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Abstract

Air pollution poses a threat to human health. Public perceptions of air pollution are important

for individual self-protection and policy-making. Given the uncertainty faced by residence-

based exposure (RB) measurements, this study measures individuals’ real-time mobility-

based (MB) exposures and perceptions of air pollution by considering people’s daily move-

ment. It explores how contextual uncertainties may influence the disparities in perceived air

quality by taking into account RB and MB environmental factors. In addition, we explore fac-

tors that are related to the mismatch between people’s perceived air quality and actual air

pollution exposure. Using K-means clustering to divide the PM2.5 values into two groups, a

mismatch happens when the perceived air quality is poor but the air pollution level is lower

than 15.536μg/m3 and when the perceived air quality is good but the air pollution level is

higher than 15.608μg/m3. The results show that there is a mismatch between air pollution

exposure and perception of air pollution. People with low income are exposed to higher air

pollution. Unemployed people and people with more serious mental health symptoms (e.g.,

depression) have a higher chance of accurately assessing air pollution (e.g., perceiving air

quality as poor when air pollution levels are high). Older people and those with a higher MB

open space density tend to underestimate air pollution. Students tend to perceive air quality

as good. People who are surrounded by higher MB transportation land-use density and

green space density tend to perceive air quality as poor. The results can help policymakers

to increase public awareness of high air pollution areas, and consider the health effects of

landscapes during planning.

1 Introduction

Air pollution exposure is one of the most important risk factors for human health. Past studies

have found that exposure to fine particulate matter was associated with overweight and obe-

sity, cardiovascular disease, early death, and neuro-developmental outcomes [1, 2]. Exposure
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to air pollution also influences mental health, including cognitive function, sleep disturbance,

subjective well-being, aggressive behavior, social stress and depression [3, 4]. In recent years,

people are thus paying more attention to air pollution and making some efforts to mitigate its

harmful health impacts, such as wearing masks using air purifiers and installing exhaust hoods

in kitchens. However, some people may not be able to respond to severe air pollution quickly

due to a lack of relevant knowledge of air pollution. They may not understand or recognize the

harmful impacts of air pollutants. Therefore, exploring whether people’s perceptions of air pol-

lution align with the actual (i.e., objective) levels of air pollution is crucial for responding to its

impacts on people’s physical and mental health.

Research on environmental risk perception seeks to understand the difference between

expert and lay perceptions of risk [5]. Experts measure and learn about air pollution based on

its concentrations, components, and statistical evidence of air pollution’s adverse health

impacts on human beings. While lay public perceptions of air pollution are affected by people’s

sensory clues, their socioeconomic status, health status and habits, and so on [6]. Specifically,

the visibility and odors of air pollutants are found to be the fundamental elements of public

perception [7]. For example, previous studies showed that there was a correlation between air

dust perception and air quality perception, indicating that people perceive air quality by the

visual effects of particles and dust [8–10]. People can recognize air pollution sources such as

garbage, smoke and low visibility of the air [6]. They can also sense air pollution through the

pungent smells from drainage channels, factories and toilets in communities [11]. Therefore,

sensory awareness plays a fundamental role in forming public the perception and subsequent

responses to air pollutants [12].

Studies have also found that air pollution perception is influenced by socioeconomic and

demographic factors. For example, older, more conservative, female, and ethnic-minority peo-

ple who have been exposed to environmental risks are likely to perceive that they face greater

environmental risks [13]. Perceptions of poor air quality were associated with low-income,

married and divorced/separated/widowed people [14]. Well-educated people were likely to be

more informed about the adverse health effects of air pollution, which may lead to higher levels

of perceived risk [15, 16]. Watching local TV news increased people’s knowledge about air pol-

lution and further increased perceived environmental risks [13].

Besides socioeconomic factors, people’s health status and previous experiences with air pol-

lution may also influence how they assess air quality. Those who have suffered from severe

haze pollution may be more likely to discern air pollutants and take measures to protect them-

selves during heavily polluted days [15]. Self-reported health status is also linked to the percep-

tion of air pollution since people with illness would pay more attention to the harmful sources

that might threaten their health [17]. People who had a medical history of hay fever and symp-

toms of headache, dizziness, breathing difficulties, or exhaustion perceived the air to be dustier

than other groups [17, 18].

Air quality perception is also influenced by environmental conditions. Higher humidity

might lead to lower visibility, which may lead to people’s perceptions of poor air quality given

their visual sense of air quality [19]. People perceived air as very clean when the weather is cool

and dry, while people perceived warm and highly humid air as stuffy even if the air is clean

[20]. Green space is found to mitigate people’s negative perceptions of air quality [21]. People

are also aware that poor air quality had negative health consequences in commuting [22].

Some people who suffered from previous air pollutants would change their transportation

modes to reduce harm, meaning that they are aware of transportation as an air pollution emis-

sion source [15].

People tend to believe that the air quality in their neighborhoods is better than that in other

neighborhoods, known as the “neighborhoods halo effect” [5]. Besides, it is found that people’s
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perceptions of air pollution relate to which activity they conduct. People tend to perceive air

pollution to be less serious when the activities’ benefits outweigh the harms caused, such as

running outdoor [5]. Although previous studies have provided a fundamental understanding

of people’s perceived air pollution, they did not explore whether people would overestimate or

underestimate air pollution in their surroundings and which groups of people would overesti-

mate or underestimate air pollution. Understanding whether people’s perceptions of air pollu-

tion align with actual air pollution levels would provide crucial knowledge of public attitude

towards air quality. Therefore, this study aims to explore the influencing factors of people’s

perception of air pollution, whether there is a mismatch between actual and perceived air pol-

lution, which social groups tend to misinterpret air pollution, and the environmental factors

that contribute to the mismatch.

One important factor deserves special attention when exploring the association/mismatch

between actual and perceived levels of air pollution: the geographic context used to delineate

mobility-dependent environmental factors. Past studies usually adopted static methods to

measure air pollution from monitoring stations and measured environmental factors, such as

green space, traffic conditions, or facilities around people’s residential neighborhoods [23, 24].

However, using people’s residential location as the geographic context may not reveal how

much air pollution they are actually exposed to because people travel to various locations and

are also exposed to these non-residential contexts [25, 26]. Using only the residential location

thus cannot capture how people interact with and interpret the air quality in different geo-

graphic or activity contexts [9]. People’s awareness of good or poor air quality may be influ-

enced by environmental factors in the places they visited and at locations other than their

residential neighborhoods. Air pollution concentrations, traffic conditions, building density,

green space, and social facilities vary over space and time [27]. Therefore, air pollution levels

and environmental factors could be significantly different when measured using a static versus

dynamic approach, which further leads to the uncertain assessment of the links between air

pollution and air quality perception. Previous studies’ ignorance of mobility-based (MB) geo-

graphic contexts would lead to the uncertain geographic context problem (UGCoP) [28]. The

UGCoP is the problem that the measurement of environmental exposures might be different

due to the use of different delineations of geographic or environmental context, which could

further affect the conclusions of environmental impacts on health outcomes.

