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Abstract

Motivation

Our study aimed to identify biologically relevant transcription factors (TFs) that control the

expression of a set of co-expressed or co-regulated genes.

Results

We developed a fully automated pipeline, Motif Over Representation Analysis (MORA), to

detect enrichment of known TF binding motifs in any query sequences. MORA performed

better than or comparable to five other TF-prediction tools as evaluated using hundreds of

differentially expressed gene sets and ChIP-seq datasets derived from known TFs. Addi-

tionally, we developed EnsembleTFpredictor to harness the power of multiple TF-prediction

tools to provide a list of functional TFs ranked by prediction confidence. When applied to the

test datasets, EnsembleTFpredictor not only identified the target TF but also revealed many

TFs known to cooperate with the target TF in the corresponding biological systems. MORA

and EnsembleTFpredictor have been used in two publications, demonstrating their power in

guiding experimental design and in revealing novel biological insights.

1 Introduction

Transcriptional regulation of gene expression is a fundamental biological process. It allows an

organism to define cell identities during development, maintain normal tissue and cellular

functions throughout its lifetime, and respond to various environmental stimuli. Transcription

regulation is largely orchestrated by transcription factors (TFs) in collaboration with co-
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regulators and chromatin modifiers. TFs primarily regulate gene activity by binding to specific

short DNA sequences, termed transcription factor binding sites (TFBSs), or motifs, located in

the upstream, intron, or downstream regions of target genes. Mutations in TFs or TFBSs

underlie many human diseases, such as cancer and neurological/neurodegenerative disorders

[1, 2]. Understanding TF-mediated gene regulation can be instrumental in identifying the

underlying disease mechanisms and potential targets for therapeutic development. We will use

the term “transcription factor (TF)” specifically for proteins capable of binding DNA in a

sequence-specific manner and regulating transcription. Proteins that are involved in transcrip-

tion regulation but have no sequence binding specificity are referred to as “transcription regu-

lators (TRs)”. TRs exert their regulatory function by interacting with TFs, modified histone

protein tails, or methylated DNA sequences [3].

To understand how highly specific gene expression programs are orchestrated in complex

organisms, we first need to characterize the TFs and their cognate TFBSs, which together

determine the regulatory outputs of their target genes. The binding specificity of TFs is most

commonly modeled using position weight matrices (PWMs) [4]. PWMs can be derived from

aligning experimentally curated binding site sequences of a given TF, in vitro high-throughput

SELEX (HT-SELEX) [5] and protein-binding microarray (PBM) [6] analysis, or in vivo tech-

nologies such as Chromatin Immuno-Precipitation sequencing (ChIP-seq) and CUT&RUN

[7]. Typically, the identified DNA regions are long, and computational tools are required to

determine the PWMs of targeted TFs and their actual binding sequences. Many databases have

been created to provide the derived PWMs and their corresponding TFs, such as CIS-BP (cata-

log of inferred sequence binding preferences) [8], Factorbook [9], HOCOMOCO [10], JAS-

PAR [11], HT-SELEX [12, 13], UniPROBE (the Universal PBM Resource for Oligonucleotide

Binding Evaluation) [14], TRANSFAC [15], and HOMER [16]. CIS-BP is one of the most

comprehensive publicly available motif databases which includes PWMs from most of the

aforementioned databases [4]. PWMs can be used to scan any sequence to identify potential

binding sites of the corresponding TFs, although this often leads to high false positive predic-

tion rates due to the short (usually 6–20 bases) and degenerate nature of most TFBSs. How-

ever, the enrichment of TFBSs in a set of regulatory sequences has been proven useful in

predicting biologically relevant TFs involved in regulating the expression of target genes [17].

Many computational tools have been developed to predict TFs and/or TRs that regulate a

set of co-expressed or co-regulated genes. These tools can be classified largely into two catego-

ries based on the information they use to make predictions. The first category of tools per-

forms motif enrichment analysis by comparing the distribution of TFBSs in a set of regulatory

DNA regions to their distribution in a set of background sequences to determine the TFs with

over-represented TFBSs. Some widely used tools in this category include HOMER [16], oPOS-

SUM-3 [18], Pscan [19], and Analysis of Motif Enrichment (AME) [20]. The second family of

methods exploit experimentally determined protein-DNA binding profiles (such as histone

marks and TF binding ChIP-seq data) and open chromatin information, herein referred to as

(epi)genomic data, to identify candidate regulators. Example of tools in this category are the

Binding Analysis for Regulation of Transcription (BART) [21] and Landscape In Silico dele-

tion Analysis (Lisa) [22]. A common challenge faced by all these tools is how to prioritize can-

didate TFs for downstream biological mechanistic studies. Most tools predict hundreds of

candidate TFs/TRs but lack a good indicator of biological relevance to prioritize these candi-

dates since the ranking of candidates based on statistical significance does not necessarily

reflect their biological relevance.

In this study, we developed two tools: MORA, a novel motif enrichment analysis tool, and

EnsembleTFpredictor, an ensemble approach to provide a short-list of high-confidence candi-

date functional TFs by leveraging the predictive power of multiple TF-prediction tools. MORA
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utilizes CIS-BP, the most comprehensive motif PWM database currently available, and consid-

ers both motif density and motif abundance information to perform motif enrichment analy-

sis. We used hundreds of datasets, including differentially expressed genes (DEGs) and ChIP-

seq peaks regulated by known target TFs from human and mouse, to benchmark the perfor-

mance of MORA and multiple state-of-the-art prediction tools. MORA outperformed all

PWM-based tools (AME, HOMER, and Pscan) and was comparable to (epi)genomic-data-

based tools (BART2 and Lisa2). EnsembleTFpredictor integrates the results from different TF

enrichment tools to provide a list of candidate functional TFs ranked by prediction confidence.

