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Abstract

The cacao swollen shoot virus disease (CSSVD) is among the most economically damaging

diseases of cacao trees and accounts for almost 15–50% of harvest losses in Ghana. This

virus is transmitted by several species of mealybugs (Pseudococcidae, Homoptera) when

they feed on cacao plants. One of the mitigation strategies for CSSVD investigated at the

Cocoa Research Institute of Ghana (CRIG) is the use of mild-strain cross-protection of

cacao trees against the effects of severe strains. In this study, simple deterministic, delay,

and stochastic ordinary differential equation-based models to describe the dynamic of the

disease and spread of the virus are suggested. Model parameters are estimated using

detailed empirical data from CRIG. The modeling outcomes demonstrate a remarkable

resemblance between real and simulated dynamics. We have found that models with delay

approximate the data better and this agrees with the knowledge that CSSVD epidemics

develop slowly. Also, since there are large variations in the data, stochastic models lead to

better results. We show that these models can be used to gain useful informative insights

about the nature of disease spread.

1. Introduction

Vector-borne plant viruses cause a wide range of diseases in plants with grave economic conse-

quences [1]. A recent increase in the spread of plant pests and diseases is caused by globalization,

climate change, agricultural intensification, and reduced resilience in production systems [2]. A

vast number of plant pathogens pose a serious threat to food safety and security, national econo-

mies, biodiversity, and rural environment. An example of such pathogens is the cacao swollen

shoot virus (CSSV), the causal agent of the cacao swollen shoot virus disease (CSSVD) [3, 4].

CSSVD was first observed in the Eastern Region of Ghana in 1936 by a farmer and its virus

nature was confirmed in 1939 [5]. CSSVD is considered the most economically damaging

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0294579 March 7, 2024 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Agusto FB, Leite MCA, Owusu-Ansah F,

Domfeh O, Hritonenko N, Chen-Charpentier B

(2024) Cacao sustainability: The case of cacao

swollen-shoot virus co-infection. PLoS ONE 19(3):

e0294579. https://doi.org/10.1371/journal.

pone.0294579

Editor: Samuel Asante Gyamerah, Kwame

Nkrumah University of Science and Technology,

GHANA

Received: February 21, 2023

Accepted: November 4, 2023

Published: March 7, 2024

Copyright: © 2024 Agusto et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: This project is supported by AIM’s

SQuaREs research program on ‘Sustainable plant

harvest in fragmented landscapes’. FBA was

partially supported by the University of Kansas

General Research Fund allocation 2301-2105090

and National Science Foundation grant EPSCoR

OIA-1656006. MCAL acknowledges support from

Basque Center for Applied Mathematics (BCAM)

https://orcid.org/0000-0001-6137-6480
https://orcid.org/0000-0002-8096-7152
https://doi.org/10.1371/journal.pone.0294579
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0294579&domain=pdf&date_stamp=2024-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0294579&domain=pdf&date_stamp=2024-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0294579&domain=pdf&date_stamp=2024-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0294579&domain=pdf&date_stamp=2024-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0294579&domain=pdf&date_stamp=2024-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0294579&domain=pdf&date_stamp=2024-03-07
https://doi.org/10.1371/journal.pone.0294579
https://doi.org/10.1371/journal.pone.0294579
http://creativecommons.org/licenses/by/4.0/


cacao virus disease that could account for 15–50% yield loss if the severe strains are involved in

infections. CSSV is classified as a member of the plant-infecting pararetroviruses in the genus

badnaviridae which are with non-enveloped bacilliform particles that encapsulate a circular

double-stranded DNA-genome. Previously, the isolates and strains were grouped according to

the severity of symptom expression and geographical origin. Now, it is known that CSSVD is

caused by a complex of badnavirus species based on their molecular structure [6].

The virus affects all parts of the cacao plant [5]. The symptoms seen on the leaves include

red vein banding of the immature “flush” leaves [5, 7], chlorotic vein flecking or banding

which may occur in angular flecks, chlorotic vein clearing, and various forms of mosaic symp-

toms [5]. The virus causes swellings of the stems (nodes, internodes, tips) and roots [5, 7, 8].

Some strains also cause infected pods to change shape and become rounder, smaller and with

smoother surfaces.