There are several methods for tackling the potential bias caused by static air pollution mea-

surements. The first and direct measurement method is measuring individual real time air pol-

lution exposure using portable sensors. For example, Zhang et al. used the RB and MB

approaches to estimate environmental exposures and explored the association between envi-

ronmental exposures and mental health [29]. They found that the MB approach has a higher

explanatory power for mental health than the RB approach. Another method for estimating

individual MB exposure is using exposure equation based on people’s body weight, respiratory

rates, indoor to outdoor air pollution concentrations, and time-activity patterns based on air

pollution monitoring stations data [15]. Studies usually obtained hourly or daily air pollution

monitoring station data and estimated air pollution in the whole study area based on spatial

interpolation, combined with satellite data, or air dispersion models [27, 30, 31]. A study esti-

mating individual air pollution exposure by monitoring stations air pollution data and expo-

sure equation found a correlation between individual exposure levels and risk perception of

PM2.5 [15].

To sum up, this study seeks to explore: (1) the social, economic, demographic and environ-

mental factors that influence people’s perceptions of air pollution, and (2) whether there is a

mismatch between actual (objectively measured) air pollution and perceptions of air pollution

and how addressing the UGCoP could mitigate such mismatch. This study measured MB air
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pollution to reduce the potential bias caused by using only residence-based (RB) exposure

in exploring the influencing factors of air pollution perception and the mismatch between

objective and perceived air quality. Specifically, we used GPS and portable sensors in our

study to collect real-time data on participants’ location and exposure to particulate matter,

temperature, and relative humidity (RH). In other words, participants’ exposures when con-

ducting their daily activities in specific environments are recorded, reflecting the most accu-

rate measurement of real-time air pollution exposure. In this way, the association between

actual and perceived air quality can be investigated in depth with high precision. This study

also adopted two methods to measure environmental factors, residence-based (RB) and

mobility-based (MB) methods to explore how UGCoP could affect the association between

influencing factors of air pollution perceptions and the mismatch between actual and per-

ceived air quality.

2 Dataset and methods

2.1 Study area

The study area for this research is Hong Kong (HK). 40% of the land in HK is designated as

country parks or special areas for nature conservation [32]. Only around 25.40% of the land

resources are built-up areas [33]. Therefore, HK has a high building density and crowded

urban areas that are surrounded by open, natural green landscapes and wildlife habitats. It has

few integrated landscapes in the urban areas [34, 35], such as the districts of Sham Shui Po,

Kwun Tong, Kowloon City and Yau Tsim Mong [36]. Due to the high population and building

density and extensive use of the transit-oriented development (TOD) model [37], approxi-

mately 90% of the passenger trips in HK are made by public transport, which is among the

highest in the world [38, 39]. Private cars carry only 16% of the total daily road-based passen-

ger boarding but account for about 40%-70% of the total traffic flow on most of the major

roads, which causes serious traffic congestion [40]. The average traffic speed on Hong Kong

Island (HKI) is the lowest among the three regions (HKI, Kowloon (KLN) and the New Terri-

tories (NT)) [40]. In HK, the primary sources of air pollutants are marine vessels, power plants,

and motor vehicles [41]. The two greatest air pollution challenges are local street-level pollu-

tion and regional smog.

Among all the communities in HK, we chose Sham Shui Po (SSP) and Tin Shui Wai (TSW)

as the study communities (Fig 1). SSP is one of the oldest developed areas in HK, with a very

high population and building density (e.g., an average population density of 62,695 per km2 in

2016 [42]). SSP also has the lowest median household income in the city [43]. SSP has many

sub-divided units (multiple subdivisions within one apartment), increasing the vulnerability of

residents to infectious diseases because of the inevitable close contact and lack of adequate

space for physical distancing [44]. SSP has lively economic activities, such as street markets,

electronic outlets, fabric stores, restaurants and food vendors [45]. TSW, being one of the

third-generation new towns, was developed as a residential town to provide private and public

housing to mitigate the high population densities in old urban areas [45, 46]. The northern

part of TSW was mainly developed for public housing [46]. TSW has a population density of

77,162 per km2 [47]. TSW has the sixth lowest median household income among the 18 dis-

tricts in HK [43]. Since the northern part of TSW is near ecologically sensitive areas, lower-

density housing developments are located in the north and east, whilst higher-density housing

developments are concentrated in the south and west in the northern part of TSW [46]. Due to

the failure to be self-contained and a spatial mismatch between housing and job opportunities,

people in TSW often travel long distances for work [47, 48].
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2.2 Data collection

We collected the data for this research from March 2021 to September 2021 through a strati-

fied quota sampling survey. In each of the two communities (SSP and TSW), participants were

recruited based on their age, gender, income and employment status from census sociodemo-

graphic data to ensure the representativeness of the samples. A total of 221 participants were

recruited and 210 participants with adequate and valid sensor records were included in this

study. In the survey, each participant carried an air pollutant sensor and a smartphone

equipped with GPS all the time for two consecutive days. The two days include one weekday

and one weekend day (i.e., Friday and Saturday, or Sunday and Monday) so that real-time air

pollution measurements in the two days can represent people’s exposure in a usual week. The

sensors record PM2.5 concentrations, relative humidity, and temperature at 1-second intervals.

Real-time location information at 1-second intervals was also recorded by the GPS. Besides,

participants were asked to fill out a questionnaire, which collected data about their socioeco-

nomic status, perceptions of air pollution, and self-reported physical and mental health. The

study protocol and survey instruments were reviewed and approved by the Survey and Beha-

vioural Research Ethics Committee of the authors’ university, and informed consent was

obtained from all participants. During our survey, which was conducted in low-risk periods of

COVID-19 in Hong Kong, there were no significant mobility restrictions compared to previ-

ous waves. When compared to the baseline day (the median value for the five-week period of

January 3 to February 6, 2020), COVID-19 community mobility reports showed a 36.5%

increase in visits to grocery and pharmacy stores, a 6.4% increase in visits to residential areas, a

9.3% decrease in visits to retail and recreation venues, a 7.3% decrease in visits to transit

Fig 1. Land use of the study area (Hong Kong).

https://doi.org/10.1371/journal.pone.0294605.g001
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stations, an 18.1% decrease in visits to parks, and a 5.8% decrease in visits to workplaces on

average [49]. In 2020, industrial activities decreased, air pollution concentrations decreased,

and air quality improved due to COVID-19 [50]. However, as the epidemic stabilized in 2021,

domestic economic activities and electricity demand rebounded, resulting in similar average

annual levels of PM2.5 (recorded by stationary monitoring stations) and increased levels of

PM2.5 (recorded by roadside stations) compared to 2020 [50, 51].