To our knowledge, this is the first tool performing this type of integration. Literature search

and our experimental validation [23, 24] demonstrated that MORA and EnsembleTFpredictor

are highly effective in identifying functional TFs responding to a perturbation and unraveling

novel TFs that cooperate with each other to exert synchronized responses. Consequently,

MORA and EnsembleTFpredictor serve as easy and cost-effective hypothesis-generating tools

to broadly assess TF activity, yielding new biological insights. MORA is provided as a package

composed of Perl and R scripts or a container image that can be run on a high-performance

computing cluster or a single server independent of the computer operating system. Ensemble-

TFpredictor is provided as an R package and a web portal (https://github.com/GuoyanZhao-

Lab/EnsembleTFpredictor).

2 Materials and methods

2.1 MORA implementation

MORA takes a set of query and background sequences in the FASTA format as inputs to per-

form motif enrichment analysis (Fig 1). The query sequences can be genomic regions

upstream of user-defined gene sets (e.g., promoters) or putative DNA-regulatory regions

derived from any genomic or epigenomic assays (e.g., peaks from ChIP-seq, CUT&RUN). In

this context, we use the term “(epi)genomic data” to refer to both types of data. For gene-list

analysis, genomic sequences up to 5-kb upstream of the ATG start codon of the query genes

before reaching the next gene in the genome were retrieved and used as query sequences. The

same genomic regions of genes that were not differentially expressed were used as the back-

ground sequences. For ChIP-seq peak analysis, genomic regions complementary to the query

region were used as input to BEDTools [25] to generate random shuffled control sequence sets

with the same length distribution as the query sequences. MORA initially randomly samples

the background sequences to generate a set of sequences that have the same number and

length distribution as the query sequences (herein referred to as “the control sequence set”). A

user-specified number (NRandomSet) of control sequence sets is generated (100 by default).

Fig 1. Schematic of MORA workflow.

https://doi.org/10.1371/journal.pone.0294724.g001
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Given a PWM, the PATSER program [26, 27] is used to identify the putative binding sites in

each sequence using the default cutoff score appropriate for the motif as determined by the

probability of observing a subsequence of length L (L = length of the PWM) with a particular

score or greater. With the information obtained, MORA calculates the over-representation

index (ORI) using Formulas 1.1 and 1.2 [28, 29], comparing the query sequence set with each

control sequence set for each PWM in the CIS-BP database. The ORI reflects the increased

probability of finding a motif in the query sequence set compared to the control set, consider-

ing not only the number of motifs found in sequences but also the proportion of sequences in

which the motif is found (Formula 1.1). A higher ORI indicates a greater enrichment of the

motif in the query sequences compared to the control sequences, and an ORI higher than 1.2

was found to be effective in distinguishing enriched functional motifs [29]. A one-tailed Stu-

dent’s t-test implemented in the t.test function of the R stats package was used to test the null

hypothesis H0: μ> 1.2, where μ represents the mean of ORI. A PWM with a Bonferroni cor-

rected p-value below 0.05 was considered statistically significant. Only PWMs present in at

least 10% of query sequences were considered to represent biologically relevant TFBSs.

ORI ¼
Densityquery
Densitybg

�
Proportionquery

Proporitonbg
ð1:1Þ

ORI ¼
NumSitequery

TotalLengthquery
NumSitebg

TotalLengthbg

�

Nquery
TotalSeqquery

Nbg
TotalSeqbg

ð1:2Þ

NumSite query is the number of sites of motif i found in query sequences;

NumSite bg is the number of sites of motif i found in background sequences;

TotalLength query is the total length of query sequences;

TotalLength bg is the total length of background sequences;

N query is the number of query sequences where motif i is found;

N bg is the number of background sequences where motif i is found;

TotalSeq query is the total number of query sequences;

TotalSeq bg is the total number of background sequences.

MORA was implemented using the Perl and R programming languages. We provide

MORA in three formats, each with an easy-to-use command-line interface: a Docker container

image that is compatible with any computer operating system, a package designed for high-

performance computing clusters using SLURM as a job management tool, and a package tai-

lored for stand-alone Linux servers that supports multi-threading.

2.2 EnsembleTFpredictor implementation

Fig 2 depicts the workflow of EnsembleTFpredictor. The output files of MORA, BART2, and

LISA2 include the names of predicted TFs, which can be directly used for downstream analy-

sis. However, the output files of HOMER, AME, and Pscan have their own unique output for-

mats without a shared identifier among the other tools. In some cases, TF names were

embedded in database-specific identifiers or represented as dimers, which need to be pre-pro-

cessed to extract the names of the predicted TFs. TF names were converted to Ensembl gene

identifiers, which were used as standard names to ensure consistency across all tools. Ensem-

bleTFpredictor integrates prediction results from all tools and ranks TFs based on the total

number of tools predicting significant enrichment (Fig 2). EnsembleTFpredictor is provided

as an R package and an R Shiny web-based interface to allow users without coding skills to per-

form the analysis.
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2.3 CIS-BP database consolidation

CIS-BP 2.00 was downloaded from http://cisbp.ccbr.utoronto.ca. The database included 7704

PWMs for 1200 human TFs, 1158 PWMs for 938 mouse TFs, and 8 PWMs for 898 rat TFs.