The cacao swollen shoot virus is semi-persistently transmitted by several species of mealy-

bugs (Pseudococcidae, Homoptera) on cacao [9]. The infection occurs when mealybugs acquire

the virus from infected cacao or alternative host plants and deposit them in healthy cacao

plants during feeding. The mealybug species differ in their ability to transmit different strains

of the virus. The most efficient mealybug CSSV transmitters including the Formicococcus nja-
lensis (Laing), Planococcus citri (Risso), and Ferrisia virgata (Okll) are also dominant on cacao

fields in Ghana and Cote d’Ivoire [10].

In the past, several mitigation measures were proposed to curtail the spread of the virus,

such as cutting-out of infected trees [9, 10] and breeding for resistant trees [9]. Between

1946 and 1948, over 254 million cacao trees were lost in Ghana as a result of the cutting-out

campaign schemes initiated by the Cocoa Health and Extension Division of Ghana Cocoa

Board [9, 10]. The cutting-out campaign has faced several challenges including farmer resis-

tance, land tenure issues, and discontinuity in official policy on CSSVD management. Mild

strain cross-protection has been considered as one of the alternative management options

[10–12].

Our aim in this study is to use simple differential equation models to gain useful insights

about the inherent dynamics of an experimental data involving cacao swollen shoot virus from

Domfeh et al. [10]. Several studies have used mathematical models to study diseases transmis-

sion dynamics in plant [12–18], including co-infection with multiple pathogen and the result-

ing interactions like cross protection [12] and helper-dependent [18]. Mathematical models

have also been used to understand mitigation strategies to curtail the spread of some plant

pathogen [17, 19]. Thus, we develop several models using differential equations to determine

the disease transmission rate in experimental treatments with and without protective layers.

We also develop models with stochasticity to capture the noise in the data. To the best of our

knowledge, these models are the first mathematical models specifically developed for CSSV;

they are also the first models to mathematically assess the effect of the crop protective layers

using delay and stochastic differential equations.

2. Methodology

2.1 Experimental data

Data on CSSVD infection under varied protection conditions was required for the study. An

available data set from an experimental study in Ghana was used [10]. The experiment

involved 4 treatments laid out in a randomized complete block design with three replications.

The plots were designed based on the nature of the treatments. The plots used were squares

made up of 19 by 19 trees planted at a spacing of 2.4 meter square. This resulted in a 10 nested

squares made up of perimeter trees ranging from one tree for the 10th square (i.e., at the centre)
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to 72 trees for the first square (outer perimeter). All the plots had the first two perimeter trees

inoculated with CSSV-1A severe strain to serve as a source of inoculum. The main attribute

that differentiated the treatments were the number of perimeter trees along the 3rd to the 10th

nested squares, which were protected against the CSSV-1A using the mild strain N1. The first

treatment (T1) had the 3rd to the 7th perimeters inoculated with N1 strain. The second treat-

ment (T2) had the 3rd perimeter to the 5th perimeter plants inoculated with N1. The third

treatment (T3) had none of the trees inoculated with the mild strain, while the fourth treatment

(T4) had all the 3rd to 10th perimeter trees inoculated with mild N1 strain. Mild strain inocula-

tion was done prior to transplanting of the cacao seedlings. After transplanting, the spread of

the CSSV-1A among the 3rd to 10th perimeter trees was monitored for 7 years. The data

obtained in Domfeh et al. [10] are repeated below.

Treatment data T1, T2, T3. The experimental data obtained from Domfeh et al. [10] for

tree level spread of CSSV for treatments T1, T2, and T3 are given in Tables 1–3 below.

Table 1. Treatment T1.

T1 Number of trees with N1 in rows 1–5

infected with 1A

Number of trees with N1 in

row 1–5

Number of susceptible trees in rows 6–8

infected with 1A

Number of susceptible trees in

rows 6–8

Year

1

0 600 0 75

Year

2

1 599 0 75

Year

3

130 470 6 69

Year

4

137 463 6 69

Year

5

151 449 7 68

Year

6

177 423 22 53

Year

7

202 398 28 47

https://doi.org/10.1371/journal.pone.0294579.t001

Table 2. Treatment T2.