2.2.1 Mobility-based air pollution exposure measurement. We used the portable sensor

AIRBEAM-2 (https://www.habitatmap.org/airbeam) to record each participant’s real-time air

pollution exposure due to its relatively good performance [52, 53]. Since portable sensors may

sacrifice accuracy for convenience, we calibrated the portable sensors using DustTrak as a ref-

erence sensor based on a model we previously established [54]. The PM2.5 concentrations were

aggregated into 1-minute intervals based on the mean value to reduce minor fluctuations, and

each participant’s exposure to PM2.5 is measured by the average mean value of exposure for

the two survey days [55]. The histograms of the average mobile exposure of the two communi-

ties in the two survey days are shown in Fig 2. They indicate that the average exposure is right-

skewed, with more values concentrated on the left side of the distribution where the maximum

value falls into the range of 35–40 μg/m3. Most of the participants are exposed to 5–20 μg/m3

Fig 2. Average PM2.5 exposure in the two survey days in SSP and TSW.

https://doi.org/10.1371/journal.pone.0294605.g002

PLOS ONE Air pollution and air quality perception mismatch

PLOS ONE | https://doi.org/10.1371/journal.pone.0294605 February 27, 2024 6 / 24

https://www.habitatmap.org/airbeam
https://doi.org/10.1371/journal.pone.0294605.g002
https://doi.org/10.1371/journal.pone.0294605


of PM2.5. There are more participants in SSP than in TSW with air pollution exposures

between 5–25μg/m3 while more participants in TSW are in the value range from 25–35μg/m3.

In the following sections, we use PM2.5, air pollution exposure, or air quality interchangeably,

and they have the same meaning.

2.2.2 Measurement of air pollution perceptions. In the survey, participants’ perceptions

of air pollution were assessed by asking “How serious is air pollution in the places you visit in a

usual week?”. The answer was recorded on a six-point scale, with 1 representing “not at all”

and 6 “very serious.” The basic statistics of participants’ air pollution perceptions shown in

Table 1 indicate that a higher percentage of people in SSP think air pollution is “a little serious”

and “serious” while more people in TSW think air pollution is “not serious” and “not very

serious”.

2.2.3 Measurement of mental health status. In the questionnaire, participants reported

their mental health symptoms through four response items, including feeling “nervous”, “wor-

ried”, “depressed” and “no interest in things”. How frequently participants experienced such

feelings over the past two weeks was recorded on a six-point scale where 1 represents “never

have such a feeling” and 6 represents “always have such a feeling”. The mental health score was

calculated by summing all the corresponding items’ scores [56]. The Cronbach’s alpha of the

mental health score is 0.887, indicating good internal consistency and validity. This is also

reflected in Fig 3, which indicates that the distributions of all mental health responses have

similar patterns, where the highest proportion of all mental health response items is

“sometimes”.

We summarized the average and median values of each mental health response item. The

average values of the response items range from 3.167 to 3.705, fluctuating around 3.5((1+6)/

2). The median value of “nervous” and “no interest” is 4, indicating that more than 50% of par-

ticipants reported they “often” or “always” have such a feeling. The median value of “worried”

and “depressed” is 3, indicating that more than 50% of participants seldom feel worried or

depressed.

2.2.4 Measurement of residence-based and mobility-based environmental factors.

Environmental factors in this study are specific types of land use or facilities: transportation

land-use density, green space density, open space density, facilities and population density.

Data were obtained via the HK Government’s GeoData Portal [57]. Transportation land-use

density, green space density, and open space density were calculated based on the 10m×10m

raster land utilization data in HK (2020), which have 27 land use types. Green space was repre-

sented by “grassland”, “shrubland”, and “woodland” out of 27 land-use types. Open space is

represented by “open space and recreation” out of 27 land-use types. Open space includes

many elements, such as parks, playgrounds, sports centers, pools, conservation areas, picnic/

barbeque spots, beaches, and so on [58]. Transportation land-use is represented by four land-

use types, namely “roads and transport facilities”, “railways”, “airport”, and “port facilities”.

The facility data were obtained from the Nearby API in the HK GeoData Store. This API can

identify facilities within 1 km of a given location, including car parks, hostels, toilets, post

boxes, convenience stores, shopping malls, markets, and so on. We covered the spatial extent

of HK with 1415m×1415m grids (note that the diagonal of a grid with a 1km width is

Table 1. Participants’ perception of air pollution in the study communities.

Neighborhood Not at all Not serious Not very serious A little serious Serious Very serious

Code 1 2 3 4 5 6

SSP 0.0% 3.8% 17.6% 19.5% 9.0% 0.0%

TSW 0.0% 7.1% 19.5% 17.6% 5.7% 0.0%

https://doi.org/10.1371/journal.pone.0294605.t001
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approximately 1415 meters). We then obtained the locations of all facilities in these grids and

then measured RB and MB exposures.

This study adopted two methods to measure participants’ exposures to environmental fac-

tors: the RB and MB methods. Each participant’s RB exposures to environmental factors were

measured by a series of circular or ring buffers around his/her residential location since it has

been shown that the ring buffer could best capture the effects of environmental factors in peo-

ple’s residential neighborhoods on their health outcomes [59]. This research created circular/

ring buffers with distances from 50m to 500m with 50 m intervals (50m, 50m-100m, 100m-

150m, 150m-200m, 200m-250m, 250m-300m, 300m-350m, 350m-400m, 400m-450m, 450m-

500m) [60], calculated RB environmental factors in these rings, and conducted a sensitivity

analysis with environmental factors in each of the circular/ring buffers respectively. The results

are similar with a slight difference. Finally, this study selected the ring buffer distance which

has the highest explanatory power in the final model. Each participant’s MB environmental

factors were calculated with a similar method, except that we used GPS points in the two sur-

vey days as input to generate circular/ring buffers. To reduce the computational intensity and

standardize the measurement, the GPS points were integrated into 1-minute intervals to

obtain the MB exposures. We calculated the MB and RB transportation land-use density,

Fig 3. Distribution of mental health response items.

https://doi.org/10.1371/journal.pone.0294605.g003
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green space density and open space density, which is the percentage of the area of a specific

land-use type in the total area of a ring buffer.

The population data were obtained from the HK Census and Statistics Department [61].

The areal unit for these data is the Street Block (SB) for urban areas or the Village Cluster (VC)

in rural areas. The population density of each street block was calculated by dividing its popu-

lation by its area (/km2). Note that MB population density cannot reveal real-time population

density. Therefore, the population density was included only when using the RB method,

which is the population density of the street block where each participant’s home is located.

