PLOS ONE

RESEARCH ARTICLE
Enabling Al in synthetic biology through
Construction File specification

Nassim Ataii', Sanjyot Bakshi', Yisheng Chen', Michael Fernandez', Zihang Shao’,
Zachary Scheftel’, Connor Tou', Mia Vega', Yuting Wang', Hanxiao Zhang’,
Zexuan Zhao®", J. Christopher Andersong'-23#

1 Department of Bioengineering, University of California, Berkeley, Berkeley, California, United States of
America, 2 QB3: California Institute for Quantitative Biological Research, University of California, Berkeley,
Berkeley, California, United States of America, 3 Physical Biosciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California, United States of America

. * jcanderson @berkeley.edu

Check for
updates

Abstract

The Construction File (CF) specification establishes a standardized interface for molecular
biology operations, laying a foundation for automation and enhanced efficiency in experi-

@ opeN AcCESS ment design. It is implemented across three distinct software projects: PyDNA_CF_Simula-
Citation: Ataii N, Bakshi S, Chen Y, Fernandez M, tor, a Python project featuring a ChatGPT plugin for interactive parsing and simulating
Shao Z, Scheftel Z, et al. (2023) Enabling Al in experiments; ConstructionFileSimulator, a field-tested Java project that showcases 'Experi-

synthetic biology through Construction File . _—
specification. PLoS ONE 18(11): e0294469. hitps:/ ment’ objects expressed as flat files; and C6-Tools, a JavaScript project integrated with

doi.org/10.1371/journal.pone.0294469 Google Sheets via Apps Script, providing a user-friendly interface for authoring and simula-
Editor: Pietro Ginaglia, University of Catanzaro: tion of CF. The CF specification not only standardizes and modularizes molecular biology
Universita degli Studi Magna Graecia di Catanzaro, ~ Operations but also promotes collaboration, automation, and reuse, significantly reducing
ITALY potential errors. The potential integration of CF with artificial intelligence, particularly GPT-4,
Received: July 11, 2023 suggests innovative automation strategies for synthetic biology. While challenges such as
token limits, data storage, and biosecurity remain, proposed solutions promise a way for-
ward in harnessing Al for experiment design. This shift from human-driven design to Al-
assisted workflows, steered by high-level objectives, charts a potential future path in syn-

Copyright: © 2023 Ataii et al. This is an open thetic biology, envisioning an environment where complexities are managed more
access article distributed under the terms of the .

Creative Commons Attribution License, which effectively.
permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Accepted: October 31, 2023
Published: November 13, 2023

Data Availability Statement: All software utilized in

this study is available as open source. Introduction
PyDNA_CF_Simulator is accessible via Zenodo:
https://zenodo.org/badge/latestdoi/649457319. Construction File (CF) is a domain-specific representation that encapsulates a genetic engi-

ConstructionFileSimulator can be found on Zenodo ~ neering experiment in terms of molecular biology operations and the genetic materials
at: https://zenodo.org/badge/latestdoi/177160385. involved. Rather than being a language, it serves as an abstraction that defines the minimal
C6-Tools (Version 1.0) is archived on Zenodo: information content necessary to describe the DNA modification chemistry involved in fabri-
https://zenodo.org/badge/latestdoi/692952231. . .1

. . cating a DNA or genetic library. Despite the existence of multiple ways to express an experi-
Supplementary materials such as specification . . o
documents. chats. movies. Construction Files and ~ M€nt as a CF, we have explored its standardization to enhance communication among
sequences mentioned in the paper are providedin ~ humans, software tools, and intelligent systems within a collaborative workspace. We propose

the supplemental information. specifications for two representations of CF: a shorthand format for convenience and a JSON

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 1/18

https://orcid.org/0000-0003-2410-0893
https://orcid.org/0000-0002-9115-7323
https://doi.org/10.1371/journal.pone.0294469
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0294469&domain=pdf&date_stamp=2023-11-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0294469&domain=pdf&date_stamp=2023-11-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0294469&domain=pdf&date_stamp=2023-11-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0294469&domain=pdf&date_stamp=2023-11-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0294469&domain=pdf&date_stamp=2023-11-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0294469&domain=pdf&date_stamp=2023-11-13
https://doi.org/10.1371/journal.pone.0294469
https://doi.org/10.1371/journal.pone.0294469
http://creativecommons.org/licenses/by/4.0/
https://zenodo.org/badge/latestdoi/649457319
https://zenodo.org/badge/latestdoi/177160385
https://zenodo.org/badge/latestdoi/692952231

PLOS ONE Enabling Al in synthetic biology through Construction File specification

Funding: The author(s) received no specific version for cross-software communication. Furthermore, we provide parsers and simulators in
funding for this work. Python, Java, and JavaScript (Table 1). We explore human user interfaces for working with CF
Competing interests: The authors have declared objects as well as Al interfaces and their ability to reason about CF objects.

that no competing interests exist. Over the past years, numerous tools have been developed to assist with the design of DNA

cloning schemes, such as J5 [1], Benchling [2], A Plasmid Editor (ApE) [3], SnapGene [4],
SBOL [5], Biopython [6], Geneious [7], pydna [8], GenoCAD [9], and poly [10]. These tools
have varying abilities to plan recombinant DNA experiments including the design of oligonu-
cleotides and prediction of the resulting products. CF can serve as a standardized representa-
tion of the outcome of these design processes. It explicitly captures the experimental steps and
their associated parameters in a minimal form independent of a specific software tool or
environment.

The CF Shorthand Specification is much like a recipe for constructing DNA in the lab.

