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Abstract

Underwater image enhancement has become the requirement for more people to have a

better visual experience or to extract information. However, underwater images often suffer

from the mixture of color distortion and blurred quality degradation due to the external envi-

ronment (light attenuation, background noise and the type of water). To solve the above

problem, we design a Divide-and-Conquer network (DC-net) for enhancing underwater

image, which mainly consists of a texture network, a color network and a refinement net-

work. Specifically, the multi-axis attention block is presented in the texture network, which

combine different region/channel features into a single stream structure. And the color net-

work employs an adaptive 3D look-up table method to obtain the color enhanced results.

Meanwhile, the refinement network is presented to focus on image features of ground truth.

Compared to state-of-the-art (SOTA) underwater image enhance methods, our proposed

method can obtain the better visual quality of underwater images and better qualitative and

quantitative performance. The code is publicly available at https://github.com/

zhengshijian1993/DC-Net.

Section 1: Introduction

Image enhancement techniques aim to improve the overall or local visual quality of an image,

usually as a pre-processing operation for computer vision, which is important for underwater

exploration work. Unlike normal outdoor images, underwater imaging environment is quite

the special characteristics, and cause image degradation. In-depth studies [1] by some scholars

have revealed that this issue is due to the absorption and scattering of light by the water

medium, as shown in Fig 1. As a result, underwater images are not captured in a satisfactory

result.

To solve these problems, a series of underwater image enhancement methods have been

proposed to improve the quality of underwater images, most of which go with a single struc-

ture to deal with the underwater image degradation problem, and ignore the problem of
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interference between different degradations. Even though some researchers use dual-stream

networks, they do not essentially decompose the task features to deal with them. For example,

li et al. [2] designed a medium transmission-guided network for underwater image clarity by

considering multiple spatial color information. Wen et al. [3] used physically guided decou-

pling to predict clear underwater images. These methods use multiple layers of networks to

process information, which compensates for the problem of incomplete information between

different networks, but do not essentially analyze the problem of interference between multiple

degradations of underwater images. An investigation of multiple degradation interference

problem with color bias and blurring in underwater images with the statistically guided light-

weight underwater image enhancement network (USLN) [4] for partial color feature process-

ing and the Semantic-aware Texture-Structure Feature Collaboration network (STSC) [5] for

blur-biased feature processing. The specific results are shown in Fig 2, Fig 2(B) illustrates the

color correction process with the single-structure USLN algorithm, showing locally smoother

texture features, but the relative boundaries are not well defined. Fig 2(C) presents texture

enhancement with the single-structure STSC algorithm, showing locally clear texture features,

but the overall color is uneven. Fig 2(E) represents the underwater image successively pro-

cessed by the USLN and STSC algorithms, showing that there is still an overall color imbal-

ance, but the corresponding image color of the local texture features have been further

corrected and also highlights the textural features. Fig 2(F) shows the underwater image suc-

cessively processed by the STSC and USLN algorithms, showing that there is a weaker local

image texture, but the overall color is more balanced. The following problems can be identified

1) Underwater multiple degraded images cannot be handled well using a single-structure

approach. 2) Simply working in series for image processing yields results with variability. 3)

Texture enhancement algorithms or color enhancement algorithms change the information

about the distribution of the image, which affects the further algorithmic processing.

Previous literature [6] has shown that depth feature representations can be used to effec-

tively characterize various image distortions. Ma et al. [7] decomposed image information into

multiple frequency bands employing wavelet transforms. Mi et al. [8] decomposed the image

into a structural layer with low frequency illumination variance and texture layer features for

image enhancement. There is an assumption in this approach that different image degradation

information can be decomposed into different frequencies for processing, whereas in practice

Fig 1. Effects of light absorption and scattering in underwater imaging environments. (A) Light absorption at

different water depths, resulting in color deviations. (B) the scattering of light by different turbidity levels of water,

resulting in blurred images.

https://doi.org/10.1371/journal.pone.0294609.g001
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it is difficult to cleanly separate different degradation factors. Inspired by this theory, we

extend it to consider the problem not from a feature-level decomposition of image features,

but from different task levels. Based on decomposition theory learning ideas, we design a

Divide-and-Conquer network (DC-net) for underwater images, which consists of a texture

network based on a multi-axis attention mechanism, a color network based on the look-up

tables (LUT) method, and a refinement network. The texture sub-network is an unet struc-

tured network based on a multi-axis attention network that captures local and global texture

information of an image in both spatial and channel dimensions. The color sub-network uses

an adaptive 3D LUT method to extract image color information features and rescale the image

range to a color space. The refinement module uses a lightweight convolutional network.

The main contributions of this paper are highlighted as follows:

• We propose a new multi-axis attention module to combine different region/channel features

into a single stream structure to extract image features.

• We propose an adaptive 3D lookup tables network to achieve image global color informa-

tion. In addition, to improve the utilization of the look-up table and memory usage, we

reclassify the image range into a more aggregated color space employing a specific gamma

curve.

• We have implemented a task decomposition network to solve the problem of hybrid degra-

dation of underwater images. The hybrid degradation of underwater color deviation and

blurring is decoupled into two sub-tasks for processing.

• With six no-reference metrics and two reference metrics adopted for the underwater envi-

ronment, numerous experiments are provided to demonstrate the superiority of the pro-

posed method on both synthesized and real-world underwater images. Finally, we carry out

application tests to further show the effectiveness of the DC-net.

Fig 2. Example of the inherent interference problem between color bias and blurring degradation in underwater images. (A)RAW (B)USLN (C)

STSC (D)GT (E)USLN+STSC (F)STSC+USLN.

https://doi.org/10.1371/journal.pone.0294609.g002
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Section 2: Related work

Underwater image enhancement methods

Underwater image enhancement methods mainly include physical models and data-driven

models. Early physical models were mainly built based on atmospheric attenuation models.

However, this approach ignored the characteristic that the underwater color channels have dif-

ferent wideband attenuation coefficients. To address this problem, Akkaynak & Treibitz et al.