2.3 Analytical methods

We first applied linear regression to examine the association between participants’ MB air pol-

lution exposure and perceived air pollution. In this part, perceived air quality is the dependent

variable, while MB air pollution exposure, MB/RB environmental factor exposures, socioeco-

nomic status, and the mental health score are the independent variables. Since the dependent

variable is normally distributed, as shown in Table 1 and verified by a Shapiro-Wilks test, this

part uses linear regression to explore the association between the dependent variable and the

independent variables. Model 1 uses RB environmental factors and Model 2 uses MB environ-

mental factors.

We also explored whether people could perceive air quality relatively well or not. To achieve

this, we classify actual (objectively measured) air quality and perceived air quality into two

groups respectively. Actual air quality is divided into two groups (low: 3.208μg/m3 - 15.536μg/

m3, high: 15.608μg/m3-38.834μg/m3) based on using K-means clustering given that people’s

sense and comparison of air quality is embedded in the actual air quality contexts in Hong

Kong and official air quality guidelines (50μg/m3) are too coarse to create balanced sub-groups

[62]. Perceptions of air quality are classified into two groups (perceptions of air quality “Not at

all”, “Not serious”, “Not very serious” as good, and “A little serious”, “Serious”, “Very serious”

as poor). Therefore, the whole sample can be grouped into four types like a four-quadrant: (1)

low air pollution concentrations and perceptions of air quality as good (accurate estimation:

low-low), (2) high air pollution concentrations and perceptions of air quality as poor (accurate

estimation: high-high), (3) low air pollution concentrations and perceptions of air quality as

poor (overestimation: low-high), and (4) high air pollution concentrations and perception of

air quality as good (underestimation: high-low) (Fig 4). Since these four groups have no

numerical or ranking order among each other, we use multinomial logistic regression to exam-

ine which factors are prominent in each of the four groups. This part also includes two models,

where Model 3 uses RB environmental factors and Model 4 uses MB environmental factors.

All independent variables in the regression models are tested with multicollinearity diagnostics

and the Variance Inflation Factor (VIF) is less than 10.

2.4. Participants’ characteristics

The characteristics of the participants are shown in Table 2. We have 210 participants in total

and 105 in each community. When compared to data from the 2016 Census, our sample

closely mirrors the population demographics of SSP and TSW. Specifically, the gender propor-

tions in both SSP and TSW have a high similarity with that in the census. There is a lower per-

centage of females in SSP compared to census data and there is a slightly higher percentage of

female participants in TSW. For the age groups, the age group 25–44 in SSP is overrepresented

and the age group 45–64 is underrepresented. In TSW, there are higher percentages of people

in the age groups 18–24 and 25–44 than those in the 2016 Census and a smaller share of people

in the age group 45–64 in our sample than those in the 2016 Census. The monthly household
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income of the participants was divided into 7 groups: less than HK$9999, HK$10000–19999,

HK$20000–29999, HK$30000–39999, HK$40000–59999, HK$60000–79999, and more than

HK$80000, and they are coded from 1 to 7 respectively. To make a comparison with census

income data, the income groups are reclassified into 4 groups as shown in Table 2. In the

regression models, income is still represented as 7 groups. Income group 1 is underrepresented

in SSP and highly underrepresented in TSW. Income groups 3 and 4 in both SSP and SSP are

overrepresented. Higher percentages of the participants in SSP are employed and unemployed

and a lower percentage of the participants are students when compared to census data. In

TSW, the percentages of employed people and unemployed people among the participants are

smaller than those in census data and students’ share is larger than that in census data.

In the whole sample (Table 2), there are more females, people in the age group 25–44, par-

ticipants with an income range of HK$20000–39999 and employed participants. Education

levels 1 and 2 and education levels 5 and 6 have a large share of the participants. Half of the

participants are single. Most of them are renters who rent their dwelling units (instead of

being owner-occupiers), live in space smaller than 100 ft2, with a family size smaller than or

equal to 4. Most participants exercise for less than 3 days a week.

These sociodemographic attributes are included as the independent variables in the regres-

sion models. Gender, employment status, marital status, and homeownership are binary

Fig 4. Illustration of perception mismatch groups.

https://doi.org/10.1371/journal.pone.0294605.g004
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variables coded as 0 and 1. The following variables are continuous: age ranging from 18 to 64,

respiratory symptoms ranging from 3 (1×3 response items) to 18 (6×3 response items), physi-

cal exercise days in one week ranging from 0 to 7, mental health symptoms ranging from 4

(1×4 response items) to 24 (6×4 response items). Household income is an ordered categorical

variable, but for convenience, we process it as a continuous variable and code it with an integer

from 1 to 7, given that treating ordered categorical variables as continuous variables is reason-

able when the classes are larger than 5 [63]. Education level is an ordered categorical variable,

and we also code it with an integer from 1 to 6. Other independent variables are included in

S1 Table.

3 Results

3.1. Descriptive analysis of variables

3.1.1. Comparison between RB factors and MB factors. Table 3 provides the basic statis-

tics of the four environmental factors based on the RB and MB methods. Note that all the MB

mean values are higher than the RB mean values. The maximum value of MB transportation

Table 2. Descriptive statistics of participants’ characteristics.

Personal attributes Code Percent SSP TSW

Sample Census Sample Census

Gender

Male 0 45.2% 43.8% 46.7% 46.7% 46.3%

Female 1 54.8% 56.2% 53.3% 53.3% 53.7%

Age

18–24 - 18.6% 15.2% 14.3% 21.9% 15.7%

25–44 - 48.1% 47.6% 42.1% 48.6% 38.7%

45–64 - 33.3% 37.1% 43.6% 29.5% 45.6%

Household Income (HKD)

< 9999 1 9.0% 11.4% 23.1% 6.7% 19.7%

10000–19999 2 29.0% 35.2% 31.7% 22.9% 25.8%

20000–39999 3 37.1% 31.4% 27.3% 42.9% 34.4%

>40000 4 24.8% 21.9% 17.8% 27.6% 20.0%

Employment status

Employed 0 75.7% 78.1% 74.5% 73.3% 78.6%

Student 1 11.0% 8.6% 14.3% 13.3% 6.7%

Unemployed 1 13.3% 13.3% 11.2% 13.3% 14.8%

Education

Primary and below 1 2.4% 1.9% 2.9%

Secondary 2 33.8% 35.2% 32.4%

Post-secondary: Diploma/ Certificate 3 8.6% 11.4% 5.7%

Post-secondary: Sub-degree course 4 3.8% 4.8% 2.9%

Post-secondary: Degree course 5 40.0% 36.2% 43.8%

Master and above 6 11.4% 10.5% 12.4%

Marital Status

Never Married 0 52.9% 49.5% 56.2%

Divorced 1 8.1% 7.6% 8.6%

Married 1 36.7% 40.0% 33.3%

Widowed 1 2.4% 2.9% 1.9%

Separated 1 0.0%

https://doi.org/10.1371/journal.pone.0294605.t002
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land-use density is 100 times larger than that of RB transportation land-use density. The mini-

mum, maximum and mean values of facility density based on the two measurements are simi-

lar. This result indicates that the daily mobility of the participants tends to increase their

exposure to the four environmental factors.