A list of reaction steps is written in the order they should be performed, each defined by an
operation keyword and parameters, separated by spaces. For instance, a Polymerase Chain
Reaction could be specified as "PCR ForwardPrimer ReversePrimer Template ProductName",
with parameters representing names of DNA sequences or other relevant details. These
sequences can be expressed in the CF as a name and sequence pair, like "T7_Universal
TAATACGACTCACTATAGGG", or they can reference DNAs from an external source such as a
database. Although a CF does not specify implementation details such as the executor of the
process (human or robot), reagent volumes, or manufacturer choices, it is still capable of defin-
ing the product sequences that would result from any successful implementation.

We first publicly introduced a format for CF in 2007 as part of a cloning tutorial on Open-
WetWare [11], with the intention of it being a human-readable representation of the experi-
ment to aid in training and documentation. Over time, it became a practical necessity to
develop software that could verify CF and catch design errors in these documents to avoid
wasted lab resources and time. This need prompted multiple iterations of refining the ontology
and syntax of CF, culminating in the current specification. Herein we provide multiple exam-
ples of CF shorthand that have been verified in the wetlab. We also present software tools that
can read and simulate CF to ensure its completeness, syntactic correctness, and the feasibility
of the proposed chemistry.

A CF can also function as an input or specification for an experiment, executable by an
individual researcher, a core facility, or robotic systems. Although this paper does not present
software for converting a CF into more detailed plans, it demonstrates that artificial intelli-
gence can expand such a plan for human implementation. However, the current AT falls short
of translating a CF into an Autoprotocol [12], a JSON-based language that describes experi-
mental procedures in terms of robotic operations, such as liquid transfers, plate sealing and
unsealing, among others. Despite these limitations, there is potential for developing software
that can perform this translation. Therefore, a CF can serve as a pivotal intermediate represen-
tation in the design process, with the remaining details inherently predetermined, provided a

Table 1. Comparative features of CF simulation tools.

Software Name Language | Entry Interface Operations Supported Unique Features
PyDNA_CF_Simulator Python AI Chat, REST AP, Gibson, Golden Gate, PCR, Digestion, Ligation, GPT-4 Interface
Command Line, or library | Transformation
ConstructionFileSimulator Java SimulatorView GUI, Gibson, Golden Gate, PCR, PCA, SOEing, Klenow "Experiment’ Object
(CFS) Command Line, or library | Extension, Digestion, Ligation, Blunting,
Transformation
C6-Tools JavaScript | Google Sheets Gibson, Golden Gate, PCR, Transformation Spreadsheet Interface, Real-time

Visualization, Oligo Design Tools

https://doi.org/10.1371/journal.pone.0294469.t001

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 2/18

https://doi.org/10.1371/journal.pone.0294469.t001
https://doi.org/10.1371/journal.pone.0294469

PLOS ONE

Enabling Al in synthetic biology through Construction File specification

rubric that defines the resources available in the lab where it will be executed. This underscores
the role of the CF as a critical intermediary in enabling intelligent systems, including Al, to
effectively participate in the genetic engineering process.

Results

The Construction File (CF) provides a structured framework for encoding genetic engineering
experiments. This framework is articulated through two distinct specifications: a JSON object
format (cf_JSDoc_specification.md) for precise machine-readable communication, and a
shorthand format (cf_shorthand_specification.md) for human-readable documentation and
quick notation. These specifications enable the encoding and decoding of experiment design
information and lay the groundwork for the integration of artificial intelligence in experiment
planning and simulation.

The JSON object format is a detailed representation. It consists of two main elements:
“steps’ and "sequences’. The ’steps’ element is an array of objects representing construction
steps, including the associated operation, input sequences, and output product. The
’sequences’ element is an object with key-value pairs, where each key represents a unique iden-
tifier for a DNA sequence, and the corresponding value represents the sequence, strandedness,
and end chemistry of the DNA.

The shorthand format, on the other hand, is a more abstract and flexible representation. It
is defined as a list of Steps, where each Step represents a specific operation in a molecular biol-
ogy experiment. Steps are written on separate lines, with parameters separated by whitespace
(preferably TSV). A Step includes the names of input DNA sequence(s), non-sequence param-
eters, and concludes with the name of the product DNA sequence. The input sequences can
refer to products from previous steps. The shorthand format also allows integration of com-
ments and sequences using ‘name sequence’ lines. This flexibility enables CF Shorthand to rep-
resent various DNA operations beyond those explicitly defined in the specification. However,
parsers and simulator algorithms typically require a defined scope of operations and parame-
ters to apply domain logic. To address this, level 1 of the specification specifically defines PCR,
GoldenGate, Gibson, Digest, Ligate, and Transform operations.

As shown in Fig 1, the CF Shorthand provides a structured, machine-readable alternative to
traditional illustrations of cloning strategies. Each step in the Construction File Shorthand
begins with an operation, followed by operation-specific inputs, often sequence names. The
final token in each step denotes the product, encapsulating the outcome of the operation. The
full text of this CF is also available as Examples/Construction_pSB1A2-Bca9128.txt.

Although the CF Shorthand format and the JSON format have different syntax, the only
functional difference between the two formats is the level of detail regarding strandedness and
other characteristics of the DNAs. In most real-world scenarios, cloning experiment inputs are
either double-stranded DNAs longer than 100 bp or single-stranded linear oligonucleotides
shorter than 100 bp. Consequently, the additional fields needed to express a DNA’s full struc-
ture can usually be inferred. One advantage of the shorthand format is its bidirectional com-
patibility with spreadsheets. Excel and Google Sheets can handle TSV data, allowing for easy
manipulation and maintaining the TSV syntax when transferred between a text field and
spreadsheet cells.