[9] proposed a modified underwater image enhancement model that can obtain better under-

water image enhancement results, but considers more prior knowledge and is more computa-

tionally complex. To estimate model parameters, some scholars have used deep learning

networks to estimate background light and transmission map or scene depth, which relies on

the network structure design and training data. In addition, Hao et al. [10] developed an

underwater laplace variational model and used luminance mixing and quadratic tree subdivi-

sion algorithms to estimate the transmission map and background light. Xie et al. [11] pro-

posed a red channel prior guidance variational framework, which successfully combined the

normalized total variational term and the sparse prior knowledge of the fuzzy kernel to achieve

better underwater image enhancement results. While this approach can yield satisfactory

results, it still does not go beyond the limitations of traditional models (inaccurate parameter

estimation). To skip the “pathological problem” of estimating model parameters, many schol-

ars have established underwater image enhancement methods by observing underwater image

patterns, such as hyper-laplacian reflectance priors (HLRP) [12], adaptive color and contrast

enhancement and denoising (ACCE-D) [13], etc.

In recent years, many studies [14] have shown that deep learning methods work well for

low-level vision tasks. Wang et al. [15] used the HSV color space of underwater images to

adjust the underwater image brightness, color, and saturation and the RGB color space to

denoise and remove color bias to obtain high-quality underwater images. The method ana-

lysed the input space containing different feature information and the enhanced image faith-

fully represents the original underwater image. Qi et al. [16] proposed a new underwater

image enhancement architecture by using the semantic information introduced by region fea-

ture learning as a high-level guide. The approach brought semantic consistency and visual

image enhancement from network architecture analysis. Gao et al. [17] used multi-scale dense

generative adversarial networks to enhance underwater images, and the enhanced images

improve the perceptual quality of the images. Physical models and deep learning methods each

have advantages and disadvantages for underwater image enhancement processing, Zhou et al.

[18] proposed a new framework by integrating the physical model, domain adaptation, and

generative adversarial networks(GAN) with feedback control ideas. The authors made the

physical model constrain the estimation of the GAN framework and used the physical model

as the feedback controller of the GAN-enhanced network to provide definite constraints for

ill-posed problems and ensured that the estimation results are consistent with the observed

images.

Decomposition feature learning

Decoupled representation learning is a way to be able to decompose the varying factors in

the feature representation into mutually independent parts for processing under certain con-

ditions. In previous studies, decoupled representation learning has been widely used in vari-

ous computer vision task weights in areas such as domain adaptation, zero-sample learning,

and scene graph generation [19]. These are mostly low-level perception tasks in which

decoupled learning plays the role of guidance and foundation. A common form is that
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decoupled information is used as a basis for subsequent tasks, which improves the accuracy

of the algorithm. Bianco et al. [6] analyzed deep visual representations to essentially charac-

terize different types of image distortions and showed that a given number of network layers

allow for efficient separation of different types of distorted feature spaces. Based on this

research theory, many scholars have introduced the decoupling approach to the image degra-

dation problem. Such as liu et al. [20] decomposed the image into different frequency

domains for removing the moiré problem via wavelet transform. Although the authors effec-

tively got better results by wavelet frequency domain decomposition processing, the wavelet

decomposition was designed by specific formulae, which is at variance with the related task.

To this end, Wang et al. [21] designed three types of spatial, angular, and polar plane decou-

pling convolutions to decouple the optical field into a two-dimensional subspace, and then

solved the super-resolution and parallax estimation problems by designing the relevant mod-

ules to fuse the information extracted from different subspaces. However, this feature decou-

pling by convolution makes it difficult to quantify the effectiveness of decoupling due to the

uncertainty of the lost features of the convolution. li et al. [22] used gain control-based nor-

malization to achieve separation of different distortion features, adaptive filtering of distor-

tion representations, and aggregation of useful content information to obtain image

enhancement results. However, the above methods that provide guidance and foundations

for deep models, i.e., the features used for learning are all just feature layer decompositions

and not task-oriented features. To provide more specific information, there is an urgent

need for a decoupled task-oriented feature learning strategy.

Section 3: Materials and methods

To address the issues mentioned in section 1, we proposed a Divide-and-Conquer network

framework for underwater image enhancement, i.e, DC-net. Specifically, we designed a branch

of the underwater texture enhancement network with a multi-axial attention mechanism and

a branch of the underwater color correction network with a LUT mechanism. In the following

subsections, the overall structure and key modules will be described in detail.

Ethical statement

The datasets used in our experiment are publicly available datasets. The experiment did not

involve critically ill animals or protected species, so no relevant permits are required for the

experiment.

Overall network with decomposition feature learning

The overall framework of our proposed the DC-net method is presented in Fig 3, which mainly

consists of the texture sub-network, the color sub-network and the refinement network. In the

texture sub-network, the input image (Fin) is first fed to the encoder that introduces the multi-

axis attention module to extract texture features, which is then decoded to obtain a texture-

enhanced image(Ftexture), and the final result is fed to the fusion network. In the color sub-net-

work, the multi-level image features obtained from the texture network encoder are first fused

and processed as input to the 3D LUT module. At the same time, the underwater image is fed

into the image-specific gamma curve module to obtain more focused image color information.

We then interpolate the image color information features on the LUT to obtain a color-

enhanced image(Fcolor), and the result is fed to the fusion network. Finally, the results of the

texture network and the color network are fused with the input image to obtain the
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underwater image enhancement results (Fout). The DC-net method can be described as follows

Ftexture ¼ TexðFinÞ ð1Þ

Fcolor ¼ ColðFinÞ ð2Þ

Fout ¼ FusionðFin; Ftexture; FcolorÞ ð3Þ

where Fusion denotes the refinement network. Tex denotes the texture sub-network. Col
denotes the color sub-network.