We also conducted a nonparametric Mann-Whitney U test to examine whether the RB and

MB measurements of these four environmental factors are significantly different. The results

indicate that all environmental factors in each pair of RB and MB factors are significantly dif-

ferent from each other, suggesting the existence of the UGCoP. The results reveal that individ-

ual exposures to environmental factors may be different when different contextual areas (i.e.,

RB or MB) are used to derive them, and RB exposure cannot capture much of people’s expo-

sure in their activity spaces, indicating the necessity of using methods that can obtain more

accurate results.

3.1.2. Exposure disparity in groups. In this subsection, we used ANOVA and box plots

to show the variance of air pollution exposure between gender, age, income, and employment

groups. Shapiro-Wilks test and Levene’s test were conducted and passed before performing

the ANOVA. Table 4 shows that there is a significant exposure disparity between different

employment statuses and moderate exposure disparity among different income groups. Fig 5

also supports the results from Table 4 that exposures between different age groups and gender

groups do not vary much. However, there is an obvious high exposure in the low-income

group (<HK$9999) and the unemployed group.

3.2. Influencing factors of people’s perceived air pollution

Linear regression is applied to study the association between participants’ MB air pollution

exposure and perceived air pollution (Table 5). Model 1 has the highest R2 when the ring

buffer is between 100m-150m. Model 2 has the highest R2 when the ring buffer is between

350m-400m. The adjusted R2 of the two regression models are 0.163 for the RB model and

0.125 for the MB model. The two models found that there is no significant association between

air pollution exposure and perceived air quality. In the RB model, the coefficient for PM2.5 is

negative. In the MB model, the coefficient is positive.

Female participants tend to have positive assessments of the air quality in their surrounding

environments when compared to male participants (Model 1). In Model 2, the difference

Table 4. ANOVA analysis for four factors.

Gender Age Income Employment status

Anova sig 0.534 0.204 0.079 0.008

https://doi.org/10.1371/journal.pone.0294605.t004

Table 3. Description of residence-based (RB) and mobility-based (MB) environmental factors and significance levels of the Mann-Whitney U test.

Environmental exposures ring buffer Mean Std. Min Max Sig.

Transportation land-use density RB 100m-150m 3.10E-03 1.20E-03 2.30E-04 5.70E-03 <0.001

MB 350m-400m 2.70E-01 6.30E-02 7.30E-02 4.50E-01

Green space density RB 100m-150m 1.30E-04 3.80E-04 0.00E+00 2.90E-03 <0.001

MB 350m-400m 8.30E-02 6.70E-02 1.50E-03 3.50E-01

Open space density RB 100m-150m 6.30E-04 8.50E-04 0.00E+00 4.40E-03 <0.001

MB 350m-400m 1.00E-01 6.10E-02 5.60E-03 3.40E-01

Facility density RB 100m-150m 1.70E-04 1.50E-04 0.00E+00 7.60E-04 0.021

MB 350m-400m 1.30E-04 7.40E-05 1.20E-05 3.10E-04

Population density RB - 1.30E+05 6.60E+04 6.00E+03 3.50E+05 -

https://doi.org/10.1371/journal.pone.0294605.t003

PLOS ONE Air pollution and air quality perception mismatch

PLOS ONE | https://doi.org/10.1371/journal.pone.0294605 February 27, 2024 12 / 24

https://doi.org/10.1371/journal.pone.0294605.t004
https://doi.org/10.1371/journal.pone.0294605.t003
https://doi.org/10.1371/journal.pone.0294605


between men’s and women’s assessments is not as significant as that in Model 1 and the abso-

lute value of that coefficient in Mode 2 (1.718) is lower than that in Model 1 (2.016). Older peo-

ple give a good assessment of the air quality at the places they visited in a typical week and the

effect is stronger in Model 2 than that in Model 1. Compared to employed people, students

have a higher chance to give positive air quality assessments (Model 2), and this effect is stron-

ger than that in Model 1. People suffering from more serious mental health symptoms tend to

have more negative air quality assessments (Models 1 and 2). Widowed people tend to have

negative assessments of air quality in Model 2, with a higher coefficient for Model 2 when

compared to that in Model 1, at a significance level of 0.1. People whose daily movements are

surrounded by a higher density of MB transportation land use tend to have positive assess-

ments of air quality (Model 2). This effect is not significant in Model 1. Higher RB green space

density is associated with negative assessments of air quality (Model 1). The effect is weaker in

Model 2. Facility density is associated with perceived air pollution (p< 0.1) (Model 1), and the

effect is stronger in Model 1 than in Model 2.

3.3. Influencing factors of the mismatch between perceived air quality and

air pollution exposure

This subsection explores the relationships between the mismatch in air pollution perceptions

and actual air pollution and the influencing factors using multinomial logistic regression. In

multinomial logistic regression, one group is selected as the reference group so that the regres-

sion results can be interpreted as the relative significance compared to the reference group.

The accurate perception group (high-high) (i.e., no mismatch between actual and perceived

air quality: negative assessments of air pollution and high exposure) is selected as the reference

group and the regression results can be interpreted in relation to the reference group. To

Fig 5. Boxplot for exposure in sub-groups.

https://doi.org/10.1371/journal.pone.0294605.g005
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obtain a valid model, we include independent variables that significantly influence perceived

air quality in Models 1 and 2. Thus, the independent variables in this analysis include age, gen-

der, community (i.e., SSP or TSW), employment status, living space, respiratory symptoms,

relative humidity, mental health symptoms and the four RB and MB environmental factors.

Model 3 is an RB model and Model 4 is an MB model (Table 6). The pseudo R2 (Cox and

Snell) in the two models are 0.398 and 0.331, showing relatively good predictions.

Specifically, the regression coefficients indicate which predictors significantly discriminate

between participants whose perceived levels of air pollution are higher than, lower than, or

Table 5. Regression results of perceived air pollution (Model 1: Residence-based method (RB) and Model 2: Mobility-based (MB) method).