Only directly determined PWMs were included in the analysis. PWMs satisfying the statement

"The maximum calculated p-value is less than the cutoff" as determined by PATSER were fil-

tered out because of the lack of discriminative power. PWMs were consolidated because there

is a many-to-many relationship between PWMs and TFs. For TFs with more than 3 PWMs,

the top 3 PWMs with the highest information content per nucleotide were selected for

Fig 2. Schematic of EnsembleTFpredictor workflow. Created with BioRender.com.

https://doi.org/10.1371/journal.pone.0294724.g002
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downstream analyses. If the top PWM has an information content per nucleotide below 0.5,

only the first PWM was selected for downstream analyses. The final consolidated high-quality

CIS-BP database included a total of 3116 PWMs representing 1165 unique TFs (human,

mouse, and rat genes with the same name were counted as one unique TF).

2.4 Benchmark datasets

To evaluate the performance of TF-prediction tools, we used two types of data where the iden-

tities of the functional TFs are known. The first type of data are published DEGs obtained

from experiments in which the expression of specific TFs was perturbed using knockdown,

knockout, overexpression, transgenic, or mutagenesis methods [22, 30]. This setting allows us

to assess whether the target TF can be correctly identified. A total of 60 sets of DEGs for

human (21 datasets) and mouse (39 dataset) were retrieved. First, gene names and gene expres-

sion fold changes for statistically significant DEGs reported in the publications were retrieved.

Pseudogenes were removed from the gene lists. Next, the DEGs were divided into upregulated

and downregulated gene sets. Genomic sequences up to 5,000 bp upstream of the ATG start

codon or up to the next gene were retrieved in FASTA file format. The second type of data are

TF ChIP-seq peaks downloaded from the ENCODE portal [31] (https://www.encodeproject.

org/). A total of 512 ChIP-seq peak datasets for 337 unique TFs generated from the K562

human myeloid leukemic cell line were downloaded. BEDTools [25] was used to retrieve geno-

mic sequences and generate random shuffled control sequence sets. Metadata for each dataset

were downloaded and used to obtain target TF information.

2.5 AME, HOMER, Pscan, BART2, and Lisa2 analyses

We used the web version of AME for the analysis, employing the same FASTA sequence files

used in the MORA analysis and the CIS-BP 2.00 database as the inputs. The “shuffled input

sequences” option was selected for the control sequence. The corresponding species was

selected, and the default settings were used for all other parameters. The reported adjusted p-

value (below 0.05) was used to determine statistically significant PWMs. For the HOMER anal-

ysis of a list of genes, the same FASTA sequence files used in the MORA analysis were used as

the query input. The upstream genomic sequences of all genes in the genome excluding the

query genes were used as the background sequence. For ChIP-seq data analysis, background

sequences were automatically selected by HOMER from the genome, matching for GC% con-

tent. A p-value of 0.1 or below was used as the statistical significance cutoff. The TF names

were extracted from the unique HOMER PWM identifiers and used to obtain ENSEMBLE

identifiers to link them to the TFs and TF family information in the CIS-BP database. The

RefSeq identifiers of the query genes were used as the input for the Pscan analysis. The default

-450 to +50 region in reference to the transcription start site of each gene was selected for all

analyses. Pscan offered the JASPAR and the public release of TRANSFAC database, and the

default Jaspar 2020_NR PWM database was selected for all analyses. The names of the 746 TFs

from the Pscan output file were used as identifiers to be linked to the TFs and TF family infor-

mation in the CIS-BP database. Dimers were manually separated to ensure the correct match-

ing of TF names and the PWMs. A p-value threshold of 0.05 was used for statistical

significance. A standalone local installation version of BART2 was used for all analyses. The

“geneset” option was used for lists of genes as the input, and the “region” option was used for

ChIP-seq peak input files. The appropriate species (human or mouse) was selected. The 7th col-

umn of the ChIP-seq file was used as the score by BART2 to rank the peaks. A standalone local

installation version of Lisa2 was used for the gene list analysis. The “FromGenes” interface of

Lisa2 only requires a list of genes as input, with a minimum number of 15 genes. It is
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recommended to use 50 to 500 genes as input since using a small number of genes will lower

the predictive power of chromatin profile modelling. The appropriate species (human or

mouse) was selected.

3 Results

3.1 MORA implementation and performance evaluation

MORA compares the distribution of TFBSs predicted in a set of query sequences to the distri-

bution in a set of background sequences to determine the TFBSs that are over-represented in

the query sequences (Fig 1). The over-representation index (ORI) for each PWM in the con-

solidated CIS-BP database was calculated, taking into account both the number of motifs

found in the sequences (motif density) and the proportion of sequences in which the motif is

found (Formulas 1.1, 1.2). This approach is distinct from most motif enrichment methods,

which assume either exactly one occurrence per sequence of the motif in the dataset (OOPS

model) or zero or one motif occurrences per sequence (ZOOPS model) [17, 32]. Neither of

these models considers the presence of clusters of the same motif in one sequence [17]. Homo-

typic clusters of TF binding sites (many adjacent TF binding sites for the same TF species) are

prevalent in eukaryotic genomes and play an important role in gene regulation in human and

other vertebrate genomes [33, 34]. A PWM with an ORI significantly higher than 1.2 is consid-

ered to be statistically enriched [29], and the corresponding TF represents the candidate regu-

lator of the query genes.