Considerations for the specification

The CF specification was designed with a balance between detail and simplicity in mind. One
approach could have been to describe steps in terms of lists of reagents, aligning with wetlab
automation ontologies. However, this would have led to an unnecessary over-specification and

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 3/18

https://doi.org/10.1371/journal.pone.0294469

PLOS ONE Enabling Al in synthetic biology through Construction File specification

KanR
EcoRlI
77 A\ e, FRem
EcoRl
SB1AK3-b0015 lDigeSt
P : ColE1 origin EcoRlI/Spel -
KanR
Ligate pSB1A2-Bcad128
dblTerm _ —2
EcoRI Spel
mRFP1 ColE1 origin
PSB1A2-113521 Digest
EcoRlI/Spel
Spel ColE1 origin

ColE1 origin

B)
Input Sequences
calO67F ccagtGAATTCgtccTCTAGAgagctgatccttcaactc
calO067R gcagtACTAGTtccgtcaagtcagcgtaatg

Cloning Steps
PCR cal067F cal067R pSB1lAK3-b0015 pcrpdt

Digest pcrpdt EcoRI, Spel 1 pcrdig

Digest pSB1A2-I13521 EcoRI, Spel 1 vectdig
Ligate pcrdig vectdig lig

Transform lig DH10B Amp pPSB1A2-Bca9128

Fig 1. Shorthand representations of a cloning strategy. (A) Conventional illustration of a cloning strategy, visually
detailing PCR, Digestion, and Ligation steps. (B) Equivalent strategy represented in Construction File Shorthand. Each
step begins with an operation (blue), followed by operation-specific inputs, often sequence names (magenta). The final
token in each step (orange) denotes the product, encapsulating the outcome of the operation. This shorthand format
provides a structured, machine-readable alternative to traditional illustrations.

https://doi.org/10.1371/journal.pone.0294469.9001

would have been more difficult to simulate due to the need for a mechanistic simulation of
each enzymatic step. On the other hand, a more abstract approach, aligning with standard
assembly schemes like BioBricks and MoClo are simple to simulate, but this approach lacked
the required detail for comprehensive representation of the diversity of experiments that are
frequently performed. We also considered abstractly defining PCR to include mechanistically
similar methods like Polymerase Chain Assembly and SOEing. However, this resulted in a het-
erogenous input parameter schema, leading us to define the operations more narrowly. A sim-
ilar thing happened with Assembly. We explored an ’assemble’ operation, and Gibson was an
option for the enzyme. This abstraction didn’t add anything, and having assembly methods
explicitly stated as operations was more direct. Thus, we selected commonly-used, method-
level abstractions, encompassing the operations PCR, Digest, GoldenGate, Ligate, Gibson, and
Transform. Each of these operations, in turn, have their unique requirements and parameters.

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 4/18

https://doi.org/10.1371/journal.pone.0294469.g001
https://doi.org/10.1371/journal.pone.0294469

PLOS ONE

Enabling Al in synthetic biology through Construction File specification

Beyond the naming of these operations, some require specific non-DNA parameters. For
instance, the PCR operation includes an optional product size parameter, which is important
when using the CF as an input specification. However, it is defined as optional since the PCR
product size is unknowable if the PCR hasn’t already been simulated. Similarly, the Digest
operation includes a ’fragSelect’ index parameter. This specifies the fragment desired after
digestion, with numbering starting from the first cut of the first enzyme. This approach offers
flexibility and simplicity, as in most cases, the desired fragment is number 1. Finally, the Trans-
form operation has an optional incubation temperature field that should only be included
when it is a relevant detail. To further enhance flexibility and portability, sequences in the CF
are treated in a specific way.

In the CF, sequences are referenced by their names, not as objects. This loose coupling
allows a CF to be syntactically valid before the sequences associated with the names have been
defined, thus allowing a CF to also serve as a specification for the design of the sequences. It
also allows a CF to have alternate input sequences injected during simulation such that a simi-
lar sequence of cloning steps can be applied to different input DNAs. Additionally, it improves
portability since memory-intensive sequence data does not need to be transferred.

In developing the sequence representation for the CF, we considered several formats
including TSV, FASTA, Dseqrecord [9], and a custom class, Polynucleotide. The simplest
option, name and sequence of the *watson’ strand, was adopted for the shorthand format. For
the JSON representation, we opted for a more detailed Polynucleotide object, capturing sticky
ends, 5 modifications, strandedness, and circularity. This representation, as illustrated in Fig
2, reflects the DNA’s state as it undergoes operation-specific transformations to yield expected
products. This format accommodates atypical DNA forms and aligns with how molecular biol-
ogists often describe sticky ends. We also considered a Dseqrecord-like format wherein both
strands of the DNA are expressed as strings along with an overhang integer. This offers chemi-
cal precision but requires additional processing and complex operations for Al reasoning.
Moreover, the pydna implementation of Dseqrecord, while comprehensive, carries unneces-
sary complexity for our purposes and does not express 5 modification chemistry. It also
includes many fields inherited from Biopython’s SeqRecord about semantics and annotations
which are not needed to specify the chemistry. A middle-ground representation, specifying
whether the DNA is a plasmid, a dsDNA, or an oligo, was also included in shorthand. This
covers most real-world scenarios and can be readily compiled to the Polynucleotide form.

Assessment of Al in interpreting, designing, and simulating CF

We conducted a series of experiments to assess the capabilities of Al specifically GPT-4 via
ChatGPT [13], in interpreting, converting, and simulating CF. These experiments serve as an
initial exploration of how AI can be integrated into the process of designing genetic engineer-
ing experiments. In each experiment, the shorthand specification text was provided at the start
of the chat. The full transcripts of these chats are available as supplemental information under
’Chats’, or via URL. A summary of the errors observed is provided in Table 2.

ChatGPT demonstrated a remarkable ability to interpret complex scientific text and con-
vert it into CF shorthand. As illustrated in Fig 3, when presented with a published description
of a cloning experiment involving the preparation of two ribosome binding site libraries [14],
ChatGPT accurately interpreted the steps and converted them into CF shorthand, despite the
complexity of the experiment and the need to infer unstated steps from the text (invasin_par-
se_test.html). This result suggests that a literature mining effort to extract the history of pub-
lished recombinant experiments is within reach of current technology, although it is beyond
the scope of this study.