M1 RB (Ring buffer: 100m-150m) M2 MB (Ring buffer: 350m-400m)

Variables Coef. t value Coef. t value

(Intercept) 3.397* 2.121 3.392* 2.153

PM2.5 -0.005 -0.446 0.002 0.171

Gender (ref.: Male)

Female -0.290* -2.016 -0.235. -1.718

Neighborhood (ref.: SSP)

TSW -0.259 -1.397 -0.081 -0.476

Age -0.013 -1.373 -0.022* -2.555

Education level 0.053 0.861 0.037 0.618

Marital status (ref.: Never married)

Divorced 0.115 0.399 0.235 0.869

Married 0.222 1.109 0.302 1.551

Widowed 0.703 1.5 0.842. 1.739

Household income 0.044 0.768 0.012 0.228

Employment status (ref.: Employed)

Student -0.16 -0.714 -0.432* -2.016

Unemployed 0 0.002 -0.02 -0.103

Family member 0.021 0.33 -0.034 -0.55

House Ownership (ref.: rent)

Own without mortgage 0.061 0.287 -0.07 -0.377

Own with mortgage 0.058 0.29 -0.163 -0.905

Living space 0.013 0.133 0.097 1.116

Physical exercise 0.037 1.025 0.028 0.856

Relative humidity -0.006 -0.796 -0.014* -2.18

Temperature -0.008 -0.46 -0.003 -0.216

Population density 0 -0.708 0 -0.449

Transportation land-use density 89.6 1.414 2.593* 2.015

Green space density 351.500* 2.03 1.778. 1.668

Open space density -3.824 -1.415 0.002 0.069

Facilities density 1006.000. 1.681 1177 0.961

Respiratory symptoms 0.038 1.5 0.025 1.124

Mental disorder 0.059*** 3.63 0.051** 3.231

R2 0.298 0.237

Adjusted R2 0.163 0.125

Model’s P-value 0.002 0.002

Signif. codes: ‘***’: 0.001

‘**’: 0.01

‘*’: 0.05; ‘.’: 0.1; ‘‘: 1

https://doi.org/10.1371/journal.pone.0294605.t005
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similar to actual air pollution levels. The first set of coefficients in Model 3 and Model 4 repre-

sents comparisons between participants who have accurate perceptions (high-high) and those

who underestimate air quality (high-low). We found that age is associated with the underesti-

mation group (Model 4), meaning that older people tend to have a higher chance to have posi-

tive assessments of air pollution while they are exposed to higher levels of air pollution. This

effect is not significant in Model 3. Besides, people whose MB open space exposure is also posi-

tively related to the underestimation group (Model 4), meaning that people whose activity

spaces have a higher density of open space tend to have a higher chance to underestimate air

pollution when compared to the normal perception group. This association is not significant

in Model 3. Mental health symptoms are negatively associated with the underestimation

Table 6. Logistic regression of perception mismatch with normal perception (high-high) as the reference group (Model 3: Residence-based method (RB) and Model

4: Mobility-based (MB) method).

M 3 RB ring buffer 100m-150m M 4 MB buffer 350m-400m

Group Variables B Sig. B Sig.

Underestimation group Intercept -0.214 0.954 -5.065 0.141

Gender(ref.:Male)

Female 0.057 0.932 0.458 0.405

Neighborhood(ref.:SSP)

TSW 1.327 0.128 0.498 0.495

Age 0.023 0.452 0.049 0.06

Employment status(ref.:Employed)

Student 0.18 0.859 0.584 0.472

Unemployed 0.683 0.412 -0.017 0.981

Living space -0.32 0.389 0.083 0.8

Relative humidity 0.039 0.372 0.062 0.105

Transportation land-use density -54.702 0.855 -0.575 0.918

Green space density 382.369 0.605 3.336 0.471

Open space density 21.004 0.114 0.284 0.072

Facilities density 142.746 0.957 789.622 0.866

Respiratory symptoms -0.073 0.537 -0.119 0.209

Mental disorder -0.213 0.011 -0.143 0.044

Normal estimation group (low-low) Intercept 5.241 0.071 1.046 0.674

Gender(ref.:Male)

Female -0.047 0.932 0.17 0.712

Neighborhood(ref.:SSP)

TSW 0.314 0.66 -0.506 0.405

Age 0.008 0.758 0.032 0.149

Employment status(ref.:Employed)

Student -0.368 0.649 -0.255 0.71

Unemployed -1.272 0.123 -1.078 0.111

Living space -0.103 0.746 0.28 0.314

Relative humidity -0.013 0.667 0.01 0.688

Transportation land-use density -598.373 0.019 -2.464 0.582

Green space density -548.599 0.493 -3.018 0.437

Open space density 0.336 0.976 0.159 0.25

Facilities density -2624.455 0.261 -7112.959 0.105

Respiratory symptoms 0.032 0.744 0.012 0.873

Mental disorder -0.108 0.122 -0.115 0.06

(Continued)
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group, indicating that people with more mental health symptoms have a larger chance to per-

ceive air pollution negatively when they are exposed to poor air quality.

The second set of coefficients shows the factors influencing participants’ accurate percep-

tions (low-low). Participants’ RB transportation land-use density is negatively related to accu-

rate perceptions (low-low) (Model 3), meaning that people whose residential neighborhoods

have a higher density of transportation land use tend to have a higher chance to have accurate

perceptions (high-high), and they tend to give negative assessments of air quality when

exposed to have levels of high air pollution. This effect is not significant in Model 4. Mental

health symptoms are negatively associated with accurate perceptions (low-low) (Model 4). The

third set of coefficients shows the factors that influence the overestimation group. Compared

to employed people, students and unemployed people are negatively associated with the over-

estimation group (Model 4), meaning that they are more positively related to the accurate esti-

mation group (high-high). This indicates that compared to employed people, students and

unemployed people tend to have a higher chance to have higher exposure and negative assess-

ments of air quality. In Model 3, the effect direction is negative but less significant. Female par-

ticipants are negatively associated with the overestimation group compared to male

participants, meaning that they are positively related to the normal perception (high-high)

group in the RB model.

4 Discussion and conclusion

We first used RB and MB approaches to assess people’s multiple environmental exposures.

Using separate regression models, we found that using different approaches can generate dif-

ferent outcomes in the associations between people’s perceived air pollution with their multi-

ple environmental exposures and socio-demographic attributes. Specifically, we found that

Table 6. (Continued)

M 3 RB ring buffer 100m-150m M 4 MB buffer 350m-400m

Group Variables B Sig. B Sig.