To systematically evaluate MORA, we compiled a benchmark panel of 60 DEG sets from 60

studies involving the knockdown, knockout, or overexpression of 15 unique target TFs in

humans and 35 unique target TFs in mice (S1 and S2 Tables in S1 Data). MORA was separately

applied to the upregulated and downregulated gene sets in each experiment because it has

been reported that most PWMs of TFs are significantly over-represented in either upregulated

or downregulated genes, but not in both [22, 30], which was also observed in the current study

(S3 and S4 Tables in S1 Data). Therefore, we considered a TF to be correctly predicted if the

PWM of the target TF was significantly enriched in at least one of the associated DEG sets. Pre-

diction sensitivities were measured at both the TF level (exact match of the target TF) and the

family level (if a TF within the same family as the target TF was predicted). In the human data,

16 out of 21 (76%) TFs were correctly predicted at the TF level, and all 21 (100%) TFs were cor-

rectly predicted at the family level (Fig 3A). In the mouse data, 72% (28/39) and 100% (39/39)

of the TFs were correctly predicted at the TF and family levels, respectively. The 100% sensitiv-

ity at the family level suggested that MORA was able to identify TFs within the same family as

the target TF, which tend to have similar binding specificities. Unfortunately, we were not able

to evaluate prediction specificity due to a lack of knowledge regarding TFs that do not regulate

the query genes.

3.2 Systematic performance comparison with previously published methods

Next, we compared MORA with multiple state-of-the-art TF-prediction tools (S5 Table in S1

Data), including both PWM-based tools (AME, HOMER, and Pscan) and (epi)genomic-data-

based prediction tools (BART2 and Lisa2), when using a set of genes as the input. MORA is

distinct from the other PWM-based tools in terms of motif enrichment measurements, TF

binding motif site representation and searching algorithms, background sequences used for

comparison, statistics tests, and PWM database (S5 Table in S1 Data).

For PWM-based tools, MORA outperformed AME, HOMER, and Pscan in terms of detec-

tion sensitivity. When using the same input sequence files and the same PWM database as in

the MORA analysis, AME showed a sensitivity of 24% (5/21) at the TF level and 62% (16/21)

PLOS ONE MORA and EnsembleTFpredictor: Tools for functional transcription factor regulatory networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0294724 November 30, 2023 7 / 20

https://doi.org/10.1371/journal.pone.0294724


Fig 3. Performance evaluation of MORA and other published computational tools on gene lists. (A) Sensitivity plot of target TFs for human and mouse gene list data

showing detection sensitivity of each method at both the TF and family level. (B-D) Ranked list of identified transcription regulators (TRs)/transcription factors (TFs) by

prediction confidence level using EnsembleTFPredictor. The TFs highlighted yellow are the target TFs. Red font indicates TFs that are known to interact with the target

TFs. (E) Violin plot showing the number of tools which correctly predicted the target TF from the gene list analyses for both human and mouse data. (F) TFs predicted by

at least 3, 4, or 5 tools were enriched for KEGG pathways.

https://doi.org/10.1371/journal.pone.0294724.g003
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at the family level for the human data (Fig 3A and S6 and S7 Tables in S1 Data). In the case

of the mouse data, 12/39 (30%) and 33/39 (82.5%) were correctly predicted at the TF and fam-

ily levels, respectively. HOMER uses its own PWM database, which includes 436 PWMs.

HOMER reports the p-values as 1e0, 1e-1, 1e-2, etc. and recommends the use of a very strict p-

value cutoff (e.g., 1e-10) to determine statistical significance. However, some target TFs were

correctly predicted at a less stringent p-value cutoff of 1e-1. Because the most commonly used

cutoff of p-value� 0.05 was not reported, we used a p-value� 0.1 as the statistical significance

cutoff in order to recover more correctly predicted TFs. With this revised criteria, 8/21 (38%)

and 17/21 (81%) were correctly predicted at the TF and family level respectively for the human

data (Fig 3A and S8 and S9 Tables in S1 Data). A sensitivity of 41% (16/39) and 72% (28/39)

were achieved at the TF and family levels, respectively, for the mouse dataset. Pscan differs

from other tools in that it requires a text file with RefSeq IDs as input, and a region determined

relative to the transcription start site (–450 +50 by default) of each gene is used in the analysis.

Because the CIS-BP 2.00 database was not available as an option and the “User Defined” PWM

database option was limited to a small number of custom PWMs, the default Jaspar 2020_NR

PWM database was selected for all the analyses. A p-value < 0.05 was used as the cutoff for sta-

tistical significance. For the human data, 9/21 (43%) were correctly predicted at the TF level

and 18/21 (86%) were correctly predicted at the family level (Fig 3A and S10 and S11 Tables

in S1 Data). For the mouse data, 19/39 (49%) were correctly predicted at the TF level and 31/

39 (79%) were correctly predicted at the family level.