T2 Number of trees with N1 in rows 1–3

infected with 1A

Number of trees with N1 in

row 1–3

Number of susceptible trees in rows 4–8

infected with 1A

Number of susceptible trees in

rows 4–8

Year

1

0 423 0 240

Year

2

7 425 0 240

Year

3

129 306 27 213

Year

4

131 301 30 210

Year

5

136 296 33 207

Year

6

169 263 66 174

Year

7

193 239 78 162

https://doi.org/10.1371/journal.pone.0294579.t002
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2.2 Model formulation

In this section, we develop mathematical models for a description of the transmission of CSSV

infection in cacao trees. We propose four models; two are deterministic models and the other

two are stochastic models. With these two types of models, one incorporates delay while the

other does not. Briefly, deterministic models assume that known average rates with no random

deviations are applied to large populations and delay models assume that the derivative of the

unknown function at a given time is defined in terms of the values of the function at previous

times [20, 21].

Before describing the models, we state the following assumptions used in their formulation.

Assumptions.

(i) Based on knowledge in the field, mealybugs transmit the virus neither to other mealybugs

nor to their off-spring [22, 23]. The mode of transmission of the virus to cacao trees is in a

semi-persistent manner [22].

(ii) Infection in the mealybugs does not cause additional mortality of the vectors, and the viral

load in the mealybugs will be cleared approximately 72 hours after CSSV is acquired [24].

(iii) The agents responsible for infecting trees are viruliferous mealybugs. The viral load of

cacao trees infected with mild strains is lower compared to infection with severe strains.

The probability of susceptible trees being naturally infected with mild strain is therefore

very low [11]. Therefore, in our model, we consider that the infection of susceptible trees

with mild strain (N1) in the field is negligible.

(iv) We denote the average number of mealybugs carrying severe strain per infected tree as J.
Based on expert knowledge in the field, we use J = 20 in our numerical simulations [25].

Our results are still applicable to a wide range of J obtained from experimental data. In real-

ity, there is some randomness associated with this quantity and our stochastic models

include this assumption in an implicit form. The randomness inherent in the number of

viruliferous mealybugs per tree could be included explicitly by assuming that it follows, for

example, a normal distribution.

(v) If a mealybug is found on a severely infected cacao tree, it is assumed to be infected with

the severe strain 1A. That is, the infection is instantaneous. This is reasonable because the

time scale of our model is one year and the time scale of infection by mealybugs is in hours.

(vi) The experimental data in [10] suggests that there is some delay in the spread of the infec-

tion into a tree after being exposed to virus-carrying mealybugs, and also it takes some

time before the symptoms can be detected. Based on the data we assume that the delay is 1

year.

Table 3. Treatment T3.

T3 Number of trees with N1 in rows 1–8 infected with 1A Number of Susceptible trees

Year 1 2 670

Year 2 14 658

Year 3 151 521

Year 4 198 474

Year 5 208 464

Year 6 260 412

Year 7 310 362

https://doi.org/10.1371/journal.pone.0294579.t003
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(vii) Mealybugs have several ways of movement, like moving from canopy-to-canopy or being

carried by attendant ants or by the wind. However, the rates of movement of the first two

(canopy-to-canopy and ants) are so slow (particularly, when the canopy is not closed), that

the mealybugs can lose their infectivity before getting to a healthy tree. Therefore, in this

work, we assume that the only way for infected mealybugs to cross a barrier of mild strain

N1-inoculated trees is when the mealybugs are carried by the wind. Hence, for simplicity,

we will not consider the spatial distribution of the trees but we will implicitly incorporate

space via a parameter representing the disease transmission probability.

(viii) The effect of the wind carrying viruliferous mealybugs across inoculated barriers is ran-

dom. This randomness can be included in different ways but since the probability distribu-

tions of the strength, the direction of the wind, etc. are unknown, a common method is to

model such randomness by introducing white noise into the model.

To formulate the model, we segment plant population according to their disease status. The

number of mildly infected trees (infected with strain N1) is denoted by Y and the number of

healthy cacao plants is denoted by X, the number of severely infected (infected with strain 1A)

cacao trees is represented by Z. Since the total number of trees and the number of mildly

infected trees per plot are constant, it is sufficient to consider only one population, either sus-

ceptible or severely infected trees. We will use susceptible trees.

Based on assumptions (i)-(vii) we describe the vector population disease dynamics by the

evolution of the number of mealybugs infected with the strain 1A, which is assumed to be pro-

portional to the number of severely infected trees. Following (iv) we take this to be JZ.