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 5/18

https://doi.org/10.1371/journal.pone.0294469

PLOS ONE

Enabling Al in synthetic biology through Construction File specification

polyA:
5'-pCCGGCTgaattcAG -3
3'- GActtaagTCCTAG-5"

"sequence": CTGAATTCAG,
"extbH": "CCGG",

"ext3": "GATC",

"is double stranded": true,
"is circular": false,

"mod extb": "phosphate",
"mod ext3": "hydroxyl"

Digest polyA EcoRI 0 polyB

fragment [0] :

5'-pCCGGCTg -3
3'- GActtaap-5"'
+
fragment[1]:
5'-paattcAG -3
3'- gTCCTAG-5"
polyB:
{
"sequence": CTG,
"extbH": "CCGG",
"ext3": "AATT",
"is double stranded": true,
"1s circular": false,
"mod ext5": "phosphate",
"mod ext3": "phosphate"
}

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 6/18

https://doi.org/10.1371/journal.pone.0294469

PLOS ONE Enabling Al in synthetic biology through Construction File specification

Fig 2. Polynucleotide object representation for simulating molecular biology operations. The hypothetical DNA
’polyA’ is a linear, double-stranded DNA previously cut with BamHI, dephosphorylated, and subsequently cut with
Xmal. In the Polynucleotide object representation, the fully duplexed DNA portion is captured as the "sequence".
Single-stranded overhangs are represented by the coding strand sequence as ext5 and ext3, denoting the overhangs on
the left and right of the diagram, respectively. Modifications at the ends are indicated by enumerated types as
mod_ext5 and mod_ext3. The simulation of an EcoRI digestion of this DNA would yield two fragments, indexed as 0
and 1. The ’fragmentSelection’ field of the shorthand statement is set to 0, resulting in ’polyB’ being returned as
depicted. In the simulation software, Polynucleotides serve as dynamic representations of DNAs, reflecting their states
as they undergo operation-specific transformations to yield expected products. Simulation software currently supports
PCR, Digest, Ligate, GoldenGate, Gibson, and Transform operations.

https://doi.org/10.1371/journal.pone.0294469.g002

We also explored if ChatGPT could perform zero-shot design of a CF. After providing the
shorthand specification, we tasked it with performing a ’prefix insertion’ on two BioBrick plas-
mids (design_biobrick.html). ChatGPT returned a syntactically correct CF, correctly inferring
the need for two digestion reactions and one ligation reaction. However, it initially chose
incorrect enzymes for the digests. After providing additional information from an external
website, ChatGPT corrected the enzymes and structure in the CF. The only remaining error
was the ambiguity of the fragmentSelection indices, which was resolved with further prompt-
ing about the orientation of the input sequences. This experiment demonstrated that, with cor-
rective prompting, GPT can be guided to author accurate construction files.

Interconversion between different forms of CF is another area where ChatGPT showed
proficiency (syntax_conversions.html). Given the specifications for shorthand and JSON for-
mats, it was able to convert a CF from shorthand to JSON, correctly inferring the strandedness
and circularity details for the DNAs involved (Examples/Construction_pSB1A2-Bca9128.
json). We also asked it to generate an XML version (Examples/Construction_pS-
B1A2-Bca9128.xml), demonstrating the flexibility of CF and the ability of GPT to handle dif-
ferent formats.

The generation of human-readable work plans and Autoprotocols from CFs is a more com-
plex task, and here ChatGPT showed both its capabilities and limitations. When asked to
reduce a CF to a work plan that could be passed to a technician (technician_instructions.
html), ChatGPT produced mostly correct instructions. However, it hallucinated locations for
preexisting samples and omitted some steps that are typically included in such instructions,
such as full calculation of the reagent volumes and consideration of DNA concentrations.
When asked to generate an Autoprotocol, a JSON-based language for robotic liquid handlers,
ChatGPT struggled (autoprotocol_instructions.html). Despite being familiar with Autoproto-
col, it was unable to produce valid JSON, indicating that the leap from CF to Autoprotocol is
currently beyond GPT’s capabilities.

Table 2. Limitations of GPT-4 in handling CFs.

Task/Context Specific Error Impact & Consequence Evidence (S1 File)

1 | Translating CF to Unable to produce valid JSON Cannot automate lab tasks using autoprotocol_instructions.html
Autoprotocol Autoprotocol

2 | Human-readable Work Hallucinated locations and omitted some steps | Incomplete or incorrect instructions | technician_instructions.html
Plans

3 | Simulating CFs Token limit exceeded; failed to simulate result | Cannot simulate complex or large invasin_simulation.html

CFs

4 | Converting CF to pydna | Incorrectly used ’Assembly’ function; several Generated script is unrunnable cf_to_pydna.html
script other mistakes

5 | Java Code to Apps Script | Insufficient grasp of algorithmic task for Required extensive manual java_simulator_conversion.html

translating languages adjustment

6 | Testing Python Plugin Token limit restricts utility with larger DNA Limited to handling small DNA pydna_plugin_testhtml and

Wrapper sequences sequences pydna_plugin_test.mov

https://doi.org/10.1371/journal.pone.0294469.1002

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 7/18

https://doi.org/10.1371/journal.pone.0294469.g002
https://doi.org/10.1371/journal.pone.0294469.t002
https://doi.org/10.1371/journal.pone.0294469

PLOS ONE

Enabling Al in synthetic biology through Construction File specification

User:

Interpret the following as CF. Assume all the input materials are oligonucleotides
or plasmid DNAs. Include any steps that are implied but unstated, but stay within
the scope of the facts provided. Invasin was PCR-amplified from pAC-Tetlnv with

oligonucleotides ca877F (5'-
GAGTTGGATCCNNNGGAGNNNNNNRTGNTGGTTTTCCAGCCAATCAGTG-3')
and cab06R (5-GTCGACGGCGCTATTCAGATCCTC-3'), digested with BamHI
and EcoRl, and inserted in similar sites of pBACr-Fdh and pBACr-Ara affording
ribosome binding site libraries.