MORA exhibits a sensitivity comparable to (epi)genomic-data-based tools. In terms of

human data, BART2 showed a sensitivity of 67% (14/21) and 95% (20/21) at the TF and family

levels, respectively (Fig 3A and S12 and S13 Tables in S1 Data), with one dataset failing to

complete the analysis. Regarding mouse data, BART2 had a sensitivity of 59% (23/39) and 90%

(35/39) at the TF and family levels, respectively. Lisa2 displayed a sensitivity of 81% (17/21) at

the TF level and 85.7% (18/21) at the family level for the human dataset (Fig 3A and S14 and

S15 Tables in S1 Data), with three query datasets failing the analysis. Concerning the mouse

dataset, Lisa had a sensitivity of 82% (32/39) at the TF level and 89.7% (35/39) at the family

level, with four query datasets producing no results for either upregulated or downregulated

DEGs.

In summary, in terms of detection sensitivity, MORA outperformed all PWM-based tools

both at the TF and family levels. BART2 and LISA2 belong to the category of tools that infer

transcriptional regulators by integrating public chromatin accessibility and ChIP-seq data.

Both tools outperformed AME, HOMER, and Pscan (Fig 3A) as reported [35]. MORA showed

comparable performance to LISA2 and BART2, and it was the only tool with a sensitivity of

100% at the family level for both human and mouse datasets.

3.3 Ensemble approach to define high-confidence functional TFs and

interactive regulatory networks

Experimental testing of candidate TFs for the regulation of a set of target genes can be labor-

intensive, time consuming, and expensive. In most cases, each computational tool predicts

hundreds of putative regulatory factors, and the statistical significance does not necessarily

correlate with biological relevance. This makes it challenging to prioritize candidate TFs for

downstream validation and mechanistic studies. On the other hand, metazoan TFs must, in

general, work together with other TFs to achieve the required specificity in DNA binding and

gene transcription control [3, 36, 37]. It has been shown that 10–15 TF binding sites (TFBS)

are required to achieve the ~30 bits of information needed to target a specific gene in multicel-

lular eukaryotes [36]. Therefore, predicted TFs, other than the target TF, likely include
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functional TFs that interact with the target TF in regulating the set of target genes. Because pre-

dictions tools differ in various aspects, including the fundamental mechanism of TF prediction

(PWM enrichment vs. [epi]genomic-data modeling), the tested genomic regions, as well as the

PWM databases and the statistical tests used (S5 Table in S1 Data), candidate TFs predicted

by multiple tools are likely to represent biologically relevant regulatory TFs. Based on this

rationale, we developed EnsembleTFpredictor to integrate the results of multiple prediction

tools and provide a shortlist of high-confidence candidate functional TFs for downstream vali-

dation. Due to the use of different PWM or (epi)genomic databases by different tools, the iden-

tifiers of predicted TFs are not consistent across tools. We retrieved the unique identifiers of

the predicted PWMs and converted the names of associated TFs to Ensembl IDs, which served

as standard names for comparison across all tools (Fig 2). Because the complete set of TFs that

regulate any given set of target sequences was not available to evaluate the prediction specific-

ity, and the number of predicted TFs for each set of target sequences varied dramatically across

tools, ranging from 0 to hundreds, we decided to assign equal weight to each tool. For each tar-

get gene dataset, EnsembleTFpredictor ranked the predicted TFs based on the number of tools

that predicted the TF to be statistically significant and used this number as a measure of pre-

diction confidence for each TF.

The performance evaluation of EnsembleTFpredictor on the set of DEGs demonstrates its

efficacy in identifying not only the target TFs but also the regulatory TFs that cooperate with

the target TFs in regulating gene expression. For example, a study (accession number,

GSE56026) used microarrays to identify the changes in gene expression in a serous papillary

endometrial cancer cell line treated with STAT1-siRNA [38]. STAT1 ranked third in terms of

confidence level and was correctly predicted by 4 out of 6 tools (Fig 3B and S16 Table in S1

Data). Similarly, in a MYC knockdown experiment in medulloblastoma (GSE22139) [39] and

in an induced Myc expression experiment in MCF-7 breast cancer cells (GSE11791) [40],

MYC ranked first and second in the confidence levels and was correctly predicted by 6 or 5

out of 6 tools respectively (Fig 3C and 3D and S19 and S20 Tables in S1 Data). We summa-

rized the information for all human and mouse target TFs and found that most TFs were cor-

rectly predicted by 2–4 tools (ranking 2–4, Fig 3E and S17 and S18 Tables in S1 Data) with

only three target TF being correctly predicted by all the tools. One human TF and three mouse

TFs were not predicted by any of the tools tested. Most target TFs (human 90.5%, mouse

84.6%) were correctly predicted by at least two methods. We therefore used the criterion of

being predicted by at least two methods as the cutoff to determine whether a TF is a biologi-

cally relevant functional TF.