Based on the above considerations and hypothesis, the resulting deterministic and stochas-

tic models describing the CSSV disease transmission in healthy cacao trees are given in the Eqs

(1)–(9) below.

2.2.1 Deterministic model. In this section, we present two types of deterministic models,

the model without and with delay.

Deterministic model without delay. As mentioned in the previous section, the CSSV trans-

mission can be described by an ordinary differential equation modelling the dynamics of sus-

ceptible trees X:

dX
dt
¼ � pJZðtÞXðtÞ; ð1Þ

where J is the average number of mealybugs per severely infected tree and the parameter p rep-

resents the transmission probability of 1A strain to the susceptible cacao trees. Z is the number

of severely infected trees in a given plot calculated using the following relation:

Z ¼ total number of initial trees � number of susceptible trees�

number of mildly infected trees:
ð2Þ

Let N be the total number of trees, which is constant and note that Y, the number of mildly

infected trees, is assumed to be constant within each treatment. Thus, the relation (2) can be

written as:

Z ¼ N � X � Y:

Linear ODE (1) with the initial condition X(t0) has the solution

XðtÞ ¼ Xðt0Þexp
�

� pJ
Z t

t0

ZðtÞdt
�

;
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or in the explicit form as

XðtÞ ¼
ðN � YÞexpð� pJðN � YÞtÞ
expð� pJðN � YÞtÞ � C1

; ð3Þ

where C1 is the constant of integration.

Deterministic model with delay. If we consider that the number of infected mealybugs is a

deterministic variable and include the assumption that after being bitten by a severely infected

mealybug a tree takes some time τ to develop the disease and show symptoms (assumption

(vi)), then the dynamics of the virus transmission is described by the following delay differen-

tial equation:

dX
dt
¼ � 20pJZðt � tÞXðt � tÞ; ð4Þ

where τ denotes the delay. The data is reported once a year and suggests that there is a 1 year

delay on the on-set of observable infection symptoms. Thus, we consider the delay τ to be 1

year (see assumption (vi)) and the units of time t and τ be taken in years.

The simulation results for models (1) and (4) are given in Section 4.

2.2.2 Stochastic model. In this section, we extend models (1) and (4) to incorporate noise

according to assumptions (iv), (viii). The proposed models consist of a stochastic differential

equation with white noise to capture the variability observed in the data. The extension of

model (1) does not include delay given in Eqs (5) and (6) while the extension of Eq (4) is a

delayed stochastic differential equation shown in Eqs (8) and (9). The difference between mod-

els (5), (6), (8), and (9) is the type of noise that has been implemented. In the models (5) and

(8) an environmental noise is considered while in models (6) and (9) a noise proportional to

the number of infected trees is integrated. These models show how the two types of noise can

be incorporated separately. We also develop a model where the two random effects are inte-

grated in a combined fashion, which is shown in Eqs (7) and (10).

Stochastic model without delay

(i) Stochastic model with environmental noise

dXðtÞ ¼ � pJZðtÞXðtÞdt þ sdW; ð5Þ

where σ measures the intensity of the additive environmental white noise dW.

(ii) Stochastic model with multiplicative white noise dW proportional to noise in the number

of infected trees

dXðtÞ ¼ � pJZðtÞXðtÞdt þ sZðtÞdW: ð6Þ

(iii) We can also formulate a model that combines both types of noise. However, we leave this

out of our simulation results and discussions. This model is given as

dXðtÞ ¼ � pJZðtÞXðtÞdt þ s1dW1 þ s2ZðtÞdW2; ð7Þ

where σ1 measures the intensity of the additive environmental white noise dW1, σ2 mea-

sures the intensity of the multiplicative white noise dW2 proportional to the number of

infected trees.

Stochastic model with delay. If we consider that the number of infected mealybugs is a deter-

ministic variable, include the assumption (vi) that there is a delay, and that there is
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stochasticity associated to the movement of vectors (assumption (vii) and (viii)), then the

dynamics of the virus transmission is described by the following delay stochastic differential

equations:

(i) Model with delay and additive environmental noise dW

dXðtÞ ¼ � pJZðt � tÞXðt � tÞdt þ sdW; ð8Þ

where σ denotes the intensity of the white noise dW.