Texture sub-network

The texture sub-network is constructed based on the unet network model, however, ordinary

convolution is not able to extract image texture information effectively, so the multi-axis atten-

tion module is proposed to increase the feature representation and channel variant capability

of ordinary convolution. Our work is inspired by the multi-axis block proposed in Axial atten-

tion [23, 24], which performs attention on multiple axes, and we find that the block is the key

to achieving significant performance improvement in the experiment. However, the method

only considers the channel axis decomposition and not the spatial axis decomposition. There-

fore, we design a channel attention mechanism for spatial multi-axis processing based on this

approach, As shown in Fig 4(A). Multi-axis attention module first takes the input feature Fin 2
RH�W�C and applies 1 × 1 convolutions and 3 × 3 depth-wise convolutions to encode features.

Then, the features are divided into two parts, one of which is normalized by Layer Normaliza-

tion (LN) of the parameters, and connected to the other part of the features. Afterward, the fea-

tures are reinforced by Multi-axis Channel Attention (MCA) and Multi-axis Spatial Attention

(MSA), and the channel information is adjusted by 1 × 1 convolution. The features

(Fmiddle 2 R
H�W�C) by adding the feature with shortcut features (Fin). To transform features, the

features are divided into two parts, one of which is normalized by Layer Normalization of the

parameters, and connected to the other part of the features. The channel information is

adjusted by 1 × 1 convolution. To increase the non-linearity of the image feature extraction,

we decompose the features into two parts and multiply the two parts to obtain the hybrid

image features. The channel information is adjusted by 1 × 1 convolution. The features

(Fout 2 R
H�W�C

) by adding the feature with shortcut features (Fmiddle). The multi-axis attention

Fig 3. The illustration of our network for image enhancement. Our network contains he texture sub-network, the

color sub-network, and the refinement network.

https://doi.org/10.1371/journal.pone.0294609.g003
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module can be described as follows

F1; F2 ¼ splitðC3ðC1ðFinÞÞÞ ð4Þ

Fmiddle ¼ C1ðMCAðMSAðconnectðLNðF1Þ; IDðF2ÞÞÞÞÞ þ Fin ð5Þ

F3; F4 ¼ splitðFmiddleÞ ð6Þ

F5; F6 ¼ splitðC1ðconnectðLNðF3Þ; IDðF4ÞÞÞÞ ð7Þ

Fout ¼ Fmiddle þ C1ðconnectðF5; F6ÞÞ ð8Þ

where C1 and C3 denote 1 × 1 convolution and 3 × 3 depth-wise convolutions. LN denotes

Layer Normalization. ID denotes identity connection. Connect denotes splicing of two fea-

tures. Split denotes decomposition of the features along a channel into two equal channels of

features.MCA denotes Multi-axis Channel Attention, andMSA denotes Multi-axis Spatial

Attention.

Multi-axis Spatial Attention. As shown in Fig 4(B). The input feature map is first split

into two separate heads along the image feature channel, processed by the global and local paths

respectively. The local path is shown in the upper branch of Fig 4(B), where use a fixed window

grid partitions the feature map and feeds it into the spatial attention model to enhance the

image spatial feature extraction information, and then obtain the local feature extraction infor-

mation in the reverse aggregation results. The global path is shown in the lower branch of Fig 4

(B), the same operation as in the local branch is used to obtain global feature information for

the image, except that a dilated grid is used instead of a fixed window grid. Finally, we aggregate

the image’s local features and global features to obtain the image enhancement results.

Fig 4. Multi-axis attention module.

https://doi.org/10.1371/journal.pone.0294609.g004
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Multi-axis Channel Attention. As shown in Fig 4(C). The input feature map is first split

into two separate heads along the image space feature (H-axis), which are processed by the

global and local paths respectively. The main operation here is to divide the input feature

image into small feature maps and randomly mask half of the small feature map blocks along

the H-axis to stitch together, thus obtaining twoH/2 feature maps split along the H-axis. The

local path is shown in the upper branch of Fig 4(C). We first pool the segmented feature maps

globally on average, then calculate the fixed channel blocks by fast 1D convolution with a ker-

nel size of 4 to obtain the enhanced channel weights after the enhancement, and multiply this

weight with the segmented feature maps to obtain the channel-enhanced feature maps. The

global path is shown in the lower branch of Fig 4(C), the same operation as the local branch,

except that the fixed channel blocks are replaced using the interval channel blocks to obtain

the global feature image of the global image. Finally, we aggregate the local and global features

of the image to obtain the image enhancement result.

Color sub-network

To correct color deviations in underwater image, we propose a color sub-network based on

the LUTs color feature extraction module, as shown in Fig 5. The traditional LUTs is a set of

image editing tools for professional color shifting through a two-step process of look-up and

interpolation, which can influence parameters such as hue, saturation, and luminance in a

fully stereoscopic color space control to change the color. However, this method requires man-

ual design and fixed parameters and is not very scalable. To solve the problem, we use a set of

learnable LUTs as the base transform to cover the color transformation space, with the learn-

able LUTs being learned automatically by a neural network. To exploit the multi-scale infor-

mation, we propose a feature fusion model (FFM) to enhance the image features, as shown in

the FFM module in Fig 5. In addition, In response to the low utilization of LUTs units. Influ-

enced by recent developments in neurology [30], we propose the gamma enhance (GE) that

iteratively approximates pixel-level and higher-order curves that can redistribute and normal-

ize the input image range into color space, improving unit utilization, as shown in the GE

module in Fig 5. The color sub-network first takes the input feature Fin 2 R
H�W�C and applies

multi-layer convolution to encode the image features to obtain S1, S2, S3 features. These fea-

tures are processed in two branches, the first branch passes the features through the fused fea-

tures module to obtain the F1 features and through the fully connected layer to obtain the 3D

RGB color values (T). The second branch takes the features through the gamma enhancement

module to obtain more aggregated F2 features in color space. Finally, the F2 features are inter-

polated in the 3D color table of T to obtain the color-enhanced image (Fout). The color sub-

Fig 5. Framework of color transformation network.

https://doi.org/10.1371/journal.pone.0294609.g005
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network can be described as follows

S1; S2; S3 ¼ EðFinÞ ð9Þ

T ¼ FCLðFFMðS1; S2; S3ÞÞ ð10Þ

F2 ¼ GEðS1; S2; S3Þ ð11Þ

Fout ¼ InterpolationðF2;TÞ ð12Þ

where E denotes a feature extraction network, FFM denotes a feature fusion module, FCL
denotes a fully connected layer, GE denotes a gamma curve enhancement module, and Inter-
polation denotes a trilinear-interpolation approach.