ChatGPT:

Sure, based on the information provided, here's an interpretation of this process
into the Construction File (CF) format. Please note that the exact interpretation

might vary depending on additional context and detailed procedures, which are
not provided here.

[.]

Steps

PCR ca877F ca606R pAC-Tetinv InvasinPCR

Digest InvasinPCR BamHI,EcoRI 1 InvasinFragment

Digest pBACr-Fdh BamHI,EcoRI 1 pBACr-FdhFragment

Digest pBACr-Ara BamHI,EcoRI 1 pBACr-AraFragment

Ligate InvasinFragment pBACr-FdhFragment pBACr-Fdhinvasin
Ligate InvasinFragment pBACr-AraFragment pBACr-Aralnvasin

Fig 3. Zero-shot natural language processing interpretation of construction files by ChatGPT. After being
prompted with the shorthand specification document, ChatGPT (GPT-4) demonstrates its ability to interpret plasmid
construction text from a scientific paper into a construction file with high accuracy. This demonstration underscores
the potential of A.I. to automatically extract construction files from scientific literature, opening new possibilities for
large-scale, automated analysis of genetic engineering experiments from unstructured archival text. Partial, illustrative
representation; see supplemental for complete chat.

https://doi.org/10.1371/journal.pone.0294469.9003

Simulating CFs directly in ChatGPT also presented challenges. When given the entire text
of a CF, the token limit was exceeded due to the long length of plasmid sequences. Shortening
the sequences in the CF allowed ChatGPT to accept the prompt, but it failed to simulate the
result due to the task’s complexity (invasin_simulation.html). Thus, while GPT shows promise
in understanding and interconverting CF, it struggles to accurately design, simulate, or com-
pile them into wetlab instructions. Given the paramount importance of accuracy for BioCAD
tools, these findings underscore the need for a more precise approach, such as could be
achieved with a GPT plugin.

Simulation of construction files

We wrote three separate software tools in Python [15], Java [16], and JavaScript [17]. Each
illustrates the use of Construction File in a different languages, interaction mode, and scope of
features as illustrated in Table 1.

PyDNA_CF_Simulator: A Python-based ChatGPT plugin for CF simulation using
PyDNA. To explore the possibility of GPT directly invoking python scripts for simulation
tasks, we attempted to have GPT generate a pydna script representing the pSB1A2-Bca9128
example CF (cf_to_pydna.html). The pydna library shares a similar ontology with CF and
includes simulators for PCR, digestion, ligation, and Gibson assembly methods. However, the
resulting script from GPT required us to make several manual adjustments, including moving

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 8/18

https://doi.org/10.1371/journal.pone.0294469.g003
https://doi.org/10.1371/journal.pone.0294469

PLOS ONE

Enabling Al in synthetic biology through Construction File specification

the pip statement, adding the DNA sequences, and removing the API requests to GenBank.
Despite these corrections, GPT incorrectly used an ’Assembly’ function to simulate ligations
rather than the ’+” operand on the sequence objects, rendering the script unrunnable. This
experiment led us to conclude that GPT’s current capabilities are insufficient for writing this
executable representation of CF.

While Python scripts are useful, they present several challenges when used as documenta-
tion for construction files in an Al interface. Firstly, they are written in free-form Python,
there are potential security issues with an interface that executes these scripts. Secondly, they
assume a specific software implementation, limiting extensibility and interoperability in a
multi-tool environment. Lastly, Python scripts do not readily enable inspection, a crucial fea-
ture for using CF as a specification.

To address these limitations, we developed a Python plugin wrapper, PYDNA_CF_Simula-
tor [15], capable of parsing CF and executing the appropriate pydna syntax for simulation. We
created Python classes for ConstructionFile and Polynucleotide according to the jsDoc spec,
and developed functions for parsing Strings of CF shorthand or JSON into these classes. Func-
tions were also created to interconvert between Polynucleotide and Dseqrecord representa-
tions. We then developed a function that simulates a ConstructionFile instance, executing the
appropriate operations and returning the resulting product sequences. Finally, we created an
API wrapper to host the simulator as a REST endpoint, along with a YAML and manifest con-
taining the shorthand specification for communication with ChatGPT.

Testing of the Python plugin wrapper revealed several limitations. While the plugin success-
fully handles simple cases like PCR on short templates (pydna_plugin_test.html and pydna_-
plugin_test.mov), its token limit in the low thousands significantly curtails its utility with
larger DNA sequences. This limit is far from sufficient to encode complex structures like plas-
mid sequences, let alone the millions+ tokens required to express a genome sequence. Due to
its limited utility, we have not submitted PyYDNA_CF_Simulator for inclusion as an official
ChatGPT plugin. However, the code is available on Github under the open-source MIT
license.

Further limitations were found within the pydna library itself. Pydna’s inability to simulate
Golden Gate reactions, a cornerstone of modern synthetic biology, greatly restricts its utility
for a wide range of experiments. Although the source code includes a script for it, it is not fully
implemented. While Golden Gate could be described as sequential digestion and ligation
steps, which are implemented, this is not equivalent to the simultaneous cutting and ligation
that occurs in the actual process which requires additional logic. Additionally, pydna allows
non-DNA letters, even permitting the entire alphabet as syntax.

While the Python plugin wrapper effectively delegates the simulation task to reliable, well-
tested code, it has notable limitations. A significant challenge with this type of interface is the
absence of visualization and persistence for both the resulting sequences and the Construction
File itself. Ideally, an additional interface would be integrated into the workflow to provide
users with a clearer understanding of the process and its outcomes. These findings highlight
the necessity for further development and enhancements to the Al interface, particularly in the
areas of user interface design and strategies to circumvent token limits.