(ii) Model with delay and noise in the number of infected trees Z

dXðtÞ ¼ � pJZðt � tÞXðt � tÞdt þ sZðt � tÞdW: ð9Þ

(iii) Model with delay and both types of noise considered in (a) and (b)

dXðtÞ ¼ � pJZðt � tÞXðt � tÞdt þ s1dW1 þ s2Zðt � tÞdW2; ð10Þ

Our numerical investigation shows that there is no clear difference in the performances of

the two stochastic models (8) and (9) and the corresponding models without delay. Hence, we

present here only the models with delay and state the results of the stochastic models without

delay. Additionally, the model equations (7) and (10) are presented as an illustrative case of

how the environmental noise and the noise proportional to the number of infected trees can

be integrated simultaneously. The simulation results for models (8) and (9) are given in S1 and

S2 Figs.

3. Parameter estimation

We estimate the parameter p using treatment T1, T2, and T3 data obtained in Domfeh et al.
[10] and summarized in Section 2.1 above. For each treatment T1, T2, and T3, the parameter p
is estimated by fitting model predictions to the treatment data using the least squares regres-

sion method [26, 27]. For a fixed treatment, the least squares regression method measures the

distance between model predictions and data points at the same time period. It is defined as

the sum of point-by-point distances squared between the model prediction and the data given

as:

S ¼
Xn

i¼1

ðyi � diÞ
2
; ð11Þ

where n is the number of time points, yi is the model prediction at time point i, and di is the

data for that time point. The best fitting across many runs with different parameter sets is the

one that minimizes the least squares statistic in Eq (11).

The fit is performed with the deterministic models, without and with delay. The parameters

are given in Table 4.

4. Results

Since there were no observable changes in the number of infected trees in the first year when

considering treatment T1, T2 and just a slight change when considering treatment T3, we

started our simulations at year 1 but the graphs only depict simulations starting at year 2. For

each of the treatment T1, T2, T3, the initial condition for the state variable X, was taken to be
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the corresponding observable value at year 1. That is, the initial conditions used were 75 for

T1, 240 for T2 and 670 for T3. All suggested models were solved numerically using a time step

of 1 year to be in agreement with the experimental collection of data. A Runge-Kutta-Felhberg

method of order 4–5 was implemented in the Matlab routine ode45 [28]. For deterministic

delay differential equations, any method used for ordinary differential equations can be

adapted by solving the equation in steps of length τ where τ is the delay [29]. We used the rou-

tine DDE23 in Matlab [30] to solve (4). A common method for solving stochastic equations is

Milstein’s method [31, 32]. We implemented our own version of this method to solve (5) and

(6). For solving the stochastic models with delay (8) and (9), a routine was written combining

the method of steps for delay equations with Milstein’s method.

The reported field data has an estimated error of ±5%. The values of σ, σ1, σ2 in the models

were chosen so the majority of the experimental points fall within the 95% confidence interval

computed assuming the magnitude of error in the data points is ±5%.

4.1 Deterministic model

The simulations of the deterministic models without and with delay, namely models (1) and

(2), are depicted in Figs 1 and 2, respectively. These simulations used the estimated values of

the parameter p given in the Table 4, which are obtained by fitting the models to the data from

treatment T1, T2, and T3. The graphs also show the experimental data. In reality the data are

discrete points but we use a continuous plot to facilitate the visual comparison with the results

obtained from the simulation of the models.

4.1.1 Deterministic model without delay. Fig 1 shows the simulation result using model

(1) and the observed data for the three experimental treatments T1, T2, T3.

For treatment T1, the simulation captured the data in year 2 and year 3. While the simula-

tion for T2 captured years 2 and 4. Lastly, for treatment T3, the simulation captured the data

points at years 2 and 5. All the simulations captured the data point in year 2 for the three

experimental treatments T1, T2, T3.

Remark 1 The simulation plots in Fig 1 look linear because the infection rate p is very small
(see Table 4), hence simplification of Eq (3) using Taylor series expansion is approximately a lin-
ear function of the healthy susceptible plant X. We also observe this for the simulation figures in
the sections below.

