and the decoder. Fig 5 shows the structure

of feature connection sub-module. Prior to feature concatenation, the output Oi of the channel

cross-fusion sub-module must undergo upsampling and convolutional layer procedures. As

the inputs for the feature concatenation sub-module, we use the computed oi and the decoder

layer i feature Di. Then we conduct global average pooling on the computed Oi and Di, and

input them to the two linear layers. By adding the two linear layer outputs, we connect Oi and

Di, and then combine the total of those results with the computed oi to get the connected

features.

Loss fuction

The weighted cross-entropy (WCE) loss and the dice loss are the two halves of the loss func-

tion that we use in our method. Cross-entropy is frequently employed in classification tasks,

and as image segmentation is a pixel-level classification, it frequently produces good results.

Fig 5. Feature connection sub-module.

https://doi.org/10.1371/journal.pone.0294727.g005
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The cross-entropy loss function is effective for the majority of semantic segmentation scenar-

ios, but for tasks like cell segmentation where only two cases: foreground and background. It

need to be separated and the number of foreground pixels is significantly less than the number

of background pixels, the model may be heavily biased toward the background, leading to sub-

par segmentation outcomes. To address the issue of class imbalance, the weighted cross-

entropy loss function augments the cross-entropy loss function with a weight parameter for

positive examples of each class. The following equation can be used to express the weighted

cross-entropy:

WCEðp; p̂Þ ¼ � ðbp log ðp̂Þ þ ð1 � pÞ log ð1 � p̂ÞÞ ð7Þ

Dice loss has been frequently employed in medical picture segmentation problems since it

was initially presented in the article VNet [41]. The dice coefficient, which is frequently

employed to determine how similar two collections are, serves as the foundation for dice loss

and may be written as follows:

s ¼
2 j X \ Y j
j X j þ j Y j

ð8Þ

where jX \ Yj is the point at which sets X and Y intersect. jXj and jYj stand for the number of

elements in sets X and Y, respectively. Because the denominator is used more than once to

determine the common elements between X and Y, the numerator coefficient is 2. The follow-

ing equation can be used to describe dice loss:

Dice ¼ 1 �
2 j X \ Y j
j X j þ j Y j

ð9Þ

where X and Y can denote the labeled image and the original image, respectively. Dice Loss is

applicable to the case of extremely unbalanced class distribution, and is therefore suitable for

segmentation of cellular images. The loss function of our method can be expressed as follows:

L ¼ a �WCEþ ð1 � aÞ � Dice ð10Þ

Experiment

Datasets

The dataset used in this paper is a self-constructed dataset, utilizing reproductive cell images

from the Reproductive Medicine Center of Zhongda Hospital affiliated with Southeast Univer-

sity in 2018 to train and evaluate our method. The germ cells that we selected are taken from

infertile patients who underwent in vitro fertilization and embryo transfer. The number of

ovum obtained is usually greater than or equal to eight, without limiting the cause of infertility

or age. The equipment we have used is the Timelapse incubator by ASTEC in Japan and the

model that we choose is the CCM-iBIS.

In order to ensure the credibility and effectiveness of the study, we have introduced certain

data restrictions during the process of data collection. Firstly, the dataset exclusively comprises

2018 germ cell images, maintaining a consistent timeframe to reduce potential variations due

to changes in practices, equipment, or patient demographics. Secondly, the dataset encom-

passes diverse germ cells without restricting the cause of infertility or patient age, capturing a

wide range of real-world scenarios to enhance result generalizability and representativeness.

Furthermore, a significant data limitation involves the minimum ovum count per patient,
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specifically cases with eight or more ovum acquired. This stipulation ensures comprehensive

germ cell development views per data point, reducing outlier impact and enhancing statistical

analysis robustness. These restrictions establish a well-defined scope for the study, facilitating

a focused and comprehensive analysis of germ cell behavior and development within the con-

text of infertility and IVF procedures.

Implementation and processing time

We use a 48 GB RAM NVIDIA A40 GPU card to implement our model in PyTorch [42]. To

prevent over-fitting, we use flipping for data enhancement. We train all our models for 40

epochs on 1 GPU with a batch size of 4, and our initial learning rate is set to 0.001. We use the

Adam optimiser to optimise our network. The Adam optimiser is simple to implement and

computationally efficient. In addition, the update of the parameters using the Adam optimiser

is not affected by the scaling transformation of the gradient, while the learning rate can be

automatically adjusted, making it suitable for scenarios with large scale data and parameters.

Training the model with the Deep Tensor Low Rank Channel Cross Fusion Neural Network

took the shortest run time with the lowest trainable number of parameters improvement in the

model performance.