ConstructionFileSimulator: A Java-based tool for validation and simulation of CF.
There are two distinct types of software that could be developed for simulating Construction
Files (CFs): one that validates the CF, and another that calculates the product. While these
objectives may seem similar, they lead to different design decisions and implementations. For
instance, consider a Golden Gate assembly of three fragments, where one fragment has com-
patible ends on both sides and thus will re-ligate. A tool focused on calculating the product
would correctly simulate this scenario and return the single-fragment product. However, a

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 9/18

https://doi.org/10.1371/journal.pone.0294469

PLOS ONE

Enabling Al in synthetic biology through Construction File specification

tool focused on validating a CF would instead identify this scenario as a problem, alerting the
user to the potential issue rather than simply returning the result. This focus on error detection
and prevention is crucial for ensuring the validity and success of genetic engineering
experiments.

With this validation objective in mind, we developed the first iteration of ConstructionFile-
Simulator (CFS) in Java [16]. We employed a programming style reminiscent of Functional
Programming with mostly-pure functions and immutable classes. It interprets CF shorthand
text into a ConstructionFile object, subsequently simulating the expected reaction product
step by step. If an error arises during simulation, it triggers an error response which terminates
the operation and delivers a detailed message to guide corrective action.

The relationship between CF operations and simulator functions in CFS is largely one-to-
one, but the concurrent development of the CF syntax, CFS, and wetlab usage has led to the
need for backward compatibility with past versions of CF. As a result, CFS can handle a
broader array of syntax than the specified shorthand, and the codebase contains more com-
plexity than strictly necessary. It also supports PCA (Polymerase Chain Assembly), SOE (Splic-
ing by Overlap Extension), and Klenow (Klenow extension) operations which are not in the
specification. From a system architecture perspective, it’s worth noting that a strict one-to-one
correspondence between operations and functions is not always the most efficient or effective
design. For example, lower-level functions such as reverse complementation (RevComp.java)
are used across multiple algorithms and are therefore implemented as standalone functions
rather than being associated with specific operations. Furthermore, to accommodate a variety
of PCR-like scenarios, we generalized these techniques in the simulation. While this abstrac-
tion was challenging to express in shorthand, it provides a compact solution at the functional
level. The CFS codebase also includes several exploratory and vestigial features that we have
omitted from this discussion for the sake of focus.

Within this architecture, the project houses two PCR simulators, each designed to address
specific experimental scenarios. The simpler one, encoded in the method perfect18Simulation,
is only activated when a singular template and two oligos are present, with both oligos perfectly
matching the template over 18 bp at their 3" ends. This condition is usually met for standard
cloning experiments. However, for non-standard scenarios, such as site-directed mutagenesis
involving 20-mer oligonucleotides with a central mismatch, a more mechanistic simulation is
needed. This includes simulating PCA, SOEing, or Klenow Extension, where template varieties
from single-stranded to double-stranded, and their quantities from 0 to n, must be considered.
To accommodate these scenarios, the PCRSimulator employs a backup algorithm, which mim-
ics pairwise DNA annealing and extension. It checks for alignments where the 3’ six bases of
the oligo exactly match the template, then uses JAligner and Tm calculations for further detec-
tion of annealing sites. However, this more complex function, while generally reliable, occa-
sionally struggled with scenarios that a simpler algorithm could handle correctly. Additionally,
it was computationally demanding, causing failures for longer templates and occasional inabil-
ity to detect obvious annealing sites. To mitigate this, the simpler version is used as a first
attempt before falling back to the more mechanistic simulation when necessary. The simulator
can now handle more scenarios than outlined in the specification documents, including
unique cases like mixtures of single-stranded and double-stranded templates. Both algorithms
have been rigorously tested and confirmed to work on linear and circular templates, including
inverse PCRs, and they handle 5 modifications, 5 extensions, and common issues such as
multiple annealing sites and orientation errors.

The Digest operation uses a REBASE database-derived file for restriction enzyme informa-
tion, making it capable of handling more enzymes than mentioned in the specification. It cor-
rectly handles degenerate cutters, both 5’ and 3’ extensions, and appropriately assigns

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 10/18

https://doi.org/10.1371/journal.pone.0294469

PLOS ONE

Enabling Al in synthetic biology through Construction File specification

phosphates to the 5’ modifications of freshly cut DNAs. Though there is a method in the code
(cutOnce) that simulates a single cutting event, the Digest operation is assumed to mean "cut
to completion” and thus does not support partial digests.

In the simulation of ligation, the presence of a 5° phosphate and matching sticky ends are
checked, and two matching ends of two input Polynucleotides are concatenated into one. This
process is repeated until only one fragment remains. If its ends are compatible, it is denoted as
a circular DNA, and the sticky ends are integrated into the sequence field of the resulting
Polynucleotide.

The simulation of GoldenGate primarily involves cutting with the type IIS enzyme and
ligating the fragments, with additional checks for orientation, number of sites in the molecule,
and the appropriateness of the generated sticky ends. Gibson simulation finds exact 20 bp
matches between homologous ends and connects the DNAs pairwise.

The simulation of transformation, while implemented, is currently limited to checking that
the product is circular. This is because transformation of a bacterium with a DNA requires it
to be circular. However, it’s worth noting that CFS fully enables the generation of in vitro lin-
ear DNAs, which can be useful in certain scenarios, such as library fabrication.

CEFS includes rigorous checks for possible design errors and provide comprehensive error
messages when triggered. Over the course of three years, our use of the CFS for validating
wetlab designs, along with its extensive application by over 100 students, has enabled us to
identify and rectify numerous bugs. This iterative process led to the creation of a multitude of
unit tests for various edge case scenarios, enhancing the reliability and robustness of our simu-
lator. The development history is documented as issues in the ConstructionFileSimulator
repository on Github.