4.1.2 Deterministic model with delay. The simulations of the model (2) using the

observed data for the three experimental treatments T1, T2, T3 are depicted in Fig 2. We

observe that the simulation results captured the data points in year 2 in both treatments T1 and

T2 but was close to the data point in year 3 in treatment T1, while it was close to the year 4 in

treatment T2. In contrast, the simulation results were close to the data points in years 2, 5 and

6 for treatment T3.

Table 4. Estimates of parameter p obtained from fitting models (1) and (4) to the data from the three experimental

treatments T1, T2, T3.

Deterministic Model Treatment Parameter p
model (1) without delay T1 8.8 × 10−6

T2 5.0 × 10−6

T3 1.2 × 10−5

model (4) with delay T1 8.4 × 10−6

T2 4.8 × 10−6

T3 1.2 × 10−5

https://doi.org/10.1371/journal.pone.0294579.t004
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Thus, comparing the solution profile in Figs 1 and 2 shows that model (2) performs better

in capturing the data points of the three experimental treatments T3.

4.2 Stochastic model with delay

The simulations of the Stochastic models (8) and (9) with delay coupled with additive and mul-

tiplicative noises are depicted in Figs 3 and 4, respectively. The simulations used the estimated

parameter p given in Table 4.

4.2.1 Stochastic model with delay and additive noise. Fig 3 depicts the simulation results

of model (8) using parameter p estimated from the three experimental treatments T1, T2, T3

data. For treatment T1 in Fig 3(a), the simulation captures the data in years 2 and came close to

the data point in year 3. However, the confidence interval encompasses all the data points of

the treatment. The simulation for T2 captured years 2 and 4 in Fig 3(b). The confidence inter-

val contains mostly the data points except the data in years 3 and 5. Although these data points

are not within the confidence interval, the data points are close to the confidence interval.

Lastly, for treatment T3 in Fig 3(c), the simulation captures the data points at years 6 and 7 and

approximates well the data points at years 2 and 5. The confidence interval is thin and only

encloses the data points in years 6 and 7.

4.2.2 Stochastic model with delay and multiplicative noise. The simulations of the

model (9) using parameter p estimated from the three experimental treatments T1, T2, T3 data

are depicted in Fig 4. The numeric results of model (9) for treatment T1 in Fig 4(a), captures

Fig 1. Numerical simulations of the model (1). Panels (a)-(c), show the results for experimental treatment T1, T2, T3,

respectively. The initial conditions at t = 1 years are X(1) = 75 for T1, X(1) = 240 for T2 and X(1) = 670 for T3.

https://doi.org/10.1371/journal.pone.0294579.g001
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the data in year in 2 and is close to the data point in year 4. The confidence interval only con-

tains the data points for years 4 and 5, and the data point in year 3 is close to the confidence

interval. In Fig 4(b), The simulation for T2 captures the data in years 2 and 4. The confidence

interval on the other hand contains the data points in years 4 and 7, while the data in years 3, 5

and 6 are close to the confidence interval but not within it. Lastly, for treatment T3 in Fig 4(c),

the simulation captures the data points at years 2, 6 and 7. The confidence interval is also thin

and only encloses the data points in years 6 and 7.

The solution profile in Fig 4 looks similar to the solution profile in Fig 3. However, they

exhibit some differences. The width of the confidence interval differentiates the solution pro-

files. The confidence interval in Fig 3 contains all the data points for treatment T1, but the con-

fidence interval in Fig 4 contains only two data points. We observe similar dynamics for

treatments T2 and T3. The width of the confidence interval in Fig 4 is smaller than the width of

the confidence interval in Fig 3.

5. Discussion and conclusions

5.1 Discussion

In this study we use two deterministic models without and delay (models (1) and (4)) and two

stochastic models ((8), and (9)) with additive and multiplicative noises to capture the infection

transmission dynamics of CSSV in cacao tree using three treatment data T1, T2, T3 over a

Fig 2. Numerical simulations of the model (4). Panels (a)-(c), show the results for Experimental treatment T1, T2, T3,

respectively. The number of susceptible trees at initial time t = 1 are X(1) = 75 for T1, X(1) = 240 for T2 and X(1) = 670

for T3.

https://doi.org/10.1371/journal.pone.0294579.g002
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period of 7 years. The data are used to estimate the disease transmission parameter p by fitting

the models (1) and (4) to data using least squares regression method that minimizes the sum of

the squares of point-by-point distances between the model prediction and the data. The output

was used in the simulation results in Figs 1–4.