Next, we examined the analysis results of query gene sets mentioned above to investigate

the ability of EnsembleTFpredictor to identify TFs that interact with the target TFs. In the

STAT1 knockdown data (GSE56026, Fig 3B), ten TFs, including BCL6, IRF1, IRF4, JUN,

JUND, NFKB1, RUNX1, STAT3, TFAP2A, and ZNF467, ranked number 1 or 2 in confidence

levels and were predicted to be statistically significant by� 5 out of 6 tools. It is well estab-

lished that STAT1, IRF1, and NFκB form regulatory networks by regulating each other’s syn-

thesis or activation, or by converging at target promoters to cooperate or antagonize each

other in the regulation of a common set of genes [41–43]. STAT3 and JUN cooperatively regu-

late transcriptional activation [44, 45], whereas STAT1 and BCL6 directly regulate each other’s

expression in multiple biological contexts [46–48]. Therefore, most of the top-ranking TFs are

biologically relevant TFs that cooperate with each other and the target TF to regulate gene

expression. In the Myc datasets (GSE22139, GSE11791), multiple top-ranked TFs, such as

MAX, SP1, NRF1, and E2F4, are known to interact with MYC in regulating the expression of

common target genes in cancer cells [49–51] (Fig 3C and 3D). Next, we performed Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses using TFs
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predicted by at least 3, 4, or 5 tools as the query gene sets. “Transcriptional misregulation in

cancer” was one of the top 2 enriched pathways for all datasets (Fig 3F) regardless of the cutoff

used to determine the correctly predicted TFs. This is consistent with the fact that all three

datasets were derived from cancer cell lines. We further evaluated protein-protein interactions

among predicted TFs using the STRING Database [52] (https://string-db.org/). When using

TFs predicted by at least 4 (42–86 genes), 5 (10–28 genes), or 6 (13 genes) tools as the query

gene sets for the STRING Database search, we observed highly significant protein-protein

interaction enrichment in all cases (Fig 4). In conclusion, by integrating the results of multiple

prediction tools, EnsembleTFpredictor provides a set of biologically relevant candidate TFs

ranked by confidence levels for easy prioritization for downstream validation and mechanistic

studies.

3.4 Performance comparison on ChIP-seq data

Genomic regions derived from genomic or epigenomic profiling experiments such as ChIP-

seq are commonly investigated in transcription regulation studies. The TF ChIP-seq peak data

generated from the K562 cells were downloaded from the ENCODE portal [31] (https://www.

encodeproject.org/), which included 512 peak files for 337 unique TFs at the time of download.

The known target TFs for each dataset allow us to assess prediction accuracy at both the TF

and family levels. MORA can be applied to any sequences without requiring additional infor-

mation. MORA correctly predicted 52% (267/512) of the targets at the TF level, and 69% (352/

Fig 4. Protein-protein-interaction network analysis of TFs predicted by at least 4, 5, or 6 tools using STRING Database for gene list analysis.

https://doi.org/10.1371/journal.pone.0294724.g004
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512) at the family level (Fig 5A and S21 Table in S1 Data), with four samples failing to finish.

HOMER, BART2, and LISA2 can also be applied to ChIP-seq data. LISA2 requires a list of

genes in addition to a list of genomic regions, making it unsuitable for this analysis. We there-

fore compared the performance of HOMER and BART2 (Fig 5A) with that of MORA.

HOMER had a lower sensitivity of 29% (147/512) and 40% (202/512) at the TF and family levels

respectively (S22 Table in S1 Data), with one sample failing to finish. BART2 had a sensitivity

similar to MORA with 49% (250/512) successfully predicted at the TF level, and 86% (438/512)

at the family level (S23 Table in S1 Data). Out of the 512 TFs, 357 (69.7%) and 205 (40.0%)

were correctly predicted by at least one or two methods, respectively (S24 Table in S1 Data).

The predictive power on ChIP-seq data is noticeably lower than that on the gene list data

for all the methods tested. One possible reason for this is that the target TF information is not

available in the current database used for prediction, making it impossible to accurately pre-

dict. We found that only 68% (350/512) of the target TFs have at least one PWM in the CIS-BP

database (Fig 5B). Among this group of target TFs, MORA correctly predicted 76% (267/350)

of the targets at the TF level and 98% (344/350) at the family level, similar to the results

Fig 5. Performance evaluation of MORA and other published computational tools on ChIP-seq data. (A) Sensitivity plot for the ChIP-seq data target TFs

showing detection sensitivity of each method at both the TF and family level. (B) Bar plot displaying the number of target TFs which are present/absent in the

database of each method for the ChIP-seq data. (C) Sensitivity plot for the ChIP-seq target TFs including only those TFs which are in the corresponding method

database. (D) Ranked list of identified TRs/TFs by prediction confidence level using EnsembleTFPredictor on ChIP-seq data. The TF highlighted yellow is the

target TF. Red font indicates TFs that are known to interact with the target TFs. (E) Protein-protein interaction analysis results using STRING Database. TFs

predicted by all 3 tools were used as the query gene sets for the STRING Database search.

https://doi.org/10.1371/journal.pone.0294724.g005
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obtained using gene lists as inputs. HOMER, on the other hand, has a relatively small PWM

database (450 mammalian PWMs representing 358 unique TFs) and includes only 41% (210/

512) of the target TFs (Fig 5B). For this group of target TFs, HOMER achieved a prediction

sensitivity of 70% (147/210) at the TF level and 96% (202/210) at the family level, which is

comparable to the performance of MORA (Fig 5C). The BART2 database comprises over

7,000 human ChIP-seq datasets for 919 TFs/TRs with 374 target TFs present in this database.

For this group of target TFs, BART2 had a prediction sensitivity of 67% (250/374) at the TF

level, and 88% (328/374) at the family level. The sensitivity of all tools is much higher when the

target TF information is available in the database. The larger PWM database used in MORA,

along with its higher detection sensitivity compared to HOMER, enabled more accurate pre-

diction of target TFs.