Feature fusion module. As shown in the FFM in Fig 5, a node with a single input repre-

sents a layer of convolution and activation function, and a node with multiple inputs repre-

sents a fusion layer, convolution layer and activation function. The fusion layer can be

described as follows

FO ¼
XM

i¼1

wiP
jwj
� Ii ð13Þ

Where wi is a weight for the i − th input Ii.M denotes the number of inputs. FO indicates fused

features.

Gamma enhance module. Inspired by curves to adjust image information [25], we have

tried to design a curve that can automatically map an underwater image to its enhanced ver-

sion. It can be expressed as

EðIðxÞ; a; bÞ ¼ IðxÞ þ aIðxÞð1 � IðxÞÞ þ bIðxÞð1 � IðxÞÞ ð14Þ

where α and β denote trainable curve parameters, I(x) denotes a given input image. E(I(x), α,

β) denotes the enhanced image features.

Although this curve enables the image to be adjusted over a wider dynamic range, it is still a

global adjustment (α and β for all pixels). We formulate α and β as per-pixel parameters, i.e.

each pixel of a given input image has a corresponding enhancement curve. Here the formulae

are represented by the C1 and C3 feature maps. The higher-order iterative curve formula can

be expressed as

En ¼ Eðn � 1ÞðxÞ þ AnðxÞEðn � 1ÞðxÞð1 � Eðn � 1ÞðxÞÞ þ BnðxÞEðn � 1ÞðxÞð1 � Eðn � 1ÞðxÞÞ ð15Þ

where An(x) and Bn(x) are a parametric map of the same size as the input image. En denotes

the n − th enhanced image.

Refinement network

The texture sub-network and color sub-network are transformed into richly detailed features.

However, simply mixing texture network features with color features would not achieve the

desired result, so we design a lightweight refinement module to produce better results.

Our refinement module consists of two convolutional layers and an image blending layer.

Specifically, we first up-sample the texture sub-network enhanced image and the color sub-

network enhancement image to the same size, and then input the original input image, the tex-

ture enhancement result and the color enhancement result into the convolution module and

the image blending layer to obtain the underwater enhanced image.
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Image blending layer. The image blending layer is described as follows, we firstly connect

the input image (Fin), texture enhancement result image (Ftexture) and color enhancement

result image (Fcolor) and obtain the image feature weights (W). Then the weights are multiplied

with the texture enhancement result image and color enhancement result image respectively.

Finally, we add the results to get the blended image (Fout). The image blending layer can be

described as follows

Ff ¼ connectðFin; Ftexture; FcolorÞ ð16Þ

W ¼ sigmoidðC1ðreluðC3ðFf ÞÞÞÞ ð17Þ

Fout ¼W∗Ftexture þW∗Fcolor ð18Þ

where C1 and C3 denote 1 × 1 convolution and 3 × 3 convolutions.

Loss function

The proposed DC-net network uses a pairwise image supervised training strategy, where the

combined loss includes four sub-loss functions, L1 loss, Content loss, Color loss and Texture

loss. The JF indicates the predicted image, the JT denotes the ground-truth image. the L1 loss

presented in equation:

ll1 ¼ kJF � JTk1 ð19Þ

The Perceptual loss [26] is a comparison of the eigenvalues obtained by convolving the JF
with the JT, making the image more similar in terms of high-level information. The perceptual

loss function is as follows:

lcontent ¼
1

cjHjWj
kφj Fw JFð Þð Þ � φj JTð Þk ð20Þ

where cj,Hj andWj represents the number, height and width of the feature maps, FW(JF) repre-

sents the enhanced image.

The color loss function compares the JF with the JT in terms of angular and distance fea-

tures. Specifically, the color information of the JF and the JT is first obtained by Gaussian blur-

ring [27], then the distance [28] and angle [29] differences between the two images are

calculated, and finally the two are combined linearly. The colour loss function formula is as

follows:

lp ¼

�
�
�
�
�
ðDR � DGÞ2 þ

DRþ DG
2

� DB
� �2

�
�
�
�
�

2

ð21Þ

la ¼
X

p

rððFðJFÞÞp; ðJTÞpÞ ð22Þ

lcolor ¼ 0:25lp þ 0:75la ð23Þ

Where ΔR,ΔG and ΔB represent the difference between the red, green and blue channels of the

predicted image and the ground-truth image.r() indicates the angle operator between two

image colors.

The texture loss function is a comparison of predicted grey-scale images and real grey-scale

images by CNN feature values, mainly inspired by the literature, where image texture
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information is related to the spatial distribution of grey levels [30]. We define the texture loss

function as:

ltexture ¼ kGðφðJFÞÞ � GðφðJTÞÞk
2

2
ð24Þ

The final combination loss is a linear combination of L1 loss, perceptual loss, Color loss

and Texture loss:

L ¼ a1ll1 þ a2lcontent þ a3lcolor þ a4ltexture ð25Þ

Where α1, α2, α3 and α4 are generally set empirically to balance different losses. We experimen-

tally set α1 = 1,α2 = 10, α3 = 0.5 and α4 = 0.5.