CFS’s most straightforward interface is its SimulatorView Swing GUI, launched by execut-
ing the jar file without arguments. This interface accepts a construction file’s shorthand text
and outputs the final step’s product. As illustrated in Fig 4, we supplied the GUI with steps
parsed by ChatGPT from the native invasin text, along with the sequences of the three input
plasmid sequences (Chats/ invasin_cf.txt). The resulting sequence of pBACr-Aralnvasin
matches the expected map and aligns with sequenced isolates, validating the simulator’s accu-
racy and utility. We have provided an array of real-world examples (found in the supplemental
Examples folder), showcasing the successful application of CFS. These examples feature exper-
iments that involve degenerate bases, the creation of libraries, SOEing, PCA, and Klenow
extension, all of which the simulator correctly handles.

Mitigating clerical mistakes with ’experiment’ objects in ConstructionFileSimulator.
While simulating a CF is an effective way to detect technical errors in experimental design,
such as oligo design issues, it doesn’t account for clerical errors that often occur in larger
experiments involving multiple CFs or during collaborations among research teams. These
errors, such as maintaining different versions of input sequences, are surprisingly common
and can severely impact the success of an experiment. To address these issues, we’ve intro-
duced the concept of an ’Experiment’ object into CFS.

The creation of an ’Experiment’ object begins by passing a hard drive path to a folder con-
taining all relevant files to a parser. This includes sequence files in TSV or GenBank format (.
gb,.seq,.str, and.ape), CFs expressed as plain text files, and additional sequence files, primarily
for oligos, in a TSV format that also allows additional columns. This format is particularly use-
ful as it aligns with the IDT oligo form, reducing the risk of error when copying and pasting
between what is simulated and what is ordered. The parser then outputs an ’Experiment’ object
that encapsulates all the provided information. Once the ’Experiment’ is created, it can be sim-
ulated to ensure the accuracy of the documentation.

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 11/18

https://doi.org/10.1371/journal.pone.0294469

PLOS ONE

Enabling Al in synthetic biology through Construction File specification

Steps

PCR caB77F cacl6R pAC-TetInv InvasinPCR

Digest InvasinPCR BamHI,EcoRI 1 InvasinFragment

Digest pBACr-Fdh BamHI,EcoRI 1 pBACr-FdhFragment

Digest pBACr-Ara BamHI,EcoRI 1 pBACr-AraFragment

Ligate InvasinFragment pBACr-FdhFragment pBACr-FdhInvasin
Ligate InvasinFragment pBACr-AraFragment pBACr-Aralnvasin

#Sequence information v

| copy result | | clear | | run |

ACCOTATTCAAACTCACTTAATCCCCAAATTTCAT CAAGCTAAACTGCCCACCCGAT |4
CCACACCTCATGCTCCCACTOOCCATTCARACTCTTOCTCATCACTATCATGTCAT =
ACTTATTCACACCGCGCCTAACCTOOOTATCOOCACCATTAATCTCOTATCTACTG _)
CTCATCTCCTCATTCTTCCCACCCCTOCTCACTTOTTTCACTACACCTCCCCACTG Ty

A ST T T T T S S AT AT S ST T ST S AT ST S ST A A S AR ST S AT AT A A K S ST A

Fig 4. Simulation of Invasin Construction File in a script editor. SimulatorView, a simple GUI included with
ConstructionFileSimulator, accepts the text of a construction file and outputs the product of the final step. In this
instance, the GUI is provided with the steps parsed by ChatGPT, along with the sequences of the three input plasmid
sequences. The complete document can be found in the supplementary file ’invasin_cf.txt’. Upon clicking 'run’, the
construction file is simulated step-by-step. The resulting sequence of pBACr-Aralnvasin aligns with the expected map
and is consistent with sequenced isolates, demonstrating the accuracy and utility of the simulation.

https://doi.org/10.1371/journal.pone.0294469.9004

Executing a list of CFs requires additional analysis to determine the correct order of execu-
tion. This is crucial to ensure that the products of earlier files can be used as inputs for later
files. For example, in the pTP2_reporter example, a series of unrelated experiments was used
to construct a reporter plasmid. To correctly simulate this, the software must identify the
order of execution for each CF. We also had to consider the potential for name reuse, such as
"perpdt" to refer to products of intermediate steps. To address this, the CFS implementation of
ConstructionFile includes an explicit singular output from the entire file, which is set as the
product of the last step during parsing. This addition, while not explicitly part of the specifica-
tion, is necessary to resolve potential conflicts and implies that a ConstructionFile describes
not only an ordered list of steps but also a specific product outcome.

The need for this higher-order ’Experiment’ object is heavily dependent on the user inter-
face. Our current approach treats files as contents of a folder, but other systems might use a
database, potentially reducing the impact of clerical errors if the design and simulation func-
tions were integrated. Furthermore, the exact content and format of an "Experiment’ are yet to
be defined. Within the CFS, it encompasses sequences and CFs, but a more comprehensive
specification could include measurement data, analysis, and more. Therefore, while this
"Experiment’ functionality is part of the CFS project, we currently propose no standards for it
and present it as an exploratory feature.

An Experiment’ folder can be parsed and simulated using the SimulateExperimentDirec-
tory function. This function is executed when the user runs the jar from the command line
and passes in the path to the folder as a parameter. SimulatorView will also execute this func-
tion when such a folder is dragged-and-dropped on the GUI. Upon execution, the simulator
generates a GenBank file for each product sequence and creates two log files: C5seqs.txt, which

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 12/18

https://doi.org/10.1371/journal.pone.0294469.g004
https://doi.org/10.1371/journal.pone.0294469

PLOS ONE

Enabling Al in synthetic biology through Construction File specification

contains all sequences (inputs, intermediates, and products), and C5log.txt, which provides a
detailed account of all events that occurred during execution. These log statements are also
outputted to the command line when the jar is run from there. This information is helpful for
identifying and correcting errors in the experiment’s design or documentation.