The estimated parameter p in treatment T1 and T2 have the same order of magnitude. In

principle the thicker the barrier the smaller the transmission but that is not the case here. This

may be due to the fact that we did not explicitly model the movement of the mealybugs. In our

future work we will consider this. In contrast, the estimated parameter p in treatment T3 is

higher. This result shows that the disease is spreading faster to the healthy trees in the absence

of the protected barrier of inoculated cacao trees. None of the cacao trees in treatment T3 was

inoculated with the N1 mild strain and therefore did not have protection against the severe 1A

strain. Our approach of using differential equations leads to the same results as the more elabo-

rate approach used in Domfeh et al. [10].

The models used in this study focuses only on the depletion of the healthy cacao trees unlike

the more complex models that describe the evolution of healthy and distinct classes of infected

trees [12]. We observe that, despite the simplicity of these models, we are still able to use them

to capture some of the experimental data points for treatments T1, T2, T3. We also notice that

some models give better results than others, for instance, model (2) performs better than

model (1), while model (8) performs better than model (9). Of course the performance of

models (8) and (9) depends on the setting of the width at the onset of the simulation. There is

Fig 3. Numerical simulations of the model (8). Panels (a)-(c), show the results for Experimental treatment T1, T2, T3,

respectively. The number of susceptible trees at initial time t = 1 are X(1) = 75 for T1, X(1) = 240 for T2 and X(1) = 670

for T3.

https://doi.org/10.1371/journal.pone.0294579.g003

PLOS ONE CSSV co-infection

PLOS ONE | https://doi.org/10.1371/journal.pone.0294579 March 7, 2024 11 / 15

https://doi.org/10.1371/journal.pone.0294579.g003
https://doi.org/10.1371/journal.pone.0294579


no clear difference in the performance of the stochastic models (5) and (6) without delay. This

can be attributed to the noise in the data because it is not easy to identify infected trees.

To summarize, the models with stochasticity and delay, although more complicated, are

more realistic because they take into account the variability and errors in the treatment obser-

vations T1, T2, T3; and also consider the time it takes for the trees to be infected which cannot

be neglected.

5.2 Conclusions

To conclude, in this study we have developed two different types of simple models to capture

the depletion of healthy cacao trees using three treatment data T1, T2, T3 obtained from an

experimental study at the Ghana Cocoa Research Institute [10]. We have found the following

results summarize below

(i) Using the simple models we can estimate the transmission rate that shows the advantage of

the protective layer of the mild CSSV N1 strain.

(ii) Simple deterministic models can capture the dynamics of the disease like more elaborate

SIR-type model.

(iii) The models with delay perform better in capturing the dynamics of the infection obtained

from the experimental data.

Fig 4. Numerical simulations of the model (9). Panels (a)-(c), show the results for experimental treatment T1, T2, T3,

respectively. At initial time t = 1, the values of susceptible trees were taken to be X(1) = 75 for T1, X(1) = 240 for T2, and

X(1) = 670 for T3.

https://doi.org/10.1371/journal.pone.0294579.g004
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(iv) The models combining delay and stochasticity, although they are more complicated, they

are more realistic because they take into account the variability and errors in the treatments.

They also account for the time it takes for the trees to be infected which reflect more accu-

rately the scenarios under study.

While we have used these simple models to gain informative insights about the data and the

nature of disease spread, the models have drawbacks, for instance, these models cannot be

used to understand the competitive nature of the strains, address vital questions related to the

width of the protective layers, or describe the geometry of these layers to ensure adequate pro-

tection of the healthy trees in order to enhance the farmers yields. In our future work, we will

develop appropriate models to address these questions that among legitimate concerns of

every farmer.
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S1 Fig. Stochastic model without delay and additive noise. Numerical simulations of the sto-

chastic model (5) without delay and additive noise. Panels (a)–(c), show the results for Experi-

mental treatment T1, T2, T3, respectively.

(TIFF)

S2 Fig. Stochastic model without delay and multiplicative noise. The simulations of the

model (6) for treatment T1, T2 and T3, are depicted in S2 Fig. Numerical simulations of the sto-

chastic model (6) without delay and multiplicative noise. Panels (a)–(c), show the results for

Experimental treatment T1, T2, T3, respectively.
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