Section 4: Experimental results

Baseline methods

To demonstrate the effectiveness of our proposed method, extensive experiments were con-

ducted on different datasets between DC-net and 10 SOTA underwater image enhancement

algorithms. In more detail, four representative traditional methods were selected for compari-

son, including transmission estimation in underwater single images (UDCP) [31], initial

results in underwater single image dehazing (MIP) [32], underwater image enhancement with

a deep residual framework (CLAHE) [33], color balance and fusion (CBF) [34]. Our method

was also compared with six deep learning-based methods, wavelet-based dual-stream network

(UIE-WD) [7], contrastive underwater restoration (CWR) [35], representative color transform

network (RCT) [36], a statistically guided lightweight underwater image enhancement net-

work (USLN) [4], semantic-aware texture-structure feature collaboration (STSC) [5], contras-

tive semi-supervised learning for underwater image restoration (Semi-UIR) [37].

Implementation details

Our model is trained for a total of 200 epochs. All deep learning models are optimized using

the Adam optimizer. The initial learning rate is 1e-2, which will be halved at every 50 itera-

tions. The parameters β1 and β2 in the optimizer take the default values, i.e., 0.9 and 0.999. We

performed data augmentation by mixup. The batch size is set to 4. All test images are fed into

the model with their full resolution to generate enhanced images during the evaluation proce-

dure. The configurations of the training server are described as 1 Intel Core i7–6800 K proces-

sors, 1 NVIDIA Titan RTX GPUs (24 GB), 64-GB memory, and an Ubuntu 16.04 operating

system.

Dataset and evaluation metrics

Our method was tested on the underwater image enhancement benchmark (UIEB) [38], syn-

thetic underwater image dataset (SUID) [39], synthetic underwater image dataset 1 (SUID1)

[40], and underwater image enhancement for improved visual perception dataset (EUVP)

[41]. The UIEB datasets contains a datasets of 950 real-world underwater images that contain

a distinct variety of underwater image quality degradation features (e.g. color bias, low con-

trast, blurred detail, etc.). The ground truth images are created by selecting the results of 12

underwater image enhancement methods by 50 volunteers. The SUID datasets contains 4000

synthetic underwater images. The datasets is based on the NYU-v2 datasets and generates syn-

thetic underwater datasets based on different attenuation absorption rates for different types

of water (10 types). Each of these water types are synthesized into 200 images. The SUID1 data-

sets is developed based on an underwater imaging model and underwater optical transmission
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characteristics, and a total of 900 underwater images are synthesized, including four types of

scenes: green light, blue light, low light and blur. The EUVP paired datasets consists of three

subsets of subjects, here we focus on the image-net subset, which contains 8670 underwater

images, and the datasets is mainly composed using images captured by seven different cameras

at different visibility and locations, as well as images intercept from online videos. The ground

truth images are composed of the optimal results of multiple underwater enhancement meth-

ods selected by the observer.

To train the DC-net network, we randomly divided the UIEB datasets, EUVP datasets,

SUID datasets and SUID1 datasets into 1:2:7 validation, testing and training subsets. We chose

the UIEB datasets and SUID datasets to construct the training set of 3465 images. For testing,

we validated each of the four subsets of the datasets set of sliced test sets.

We used eight image quality evaluation metrics, namely Peak Signal Noise Ratio (PSNR),

Structural Similarity (SSIM), underwater image quality metric (UIQM) [42], underwater color

image quality evaluation (UCIQE) [43], Twice Mixing (TM) [44], A combination index of

Colorfulness, Contrast and Fog density (CCF) [45], Entropy, Natural Image Quality Evaluator

(NIQE) [46]. The higher the PSNR and SSIM score, the better the enhanced image. UIQM

includes three attribute measures: colorfulness, sharpness, and contrast measures. The UCIQE

uses a linear combination of chromaticity, saturation, and contrast for quantitative assessment,

quantifying uneven color bias, blur, and low contrast respectively. The TM evaluates image

quality by using two blending ratios in the generation of training data and the supervised train-

ing process. The CCF is a feature-weighted metric with a combing colorfulness index, contrast

index, and fog density index, which can quantify color loss, blurring, and fog, respectively. The

entropy indicates the entropy value of the image. NIQE is based on a set of ‘quality-aware’ fea-

tures, which are fitted to an MVG model.

Comprehensive comparisons on the real-world underwater images dataset

1) Qualitative comparisons: We validate the method on two real environment underwater

image datasets (UIEB and EUVP datasets), as shown in Fig 6, the results obtained from the

Physical model-based methods are unsatisfactory, such the UDCP method causes the image

darker, the MIP and CLAHE method produce the color unevenness of the image, and the CBF

method produce over-processed images. The images obtain from data-driven methods can get

better results, yet through careful comparison, we find that there is still a certain gap between

these methods. The CWR method provides a limited improvement in contrast and color bal-

ance in underwater images. The RCT method can obtain high contrast and sharp images, but

cannot handle underwater bluish images. The STSC method can enhance detailed texture

information, but there is an image color imbalance. The UIE-WD method is not effective in

correcting colour deviation areas. The USLN method is effective in correcting underwater

Fig 6. Visualization of the comparision results for the UIEB and EUVP dataset.

https://doi.org/10.1371/journal.pone.0294609.g006
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image colors, but is somewhat over-processed (the processed image is bluish). The Semi-UIR

method is essentially the experimental deep learning method that shows the best results, how-

ever, the color treatment is still a little on the dark side and some of the image texture detail is

excessively smooth. Compared to the SOTA method, our proposed DC-net method obtains

optimal results.

2) Quantitative comparisons: To further illustrate the superiority of the proposed DC-net

network, we quantitatively compared the DC-net network with several SOTA methods, and

Table 1 shows the average scores of the test set of enhanced images. We observed that (1) the

physical model approach (UDCP, MIP) received lower scores, but not necessarily the physical

model approach (CLAHE) scored worse than the deep learning approach. (2) The most SOTA

methods can only achieve optimal or sub-optimal scores on one indicator. (3) Our proposed

DC-net method is capable of achieving optimal or sub-optimal scores on multiple indicators.