Compared methods

In order to analyze the overall performance of our method, we compare it with other advanced

algorithms. We compare our method with U-Net, UNet++, Attention U-Net and TransUNet-

based Transformer, whose original settings we used in our experiments.

• U-Net [25]. U-Net is a symmetrical encoder-decoder structure that incorporates a jump con-

nection between the encoder and decoder, allowing the network to better fuse features at dif-

ferent scales. U-Net has the advantage of being flexible and simple and can achieve good

segmentation results with relatively small sample datasets. Therefore, U-Net has been widely

used in medical image segmentation.

• UNet++ [43]. UNet++ is a variant of the U-Net network. Unlike U-Net networks where

encoders and decoders are simply connected, a series of nested and dense jump connections

narrow the information gap between coders and decoders in UNet++ networks. The net-

work enable the richer fusion of low-dimensional information with higher-dimensional

information, and thus extracting the hidden information of the original samples more effec-

tively. By redesigning the jump connection structure, UNet++ model incorporate a dense

connection strategy into the traditional U-Net network framework.

• Attention U-Net [44]. Attention U-Net uses a spatial domain-based attention mechanism to

improve the performance of U-Net networks. Attention U-Net incorporates an attention

module in the encoder and decoder. The addition of the attention mechanism to the encoder

and decoder allows for more targeted segmentation of images. Attention U-Net can help

U-Net to learn the interrelationships between multiple content modalities and represent

these information better.

• TransUNet [45]. TransUNet is the first U-Net to apply the transformer to medical image seg-

mentation. TransUNet serializes the down-sampled images directly from the encoder and

applies them to the original transformer module in NLP for training.
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Evaluation metrics

To evaluate the effectiveness of the algorithm, this paper used Dice, mean intersection over

union (MIoU), precision, and recall as evaluation metrics.

• Dice [46]. The dice similarity coefficient (DSC) is used as the evaluation criterion for the seg-

mentation process. Dice is an aggregated similarity metric. The metric is usually used to cal-

culate the similarity of two samples, with values ranging from 0 to 1, with the best

segmentation result being 1 and the worst being 0. The formula for calculating Dice is as fol-

lows:

Dice ¼
2TP

2TPþ FPþ FN
ð11Þ

• MIoU [47]. Mean Intersection over Union (MIoU) as a standard metric for semantic seg-

mentation. MIoU is used to calculate the ratio of the intersection and concatenation of the

predicted and true results of the network, and then find the average value. The calculation

formula is as follows:

MIoU ¼
TP

TPþ FPþ FN
ð12Þ

• Precision [48]. Precision is a metric widely used in the field of information retrieval and sta-

tistical classification. The metric represents the ratio of samples predicted to be correct to

those predicted to be correct and is used to assess the quality of the results:

Precision ¼
TP

TP þ FP
ð13Þ

• Recall [49]. Recall is the ratio of samples predicted to be correct to the number of positive

samples in the sample. The metric is also used to evaluate the quality of the results. The cal-

culation follows:

Recall ¼
TP

TP þ FN
ð14Þ

where TP denotes the number of pixels predicted to be correctly classified as a target class,

the number of predicted pixel sites that are incorrectly classified as a target category is referred

to as FP, the number of predicted pixel points incorrectly classified as a non-target category is

referred to as FN.

Results and discussion

Quantitative analysis

Fig 6 presents the results of cell segmentation using the method proposed in this paper. As can

be seen from Fig 6, the method is able to accurately separate the cells from the background,

achieving better results during the cell segmentation test.
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From Fig 7, we can see that as the number of training rounds increased, the precision con-

tinued to rise and then remained flat. At the same time, the loss rate continued to decrease,

and then the curve showed small fluctuations before finally levelling off. As a result, our

method has achieved good performance in image segmentation.

Fig 8 shows the Dice, MIoU, precision, and recall metrics of our method. After 40 rounds

of epoch, the Dice metric is 98.58%, the MIoU metric is 97.23%, the precision metric is

98.47%, and the recall metric is 98.69%. This shows that our model achieves relatively accurate

results for cell image segmentation. In order to analyse the overall performance of our method,

we compared it with other algorithms. We compared our method with U-Net, UNet++, Atten-

tion U-Net and TransUNet. Table 1 showed the results of the comparison of Dice and MIoU

metrics between the different algorithms. As seen in Table 1, our method improved over the

Fig 6. Test results of the method.

https://doi.org/10.1371/journal.pone.0294727.g006

Fig 7. Precision metric results and curves and loss values for 40 epoch rounds and loss function transformation curves.

https://doi.org/10.1371/journal.pone.0294727.g007
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other methods in terms of Dice and MIoU evaluation metrics. The Dice and MIoU of the

method proposed in this paper are 98.58% and 97.23% respectively. Compared with the U-Net

method, our proposed method has the 6.24% performance improvement in Dice and a 4.42%

performance improvement in MIoU. Compared to the UNet++ method, the Dice of our

method improved by 5.51% and the MIoU improved by 7.01%. Attention U-Net and TransU-

Net achieved worse segmentation results with the same number of iterations. Therefore, the

method proposed in this paper has better segmentation performance.