3.5 Ensemble approach on ChIP-seq data to define interactive regulatory

networks

We generated multiple-tool ranked TF tables for each ChIP-seq data using EnsembleTFpredic-

tor. Fifty-five out of the 512 target TFs were correctly predicted by all three methods, and 132

were predicted by at least two methods. We next evaluated the relationships between the target

TFs and the other top-ranked predicted TFs. ENCFF020ODE is the interferon regulatory fac-

tor 1 (IRF1) ChIP-seq data from human K562 cells, a human immortalized myelogenous leu-

kemia cell line, treated with Interferon gamma (IFN-γ). IFN-γ primarily signals through the

Jak-Stat signaling pathway, dominated by the activity of the STAT1 homodimer, which func-

tions together with interferon regulatory factors (IRFs) and NFκB to control transcription of

target genes [53]. On the other hand, STAT2 can dimerize with STAT1 and substantially atten-

uate IFN-γ responses [54]. Twenty six TFs were predicted by all three tools, including the tar-

get IRF1 and STAT1, ranking number 1 in the list (Fig 5D and S25 Table in S1 Data). ETS1

and IRF1 together regulate hepatic stellate cell activation [55], whereas GATA1 and IRF1

together regulate megakaryocyte hyperproliferation [56]. Ectopic IRF1 expression can rescue

Junb-deficient mice, suggesting that IRF1 functions downstream of JUNB in the liver [57].

STAT2 was predicted by MORA and BART2 but not HOMER. Multiple TFs known to func-

tion in response to IFN-γ were correctly predicted only by 1 or 2 tools, such as NFκB, SPI1,

MAF, and JUN (S25 Table in S1 Data). The tissue-specific transcription factor Pu.1 (SPI1)

allows for the IFN-γ-induced expression of CXCL9 in myeloid cells [58]. IFN-γ also represses

“M2” gene expression in human macrophages by inducing coordinate suppression of binding

by MAF to a subset of enhancers [59]. Additionally, a novel c-Jun-dependent signal transduc-

tion pathway was found necessary for the transcriptional activation of IFN-γ response genes

[60]. KEGG pathway enrichment analysis using TFs predicted by all three tools (26 genes)

identified the “Transcriptional misregulation in cancer” pathway as the enriched pathway (Fig

3F), which is consistent with the fact that the data sets were derived from a cancer cell line.

Protein-protein interaction analysis of TFs predicted by all three tools using the STRING Data-

base demonstrated highly significant protein-protein interactions among the TFs (Fig 5E).

These results demonstrate the superior performance of MORA in identifying biologically rele-

vant TFs and the power of EnsembleTFpredictor in defining cooperating transcription regula-

tory networks.

3.6 Application of MORA and EnsembleTFpredictor in guiding

experimental design

MORA and EnsembleTFpredictor have been proven effective in identifying novel functional

TFs. In a study performed by Chen et al., MORA and oPossum-3 (now discontinued) were
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used to identify TFs that regulate genes differentially expressed in the granule neuron precur-

sors of conditional SnoN knockout animals compared with littermate control animals [23].

EnsembleTFpredictor identified five TFs predicted by both algorithms, and two of them, N-

myc and Pax6, were shown to form physical complexes with SnoN to regulate granule neuron

precursor development. In a second study, MORA, HOMER, and oPossum-3 were used to

identify TFs that regulate genes differentially expressed during dorsal root ganglion (DRG)

neuron axon regeneration [24]. EnsembleTFpredictor identified 43 TFs predicted by at least

two methods, including known axon-regeneration TFs, as well as TFs not yet characterized in

axon regeneration. Experimental testing of eight novel TFs demonstrated that a combination

of Ctcf with Yy1 or E2f2 had a significant effect on regenerative axon growth, but not when

Ctcf, E2f2, or Yy1 were expressed alone. These publications highlight the value of MORA and

EnsembleTFpredictor in guiding experimental design to identify novel TFs that cooperatively

regulate transcription in different biological systems.

4 Discussion

EnsembleTFpredictor offers a new perspective of integrated functional TF prediction by

leveraging several regulatory factor prediction software that have been developed. We provide

the source code of EnsembleTFpredictor, making it easy to incorporate the prediction results

of other tools. The current regulatory factor prediction tools have limitations because they rely

on external databases containing existing knowledge from previous studies (e.g., PWMs or

ChIP-seq data). This reliance on external databases compromises the sensitivity of these tools,

particularly for TFs lacking PWMs or (epi)genomic data in the databases. In fact, only 59.6%

(305/512) of the ChIP-seq target TFs were correctly predicted by at least one method (S24

Table in S1 Data). A more comprehensive database is needed to improve prediction sensitiv-

ity. By integrating the prediction results from multiple tools, EnsembleTFpredictor not only

provides a confidence ranking of the predicted TFs but also generates a more comprehensive

list of candidate regulatory factors compared to any individual tool. Candidate TFs predicted

by a single tool can still be biologically significant, as demonstrated by the ChIP-seq target TFs

and the known IFN-γ-response TFs predicted only by MORA, as described earlier. However,

when multiple independent tools predict a given TF, it increases the likelihood that the TF is

biologically relevant and warrants further validation and mechanistic investigation.