Comprehensive comparisons on the synthetic underwater dataset

1) Qualitative comparisons: We validated the superiority of our method on two underwater

image datasets (SUID and SUID1 datasets) in a synthetic environment. As shown in Fig 7, the

first to fourth rows show the results for the SUID1 datasets, specifically, the first row shows the

results for the bluish datasets, the second row shows the results for the greenish datasets, the

third row shows the results for the hazy datasets and the fourth row shows the results for the

low-light datasets. The fifth to eighth rows show the results of the SUID datasets, specifically,

the fifth row shows the type1 data result, the sixth row shows the type7 data result, the seventh

row shows the type-IA data result and the eighth row shows the type-II data result. Overall, the

results handled by the deep learning methods are better than those of the conventional meth-

ods. The UDCP method is largely unable to deal with underwater images on the SUID1 data-

sets and increases the color deviation of different types of data on the SUID datasets. The MIP

method is largely unable to treat underwater images in the SUID1 datasets and is able to han-

dle underwater images with small degradation but did not have large degradation in the SUID

datasets. The CLAHE method was able to obtain corrected results on both datasets but did not

Table 1. Underwater image quality evaluation of different enhancement methods on real world underwater image. The best results are marked in bold.

Dataset Method UDCP MIP CLAHE CBF CWR STSC RCT USLN UIE-WD Semi-UIR DC-net

UIEB PSNR 16.7919 17.8031 20.4559 17.5358 24.2923 24.4637 21.1268 20.6428 25.5452 26.6932 25.7896

SSIM 0.7013 0.7061 0.8424 0.5593 0.8599 0.8767 0.7327 0.8662 0.8948 0.9162 0.9234

UCIQE 5.1428 5.8425 4.4639 4.9489 4.8876 4.9528 4.6332 4.6029 4.6444 4.7619 5.8652

UIQM 0.3597 0.8318 0.8893 0.9900 0.7868 0.7752 0.8820 0.8448 0.7696 0.9061 1.1365

NIQE 4.3192 3.4302 3.3866 7.3073 4.8359 3.5843 3.4521 3.4164 4.1452 4.7917 3.0237

CCF 15.1024 16.8057 24.2353 25.9499 20.7870 29.2773 27.0381 24.7450 29.8479 33.8201 29.9591

Entropy 6.6726 6.7001 7.5984 7.3671 7.6141 7.6651 7.6716 7.5914 7.6076 7.7285 7.7608

TM 0.6095 0.9869 1.3232 0.2516 1.0789 1.3111 1.2415 1.3457 0.9172 2.6749 2.8847

EUVP PSNR 21.0929 18.5540 19.3063 19.6040 22.3492 21.4512 20.9443 21.1535 22.3269 21.3406 22.8644

SSIM 0.63097 0.5969 0.6739 0.5168 0.7355 0.7429 0.7519 0.7433 0.7672 0.7228 0.7686

UCIQE 5.3084 6.6723 4.9955 5.6333 4.6934 4.3411 4.2699 4.1550 4.1247 3.7065 4.0983

UIQM 0.2749 0.6521 0.7413 1.3818 0.5099 0.6618 0.7342 0.6566 0.6266 0.8234 0.8799

NIQE 4.8112 5.1773 4.9955 7.8387 4.9757 4.8586 4.9828 4.5724 5.0132 5.7554 4.7856

CCF 18.1335 19.6725 24.1538 23.2991 25.7165 32.6928 30.7340 30.6621 30.8694 34.6832 30.5613

Entropy 7.1441 6.9491 7.7634 7.4891 7.6125 7.6754 7.6661 7.6729 7.6456 7.7194 7.8472

TM 0.9428 1.0104 1.2058 0.3008 1.1972 1.4833 1.4311 1.5141 1.4088 1.4239 1.5374

https://doi.org/10.1371/journal.pone.0294609.t001
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handle the results of the large degradation underwater images very well. The CBF method is

able to correct the small degraded underwater images, but at the same time makes the results

of the large degraded underwater images worse, in addition to the large color deviations recov-

ered. The CWR method can deal with all kinds of underwater degradation, but there are some

deviations in the results for underwater images with large degradation obtained by the differ-

ent methods, indicating that the different ways of composing underwater images affect the

results of the subsequent algorithms. The RCT method can handle the degradation of under-

water images but with some color distortion. The STSC method is capable of showing the

details of the underwater images, but the color recovery is imbalanced. The UIE-WD method

is better on the SUID1 datasets, but the images are bluish on the SUID datasets. The USLN

method is somewhat over-processed, with some areas of the small degraded images in the

SUID datasets excessively enhanced and the large degraded underwater images greenish in

color. There is a layer of haze in the low-light treated images in the SUID1 datasets. The Semi-

UIR method gives the best results for the deep learning method, but the local texture is rela-

tively unsmooth and the color recovery is unbalanced in some areas. Compared to the SOTA

method, our proposed DC-net method obtains optimal results.

2) Quantitative comparisons: To demonstrate the superiority of the propose DC-net net-

work for multiple types of underwater images, we quantitatively compare the SOTA method.

Table 2 shows the average scores for the enhance image test set, with bold markers indicating

optimal results. We observe that (1) Underwater image enhancement methods have different

enhancement results for datasets synthetic by different methods (SUID and SUID1). Multiple

SOTA methods scored lower on test sets of multiple types of blended underwater images. (2)

The propose DC-net method does not necessarily work better on the synthetic dataset than on

the real dataset, possibly due to multiple types of water images (different image domains). (3)

Our propose DC-net method scores highest than the current SOTA method on several

metrics.

Ablation study

We designed ablation experiments on the UIEB and SUID1 dataset. All experiments were

trained for 200 epochs by default, with the same model parameter settings.

Fig 7. Visualization of the comparision results for the SUID and SUID1 dataset.

https://doi.org/10.1371/journal.pone.0294609.g007
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Effectiveness of the texture sub-network. First of all, we use the network of the unet-like

as a baseline network and train it with the reference loss of the texture. We add different com-

ponents to the baseline network, i.e. (a) -w/ MSA, which adds MSA to the baseline network.