Ablation study

In order to verify the effectiveness of the various modules in the proposed method, ablation

study is conducted and five different networks were trained for comparative analysis. We

choose U-Net as the first model because it is a common performance baseline for image seg-

mentation. The second model introduced the CCF module based on the first model to address

the instability of jump connections. The third model introduces the FC module based on the

first model to solve the problem of incompatibility between the shallow feature set output

from the encoder and the feature set output from the decoder. The fourth model adds the CCF

module and the FC module to the U-Net network together. The fifth model introduces the LR

module based on the fourth model, which is the model proposed in this paper. The above

models were trained separately and the results are shown in Table 2. As can be seen from

Table 2, compared to the traditional U-Net model, Dice and MIoU improve with the addition

of either model.

The channel cross-fusion module fuses the output features of different layers of encoders

and replaces independent connections with collaborative learning to reduce semantic differ-

ences, with a small improvement in the Dice metric. The feature connection module is used to

connect the fused features of the encoder to the features of the decoder. If the channel cross-

fusion module and the feature connection module are added, the Dice metric is improved rela-

tively significantly, indicating that better cell segmentation can be achieved. The purpose of

Fig 8. Performance metrics of the method.

https://doi.org/10.1371/journal.pone.0294727.g008

Table 1. Comparison of performance with other methods. Our method is compared with Unet, Unet++, Attention

Unet and TransUnet, respectively, and the best results are bolded.

Method Dice(%) MIoU(%)

U-Net 92.34 92.81

UNet++ 93.07 90.22

Attention U-Net 89.66 88.34

TransUNet 88.4 80.4

Our 98.58 97.23

https://doi.org/10.1371/journal.pone.0294727.t001
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the tensor low-ranking module is aimed to get context fragments that can be obtained in mul-

tiple dimensions of space and channels. It solves not only the previous problem of feature com-

pression but also the high-ranking difficulty. As shown in Table 2, both Dice and MIou

metrics are substantially improved when the channel cross-fusion module, the feature connec-

tion module and the tensor low ranking module are added to the U-Net network at the same

time, making this combination achieve the best performance. The proposed model has higher

segmentation accuracy when dealing with cases where the cell background boundary is not

obvious.

Conclusion

In this paper, we propose a segmentation model based on U-Net that can efficiently achieve

contextual information and reduce semantic differences, which obtains the contextual infor-

mation contained in the high-rank tensor by low-ranking the tensor. Then the model passes

the spatial information of the shallow layers to the decoder by fusing features from between

different layers of the encoder. Finally, it connects the encoder and decoder by a cross-fusion

connection module in order to recover the full spatial resolution. Experimental results show

that our method is more competitive than existing segmentation methods.
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5. Valiuškaitė V, Raudonis V, Maskeliūnas R, Damaševičius R, Krilavičius T. Deep learning based evalua-

tion of spermatozoid motility for artificial insemination. Sensors. 2020; 21(1):72. https://doi.org/10.3390/

s21010072 PMID: 33374461

6. Shen L, Xing L. Analyses of medical coping styles and related factors among female patients undergo-

ing in vitro fertilization and embryonic transfer. Plos one. 2020; 15(4):e0231033. https://doi.org/10.

1371/journal.pone.0231033 PMID: 32243479

7. Liu Y, Yu Z, Zhao S, Cheng L, Man Y, Gao X, et al. Oxidative stress markers in the follicular fluid of

patients with polycystic ovary syndrome correlate with a decrease in embryo quality. Journal of Assisted

Reproduction and Genetics. 2021; 38(2):471–477. https://doi.org/10.1007/s10815-020-02014-y PMID:

33216309

8. Vicar T, Balvan J, Jaros J, Jug F, Kolar R, Masarik M, et al. Cell segmentation methods for label-free

contrast microscopy: review and comprehensive comparison. BMC bioinformatics. 2019; 20(1):1–25.

https://doi.org/10.1186/s12859-019-2880-8 PMID: 31253078
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