MORA is distinct from all other PWM-based tools in multiple aspects (S5 Table in S1

Data). First, the motif enrichment measurements and algorithms for enrichment calculation

are distinct. MORA used the over-representation index (ORI) to measure motif enrichment,

which takes into account both the number of motifs found in the sequences (motif density)

and the proportion of sequences in which the motif is found. Homotypic clusters of TF bind-

ing sites (many adjacent TF binding sites for the same TF species) are prevalent in eukaryotic

genomes, and they play an important role in gene regulation in the human and other verte-

brate genomes [33, 34]. A one-tailed Student’s t-test was used to compare the ORI of the query

sequences with the random sampled background sequences to determine enrichment.

HOMER uses the ZOOPS model, which assumes that there is zero or one motif occurrence

per sequence. It will not be able to capture the information in homotypic clusters of TF bind-

ing sites. It then uses the hypergeometric enrichment calculations (or binomial) to determine

motif enrichment. AME [20] uses two scores for each sequence in computing motif enrich-

ment: the ’PWM score’ is computed by scoring the sequence with the motif, and the ’FASTA

score’ is either provided in the sequence header line or determined by the rank of the sequence

within the sequence file. AME sorts the sequences in increasing order of FASTA score, and

then ’partitions’ the sequences, labeling the first N sequences ’positive’ and the rest ’negative’.
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AME computes the significance of motif enrichment using these labels and the PWM scores.

Then, it repeats the process using values of N from 1 to the total number of sequences and

reports the partition with the highest significance. Pscan [19] computes for each input

sequence a raw matching value, representing the likelihood for the TF to bind the promoter. It

keeps as matching value the one corresponding to the highest-scoring oligo in each sequence

and computes the mean of the matching value on the input sequence set. Then for each profile,

the average matching score obtained from the input sequence sets are compared to the mean

and standard deviation of the score on the whole genome promoter set. The over-representa-

tion or underrepresentation for each profile is finally assessed using a z-test, which associates

with each profile the probability of obtaining the same score on a random sequence set. Sec-

ond, the motif site representation and searching algorithms are different. MORA used the

PATSER program [27], a widely used software distribution in the field, to determine TF bind-

ing sites based on a PWM. HOMER does not identify TF binding sites. Instead, it uses oligos

of the desired motif length as a substitute to calculate motif enrichment [16]. AME does not

determine a TF binding site. Instead, it “treat[s] each subsequence in the sequence as a possible

match to the motif.” Pscan does not determine a TF binding motif either, but the algorithm

“computes for each input sequence a raw matching value, representing the likelihood for the

TF to bind the promoter, and keeps as the matching value the one corresponding to the high-

est-scoring oligo in each sequence”. Third, the background sequences used in the comparison

differ. MORA uses random sampling of genomic sequences outside the region of interest or

gene promoters of non-query genes, matching the number and length of query sequences as

the background sequences. This process is repeated 100 times by default to consider variations

in sequence characteristics during enrichment calculations. HOMER follows a similar

approach but uses all promoters (except those chosen for analysis) as the background. AME

uses shuffled input sequences as the background sequences. Pscan uses the whole genome pro-

moter set as the control set sequence. All methods accept custom background sequences as

input. Lastly, the statistics tests employed by each method to calculate enrichment are different

(S5 Table in S1 Data).

MORA is the only tool that achieved 100% sensitivity at the TF family level when DEG gene

sets were used as the query sequences. Since TFs in the same family tend to have similar bind-

ing specificity, the failure to report the target TF for some datasets could simply be because the

specific target TF does not have a representative PWM in the CIS-BP database. When ChIP-

seq peaks were used as the query sequences, MORA correctly predicted 69% (352/512) of tar-

get TFs at the family level. However, only 68% (350/512) of the target TFs have PWMs present

in the CIS-BP database (Fig 5B). If we focus on this group of TFs MORA had a sensitivity of

98% (344/350) at the family level. This suggests that the major reason we failed to report a tar-

get TF for a gene set is because the target TF does not have a representative PWM in the data-

base. Since CIS-BP is one of the most comprehensive publicly available motif databases,

offering CIS-BP as a database choice by HOMER and Pscan will likely improve the prediction

performance. An alternative reason that a target TF was not reported could be that the query

sequences are not the primary regulatory targets of the TF but rather an indirect effect via

other TFs. This seems to contribute only to a small fraction of the cases, if at all.

5 Conclusion

All the computational tools tested in this study can predict biologically relevant TFs. In terms

of sensitivity, MORA outperforms all the PWM-based tools and is comparable to the (epi)

genomic-data-based tools. Most importantly, by harnessing the predictive power of all the

tools, EnsembleTFpredictor provides a high-confidence candidate TF list and has proven to be
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useful in identifying functional and cooperative regulatory TFs in multiple biological systems.

The minimum number of tools required as inputs for EnsembleTFpredictor is two. Because

TFs predicted by algorithms with completely different underlying mechanisms are more likely

to be functional, we recommend using at least one tool from each category; MORA from the

PWM-based tools and either BART2 or Lisa2 from the (epi)genomic-data-based tools. BART2

or Lisa2 typically predicts hundreds of candidate TFs, whereas HOMER predicts a much

shorter list of candidate TFs. Including HOMER could help narrow down the candidate TFs

for downstream validation. Furthermore, MORA and EnsembleTFpredictor can be applied to

any type of genomic sequences, such as those obtained from the assay for transposase-accessi-

ble chromatin with sequencing (ATAC-Seq), DNase I hypersensitivity assay, or histone modi-

fication ChIP-seq assay, making them a truly invaluable resource for the wider scientific

community.
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