(b) -w/ MSA(Block), which adds the block branch of the MSA to the baseline network. (c) -w/

MSA(Grid), which adds the grid branch of the MSA to the baseline network. (d) -w/ MCA,

which adds the MCA to the baseline network. (e) -w/ MCA(Block), which adds the block

branch of the MCA to the baseline network. (f) -w/ MCA(Grid), which adds the Grid branch

of the MCA to the baseline network. (g) -w MSA-MCA, denotes our proposed texture sub-net-

work. Table 3 and Fig 8 show the results of the ablation study. the results of MSA are able to

highlight the foreground information of the image, but the image information is meshed. the

colors of the results of MCA are not well balanced. the results of MSA-MCA are able to achieve

pleasing visual effects. MSA-MCA has the highest PSNR and SSIM values from the quantita-

tive results.

Effectiveness of the color sub-network. We use the texture subnetwork to extract image

features as the baseline network, and we use colour reference loss for training. We add differ-

ent components to the baseline network, i.e. (a) -w/ GE, which adds the GE module to the

Table 2. Underwater image quality evaluation of different enhancement methods on synthetic underwater image. The best results are marked in bold.

Dataset Method UDCP MIP CLAHE CBF CWR STSC RCT USLN UIE-WD Semi-UIR DC-net

SUID PSNR 14.5019 13.9203 14.8259 14.4121 16.2471 18.7013 13.3979 19.5514 13.9377 21.5274 23.5689

SSIM 0.5447 0.6047 0.6600 0.5622 0.7017 0.7599 0.4078 0.8048 0.7076 0.7718 0.8924

UCIQE 4.9091 4.2759 3.5572 3.2478 4.1631 2.9898 3.5046 3.8039 3.8761 3.7686 5.8142

UIQM 0.1034 0.3273 0.5329 0.6181 0.6177 0.4247 0.6594 0.4948 0.7582 0.6178 1.0562

NIQE 4.8422 5.0255 4.3473 7.3315 4.9020 4.6070 3.4997 4.1691 4.1190 5.0392 3.0257

CCF 23.9036 27.7786 18.1895 24.0018 17.1392 21.7244 21.9391 17.8568 18.2202 32.9985 27.7878

Entropy 6.5192 6.3131 6.9827 6.4717 7.3101 6.9391 7.1755 7.1478 7.0309 7.4899 6.9424

TM 0.3581 0.4068 0.4925 0.2545 0.5246 0.5217 0.4946 0.4926 0.5327 0.9872 0.6671

SUID1 PSNR 9.7133 10.2424 15.6405 10.4744 23.1442 19.0151 15.2545 17.4636 18.1117 21.2159 17.4696

SSIM 0.4398 0.4906 0.8045 0.5591 0.8575 0.8370 0.4033 0.8029 0.8831 0.8248 0.8927

UCIQE 4.2731 3.4564 4.0738 2.0667 4.4481 2.7441 3.4401 3.1109 5.6343 4.0839 4.9095

UIQM 0.2155 0.1834 0.4902 0.8349 0.7723 0.6297 0.8958 0.6706 1.1650 1.2052 0.7316

NIQE 4.0451 4.1703 4.0014 9.8531 3.8408 4.0439 3.6395 3.6606 3.8414 5.0353 3.4743

CCF 22.3801 27.7787 21.8966 25.4535 23.3458 20.0900 23.8327 20.8888 24.2148 31.1499 29.9331

Entropy 6.3285 6.5752 7.0813 6.4653 7.4254 6.9102 7.1917 7.1478 7.3515 7.4236 7.6184

TM 0.7146 0.6936 1.1323 0.2312 1.3201 1.1840 1.2720 1.2571 1.3820 2.1674 1.2258

https://doi.org/10.1371/journal.pone.0294609.t002

Table 3. Ablation studies of the texture sub-network.

Method MSA MCA UIEB SUID1

Block Grid Block Grid PSNR" SSIM" PSNR" SSIM"

Baseline 20.7827 0.8152 14.9732 0.6784

-w/ MSA ✓ ✓ 24.3482 0.8994 16.283 0.7801

-w/ MSA(Block) ✓ 24.2147 0.8975 16.2105 0.7747

-w/ MSA(Grid) ✓ 23.9422 0.8976 15.6830 0.7631

-w/ MCA ✓ ✓ 24.2155 0.9009 16.1114 0.7822

-w/ MCA(Block) ✓ 23.6807 0.8975 15.4049 0.7644

-w/ MCA(Grid) ✓ 24.0706 0.9001 16.0042 0.7694

-w/ MSA-MCA ✓ ✓ ✓ ✓ 24.5823 0.9012 16.9226 0.7930

https://doi.org/10.1371/journal.pone.0294609.t003
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baseline network. (b) -w/ FFM, which adds the FFM module to the baseline network. (c) -w/

GE-FFM, which is our proposed color sub-network. Fig 9 and Table 4. show the results of the

color sub-network ablation experiments. We can observe that: the colour sub-network is able

to extract more rich color information; each module is able to achieve higher scores than the

baseline to some extent; our proposed color network produces visually pleasing images but

overemphasises local image colors.

Effectiveness of the refinement network. We use the proposed simple connection (sum-

mation method) of the texture network and the colour network as the baseline and train with

the total reference loss. We add different components to the baseline network, i.e., (a) -w/ RN,

which adds the residual network to the baseline network. (b) -w/ RFN, Our proposed

Fig 8. Qualitative ablation results for each key component of the texture sub-network.

https://doi.org/10.1371/journal.pone.0294609.g008

Fig 9. Qualitative ablation results for each key component of the color sub-network.

https://doi.org/10.1371/journal.pone.0294609.g009

Table 4. Ablation studies of the color sub-network.