Overestimation group Intercept 3.507 0.205 -1.152 0.643

Gender(ref.:Male)

Female -1.102 0.037 -0.491 0.276

Neighborhood(ref.:SSP)

TSW 0.169 0.812 -0.264 0.66

Age 0.003 0.9 0.021 0.331

Employment status(ref.:Employed)

Student -1.256 0.142 -1.343 0.076

Unemployed -1.011 0.208 -1.342 0.061

Living space 0 0.999 0.386 0.161

Relative humidity -0.034 0.235 -0.021 0.37

Transportation land-use density -149.144 0.56 4.492 0.323

Green space density 416.888 0.533 2.659 0.489

Open space density 2.267 0.84 0.202 0.161

Facilities density -1603.743 0.446 -2290.222 0.577

Respiratory symptoms 0.101 0.287 0.019 0.812

Mental disorder -0.011 0.867 -0.012 0.834

Pseudo R-Square Cox and Snell 0.398 0.331

Nagelkerke 0.425 0.353

McFadden 0.183 0.145

https://doi.org/10.1371/journal.pone.0294605.t006
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being older, a student and female, and relative humidity are positively related to perceptions of

good air quality, while transportation land-use density, green space density, and mental disor-

der are positively related to a negative assessment of air quality in the MB model. When

exploring our second objective of the mismatch between air pollution exposure and perception

of air pollution, we found that using MB environmental factors and RB environmental factors

could lead to different results. We found that older people and people who are exposed to

higher MB open space density tend to underestimate air pollution, while people with severer

mental disorders and unemployed people tend to have accurate perceptions of air pollution

(high exposure and perceptions of poor air quality).

Models using RB and MB exposures have different explanatory powers and the coefficients

and significance of each independent variable are also different. This study thus contributes to

the study of perception of air pollution by showing how the UGCoP might affect the influence

of environmental factors. Our study also conducted sensitivity analysis (S2 and S3 Tables). For

the same ring buffer distance, we found that the RB R2 and the Adjusted R2 are larger than the

MB R2 and the Adjusted R2 when the ring buffer distances are 100m-150m, 200m-250m, 300-

350m, 450m-500m, and are smaller than the MB’s R2 and the Adjusted R2 when the ring buffer

distances are 150m-200m, 250m-300m, 350m-400m, 400m-450m. The RB models are not sig-

nificant when the buffer distances are 50m and 50m-100m. Thus, these results showed that

using RB and MB exposures could generate different explanatory powers for the dependent

variable. However, caution should be paid to the RB and MB measurements and ring buffer

distances when exploring environmental effects on perception of air pollution.

Comparing the largest R2 and Adjusted R2 of the RB models and the MB models, we found

that the MB environmental factors have smaller explanatory power compared to the RB environ-

mental factors (i.e., the R2 in Model 1 is larger than that of Model 2, and the R2 in Model 3 is larger

than that of Model 4). This result indicates that influences of the RB and MB environmental fac-

tors are different over different spatial ranges. Besides, a previous study suggests that MB environ-

mental exposures tend toward the mean value when the corresponding RB environmental

exposures are much lower or higher than the mean exposure [64]. In other words, using the RB

approach to measure individual exposures to environmental factors could overestimate or under-

estimate the environmental impact on people’s perceived air pollution because it ignores the con-

founding effect of neighborhood effect averaging that arises from human daily mobility [27, 64].

Using MB real-time exposure, this study found no association between actual air pollution

exposure and people’s perception of air pollution. One possible explanation is that the actual air

pollution in Hong Kong is relatively low. The 24-hour average limit of PM2.5 in air quality guide-

lines in Hong Kong is 50μg/m3 [62], and the maximum PM2.5 concentration in our samples

(48-hour average) is below 40μg/m3. Besides, low levels of air pollution may lead to high visibility

and less detectable odor from pollutants than high levels of air pollution. The average score of per-

ceived air pollution in our study is 3.560, which represents a perception of slightly poor air quality.

People’s perception of air pollution, depending largely on sensory clues, might not recognize the

risk when the clues are not obvious, such as carbon monoxide [6, 11]. However, what we should

bear in mind is that continuous low levels of air pollution could produce crucial impacts on

human health [65]. Hence, our study also implies that people might underestimate the harmful

impact of air pollution on their health due to the continuously low level of air pollution exposure.

This study also identified socio-demographic groups that might have high exposure but

underestimate air pollution and examined how the UGCoP could influence such findings.

Gender difference in perceived air quality and perception mismatch (overestimation) was

observed only in the RB models but not the MB models. These findings indicate that RB mod-

els could potentially exaggerate gender differences in perceived air quality and perception mis-

match (perhaps due to differences in daily mobility between men and women).
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The effects of age on perceived air quality and the underestimation group are significant

only in the MB models. This finding is in line with a previous study that younger respondents

tend to perceive air quality worse than older respondents [14]. When assessing the difference

in perception of air quality, our study found that students tend to give positive assessments of

air pollution (p<0.05). However, when exploring the differences in perception mismatch, our

study found that students and unemployed people have a higher chance to have the accurate

perception (high exposure and negative assessment) (p<0.1). Comparing the significance

value, we conclude that students have a large tendency to think air quality is good. In other

words, our results suggest that students tend to underestimate their air pollution exposure.

This conclusion is inconsistent with results from [14]. Besides, unemployed people have signif-

icantly higher exposure (Table 4) and think air pollution is poor (Model 4, p<0.1). This result

might support the self-selection thesis of people with low income or without jobs staying in

environmentally polluted areas and their counterparts affording high-quality environments

[66, 67]. Their sense of poor living/working conditions and low income might be potential fac-

tors contributing to their negative and objective assessment of air pollution.

Higher transportation land-use density is related to negative assessments of air quality in

the MB models, and accurate estimation (high-high) in the RB models. These findings suggest

that using only RB models is not enough to capture the effects of transportation land-use den-

sity on air pollution perception and mismatch. Transportation contributes a substantial part of

air pollution [41]. Our results corroborate the previous studies that transportation is not only

related to air pollution but also associated with perceptions of poor air quality [15, 22]. The

traffic environment, such as traffic volume, traffic facilities, and transportation land-use den-

sity, might make people stressed and increase their worry about air pollution. Therefore, tar-

geted efforts aiming at reducing the traffic burden could help to reduce air pollution and

mitigate people’s concerns about air pollution.

Higher green space density is related to negative air quality assessments in the RB and MB

models with a more significant effect in the RB models than the MB models, demonstrating

that using RB models could overestimate the effect of green space density on air pollution

exposure and perceived air quality. This finding is in contrast with people’s impression that

more green space is related to good air quality [6]. Perhaps it is due to the fact that although

HK keeps 40% of land as green space, most green spaces are located in suburbs with large

areas, while green spaces in urban areas are relatively small and have many people socializing

and relaxing at these locations and with a higher visit frequency than suburban green spaces

[34, 35]. This situation might lead to people’s impression that frequently visited green spaces

in urban areas are associated with poor air quality. Even so, we should acknowledge the impor-

tance of green space in reducing air pollution and its restorative effect on mental health [68].