Method GE FFM UIEB SUID1

PSNR" SSIM" PSNR" SSIM"

Baseline 20.1767 0.8395 15.1776 0.6573

-w/ GE ✓ 22.5395 0.8983 16.6988 0.7783

-W/ FFM ✓ 22.2973 0.8723 16.1962 0.6969

-w/ GE-FFM ✓ ✓ 23.8591 0.8980 16.8622 0.7909

https://doi.org/10.1371/journal.pone.0294609.t004
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refinement network is added to the baseline network. Fig 10 and Table 5 show the results of

the color ablation experiments.

Application tests

Structural enhancement. To verify the structural enhancement superiority of the DC-net

method, we use a blind contrast enhancement assessment method [47] to qualitatively and

quantitatively evaluate the method. As shown in Fig 11, we can observe the following phenom-

ena. 1) A high number of recovered edges is not a valid indication of the effectiveness of the

enhancement algorithm, e.g. the UDCP and CBF methods are able to obtain a higher number

of edges, but the noisy targets are also enhanced, leading to the objective confusion phenome-

non. 2) The underwater image enhancement algorithm treats the synthetic image better than

the real underwater image, showing that there are still some inherent differences between the

synthetic underwater image and the real underwater image. 3) The structure of the underwater

images handled by the advanced deep learning methods is more visible than the structure of

the underwater images handled by the traditional learning methods. Among them, Semi-UIR

was able to obtain the best results but yielded results with fewer target details to show. 4) The

DC-net method is able to enhance the image target base and bring out more detail, e.g. the

DC-net method shows a higher number of recovered edges than the Semi-UIR method.

Underwater image segmentation. We use the segment anything algorithm [48] on the

resulting image enhanced by all methods to detect as many targets as possible in the image. As

shown in Fig 12, we can observe the following results 1) The results of different enhancement

methods (low-level task) for underwater images do not show a positive correlation with image

Fig 10. Qualitative ablation results for each key component of the refinement network.

https://doi.org/10.1371/journal.pone.0294609.g010

Table 5. Ablation studies of the refinement network.

Method RN RFN UIEB SUID1

PSNR" SSIM" PSNR" SSIM"

Baseline 24.8325 0.8939 17.0236 0.8007

-w/ RN ✓ 25.6606 0.9164 17.2804 0.8470

-w/ RFN ✓ 25.7896 0.9234 17.4696 0.8927

https://doi.org/10.1371/journal.pone.0294609.t005

PLOS ONE Underwater image enhancement using Divide-and-Conquer network

PLOS ONE | https://doi.org/10.1371/journal.pone.0294609 March 5, 2024 17 / 23

https://doi.org/10.1371/journal.pone.0294609.g010
https://doi.org/10.1371/journal.pone.0294609.t005
https://doi.org/10.1371/journal.pone.0294609


segmentation (high-level task). For example, the segmentation of conventional enhancement

results (MIP, CLAHE) is not necessarily worse than the segmentation of deep enhancement

results (USLN). 2) The image enhanced by DC-net proposed method is able to segment more

targets with clear boundaries.

Underwater depth map estimation. We use a monocular depth estimation method [49]

to handle the original underwater image and to enhance the depth map of the underwater

image. As shown in Fig 13, the depth map of the image enhanced by the DC-net method con-

tains finer and more accurate content than the enhanced images of other methods.

Extension to image enhancement

The DC-net method proposed in this paper not only achieves better results in the field of

underwater image enhancement but also makes an important breakthrough in the field of

weakly light [50], de-hazy [51], and de-rain [52] images. As shown in Fig 14, the DC-net

Fig 11. Comparison of the results of structural enhancement. The red numbers indicate the number of visible edges

recovered by the algorithm, the first row shows the results of the real image treatment and the second row shows the

results of the synthetic image protection.

https://doi.org/10.1371/journal.pone.0294609.g011

Fig 12. Underwater image segmentation results.

https://doi.org/10.1371/journal.pone.0294609.g012
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method is able to remove the effects of low light better in low visibility and contrast low light

images. In images with different degrees of rain, we can process light rain images to achieve

the expected results, but the recovery of heavy rain images is a bit worse, and traces of rain

drops processing still appear in the recovered images. In images with fog, the DC-net method

is able to obtain results with a natural appearance and clear details.

Section 5: Conclusion

In this paper, we propose a divide-and-conquer network (DC-net) for underwater image dis-

tortion features based on the concept of decomposition feature learning. Specifically, in the

texture network, to improve the extraction of texture feature information, we propose a multi-

Fig 13. Underwater image depth estimation results.

https://doi.org/10.1371/journal.pone.0294609.g013

Fig 14. Experiment with weakly light, de-hazy and de-rain images.

https://doi.org/10.1371/journal.pone.0294609.g014

PLOS ONE Underwater image enhancement using Divide-and-Conquer network

PLOS ONE | https://doi.org/10.1371/journal.pone.0294609 March 5, 2024 19 / 23

https://doi.org/10.1371/journal.pone.0294609.g013
https://doi.org/10.1371/journal.pone.0294609.g014
https://doi.org/10.1371/journal.pone.0294609


axis attention module to enhance the feature extraction capability of the network. In the color

network, we design a LUTs module with fused features as input to achieve adaptive enhance-

ment of color features. In addition, in order to reduce the possible negative impact of wide-

range LUTs weights on underwater images, we propose a special gamma curve enhancement

module, which can effectively mitigate its negative impact. Then, the enhanced results of the

color and texture sub-networks are further integrated into the fusion module to obtain the

enhanced results. Our proposed method is tested on a large number of underwater datasets to

obtain state-of-the-art results.

Although we propose that DC-net networks can be effective in enhancing underwater

images, there are however some limitations. First, as the method proposed in this paper per-

forms feature fusion through a dual-stream network, it yields better results and also leads to

the disadvantage of being computationally intensive. Second, many recent methods have

shown that frequency domain methods can work in image enhancement, however, the method

proposed in this paper only considers spatial domain image enhancement and does not con-

sider recovering images from the frequency domain. Our future work will focus on addressing

these issues.
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