Open space includes parks, stadiums, playgrounds, and recreational facilities [69]. Higher

open space density is related to the underestimation group in the MB models, meaning that

people at these places tend to have a higher exposure but tend to give positive assessments of

air quality. People might perform physical exercise, entertain, and socialize at these parks or

stadiums voluntarily. Therefore, this result might indicate that people would think air pollu-

tion is less serious when they are conducting activities whose benefits outweigh the costs [5].

Higher relative humidity is related to perceptions of good air quality in the MB model

(Model 2). In Model 4, higher relative humidity is associated with the tendency to underesti-

mate air pollution situation (p = 0.105). When conducting our survey from March to Septem-

ber, HK had entered into the rainy season, which means that relative humidity and rain

volume are continuously higher than in other dry months. Rain would wash away air pollut-

ants in high relative humidity conditions, helping to reduce air pollution concentration [70].

Therefore, we conclude that people do not underestimate air pollution in high relative

PLOS ONE Air pollution and air quality perception mismatch

PLOS ONE | https://doi.org/10.1371/journal.pone.0294605 February 27, 2024 18 / 24

https://doi.org/10.1371/journal.pone.0294605


humidity conditions and people’s perceptions of good air quality in high relative humidity

conditions and rainy days are aligned with scientific findings.

Mental health symptoms are related to negative assessments of air quality in the RB and

MB models and are associated with accurate estimations (high-high) in the MB models, having

results similar to a previous study that better mental health was related to lower levels of per-

ceived air pollution in China, Japan and South Korea [71]. Another study exploring the influ-

encing factors of mental status found that it is the subjective perception of air pollution rather

than the objective measure of air pollution that influences people’s mental health [72]. Cogni-

tive representation of people’s environmental factors might play a fundamental role in mental

health [68]. And mental health might contribute to the psychological processing of environ-

mental factors and influence people’s perception of air pollution.

Public perceptions of air pollution stem from what people can see, hear, smell, feel, or have

suffered. Objective environmental factors are not perceived equally by different individuals.

Individuals’ subjective feelings about different environmental factors are crucial for assessing

environmental quality and mental health [72]. Public perception in microenvironments can be

a good dimension to assess the “livability” of a city [8].

These results have important implications. First, our study found that the association

between environmental factors and perception of air pollution could be different when RB and

MB measurements are used. Therefore, studies on mobility-dependent exposures need to rec-

ognize the UGCoP by considering people’s daily mobility. Environmental health research with

RB measurements neglects the spatial and temporal variations of mobility-dependent expo-

sures, which may lead to inaccurate results. Second, ignoring mobility and failing to address

the UGCoP might mislead policymakers when researchers explore the association between

mobility-dependent environmental factors and perception of air pollution. For example, our

study found that older people tend to underestimate air pollution only in the MB model, not

in the RB model. Therefore, public air pollution education (such as the nature and magnitude

of air pollution problems, emission sources, and related health risks) should be held, especially

for older people who tend to underestimate air pollution. This could increase people’s basic

knowledge about air pollution, rectify the misunderstanding of air pollution, and enhance

comprehension and cooperation among the public, environmental departments, and academic

communities [73]. Without using the MB method, policies might lose focus and have low effi-

ciency. Using the MB method, our study also found that transportation land-use density and

open space density are related to people’s perception of air pollution. Therefore, policymaking

should consider the psychological, cognitive, and mental health effects of landscapes when

planning our environment. Besides, people’s perceptions of the environment are quite

momentary and influenced by specific microclimates. Real-time and high-resolution spatial

information on air pollution could be provided to guide people’s daily activities and travel to

reduce their frequency and duration at high air-pollution microenvironments.

This research has several strengths. First, the methods used in our study can be generalized

to other cities and communities in Hong Kong. Our study has a well-designed approach in

exploring the association and mismatch between air pollution exposure and perception of air

pollution. In addition, our study used RB and MB environmental factors as independent vari-

ables in RB/MB models to examine whether the measurements could influence the association

and mismatch between air pollution and perception of air pollution. Other researchers with

similar goals could adopt our study design and methods. Further, as individual-level air pollu-

tion measurement becomes increasingly important for exploring exposure disparity, the

uncertainty of air pollution exposure estimation methods, and the association between envi-

ronmental risks and health outcomes, our survey method provides a basic framework for
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researchers to utilize portable sensors to conduct research measuring real-time individual-

level environmental exposure.

There are several limitations in our study. First of all, our study used DustTrak as a refer-

ence sensor and calibrated air pollution exposure based on its measurement. DustTrak is pre-

cise when measuring a wide range of particle matter and its R2 of linear regression between

static monitoring stations is higher than 0.9 [74]. However, DustTrak’s performance decreases

when RH is higher than 60% [74]. Our measurement period started from March to September,

which is the summer and rainy season, with high RH in HK. Thus, the calibrated results might

be not so precise in high RH days as in sunny days. Our further study would adopt other refer-

ence sensors and adopt RH-based calibrated method to improve accuracy. Even though with

this limitation, our study result is still valid given that our previous study found that there was

a high correlation between Airbeam-2 sensors’ measurement of the same ambient air in differ-

ent microenvironments [54]. This result indicates that our sensors’ internal consistency is

high. Airbeam-2’s measurements can be used to explore the relationship between air pollution

exposure and perception of air pollution, health outcomes, and other influencing factors since

absolute readings of air pollution is not required. The absolute and precise measurement of air

pollution is needed for research aiming at exploring the non-stationary effect of environmental

factors on the outcome variables, such as the threshold effect and the value-range effect [75].

Second, our research could have limited representativeness due to the small sample size.

Even though we considered population structure, there may be some self-selection bias due to

participants’ willingness to join this study. The small sample size could also lead to the small

R2 in our models and insignificant associations for most of variables. This could further limit

our research findings’ application in other study areas. We believe that with a larger sample

size, models would show a larger R2 and significant associations for more independent vari-

ables. Models with larger sample size could be generalized to larger study areas. With these

limitations, our study findings are still valid since our sensitivity analysis showed stability of

these results (S2 and S3 Tables). Future studies can consider other survey methods to improve

the representativeness of the sample. Third, the survey was conducted in different seasons in

HK, which may have seasonality effects [76]. To reduce this effect, this study included temper-

ature and humidity in the models, taking the atmospheric conditions into account. Fourth,

people’s views about air quality may change over different environments where they con-

ducted diverse activities. Therefore, future studies can explore how people’s momentary expe-

riences, activities and mental health status affect their assessments of air pollution. Fourth,

people’s view towards the environment is not only about what they think about the environ-

mental quality but also reflects their deep-seated values and world-views and whether they

have trust in governmental and individual efforts to improve the environment [5, 15]. Further

studies can explore more dimensions of public perceptions of air pollution.
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