There are two supplemental examples of Experiment’ folders that can be run with CFS.
The Lycopene2 example demonstrates a scenario where several construction files are per-
formed in parallel using a shared set of oligos in different combinations. The pTP2_reporter
example illustrates a chain of sequential CFs where the product of one becomes an input to
another. A demonstration of running CFS on this example is available at cfs_experiment.mov.

Cé6-tools: Simplifying CF simulations and oligo design in Google Sheets. The Java
implementation of CFS is well-tested, reliable, and effective for validating correct CF. How-
ever, students have found it somewhat challenging to identify errors in the CF. The log file
details all events, which, while helpful in pinpointing errors, can result in a complex interac-
tion akin to code debugging. Typically, we run simulations through the IDE and leverage its
debugging tools. A significant part of this challenge stems from the lack of visual representa-
tion during simulation. Although this issue could be addressed by creating more graphical
user interfaces, this also presents another learning hurdle.

Driven by these usability concerns, we ventured into developing a variant of CFS, named
C6-Tools [17], using Google Apps Script (JavaScript) within a Google Sheet. In addition to
simulation functions, we also integrated algorithms for oligo design. Displaying individual
design and simulation events in a 2D spreadsheet grid significantly simplifies the visualization
of ongoing operations and error identification. Additionally, this interface is highly familiar
and requires little explanation for new users and can be easily accessed via url. While C6-Tools
offers a lower entry barrier compared to CFS, it is a newer tool and has not been as extensively
tested.

Initially, our aim in developing C6-Tools was to leverage GPT-4 to automatically translate
the Java code into Apps Script. However, the majority of the functions proved this task to be
not as straightforward. We were unsuccessful directly converting our Java classes into Apps
Script with a single prompt as illustrated in the supplementary chat wherein we attempted to
convert the Gibson algorithm (java_simulator_conversion.html). The task is complicated by
the length of the algorithms, but also the complexity and nuance of the logic. One notable
complication was the Sheets’ inability to accept objects as cell values, necessitating their addi-
tional management as JSON. Despite these hurdles, ChatGPT was instrumental in facilitating
this process with extensive prompting and revision.

Given the prevalence and versatility of Gibson Assembly and Golden Gate cloning in mod-
ern genetic engineering, traditional methods like digestion and ligation have become less rele-
vant. Therefore, we decided not to include support for these older ’cut and paste’ methods in
C6-Tools. Additionally, this led to significant simplification of the code. Though Polynucleo-
tide and its tracking of end chemistry is needed to simulate separate digestion and ligation
steps, it is not needed to accurately simulate PCR, Golden Gate, and Gibson methods which
can be well handled by simple sequence strings. Nevertheless, we include a class definition for
Polynucleotide as an option for future development in JS.

Nonetheless, constraints such as the lack of a testing environment, the inability to import
libraries, and the non-portability of the code hamper further development of C6-Tools in its
current form. In the case of Apps Script, the scripts must be either within the Sheet file, requir-
ing duplication, or transcluded from a library with a complete wrapper. This quality of Apps
Script limits the ability to maintain and extend the library. However, for users who may wish
to customize their own version of C6-Tools, the independence offered by the current imple-
mentation may be preferable over a development team’s oversight.

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 13/18

https://doi.org/10.1371/journal.pone.0294469

PLOS ONE

Enabling Al in synthetic biology through Construction File specification

Discussion

The CF specification, as it currently stands, covers a wide range of common molecular biology
operations, including PCR, Digest, GoldenGate, Ligate, Gibson, and Transform. However,
there are several common methods that are not explicitly represented in the CF specification.
These include USER cloning, Ligase Chain Assembly (LCA), QuikChange mutagenesis, site-
specific recombination systems like CRE/Lox and Gateway, homologous recombination meth-
ods like Datsenko-Wanner, and transposon-based methods. In addition, the CF specification
does not currently support simple annealing of oligos to form a duplex DNA, CRISPR-medi-
ated DNA cutting, or TOPO-TA cloning.

Each of these methods has unique requirements and parameters that would need to be
incorporated into the CF specification to enable simulation. For example, QuikChange muta-
genesis involves a PCR-like process, but the product is not the same as a typical PCR product.
The CF PCR algorithm, while generalized, does not currently infer homology and reclosure of
ends that QuikChange would require. Similarly, site-specific recombination systems like CRE/
Lox and Gateway involve specific recognition sequences, which would need to be identified
during the simulation process.

In addition to these specific methods, there are also broader categories of techniques that
are not currently covered by the CF specification. For example, the CF specification does not
currently support the representation of mixed pools of entirely different sequences, which are
often used in library construction. Nor does it support the representation of more complex
DNA structures, such as DNA bubbles or mixed RNA/DNA structures.

However, the question remains: do we need to include all these methods in the CF specifi-
cation? The answer largely depends on the specific goals and use cases of the CF specification.
If the goal were to create a comprehensive database of all cloning experiments, then a compre-
hensive representation of all possible methods would be necessary. On the other hand, if the
goal is to provide a simple and intuitive interface for designing common molecular biology
experiments, then a more limited set of operations may be sufficient. In any case, the decision
to include or exclude specific methods from the CF specification should be made with careful
consideration of the trade-offs between comprehensiveness, simplicity, and practical utility.
Particularly for interacting with intelligent systems, where token limits are important con-
straints, having to include endpoints or API info about all these different operations gets
heavy. If the user isn’t going to do all these things, then why are they in the tool?

Broadening the scope of the Transform operation for greater experimental
accuracy

The Transform operation, a pivotal step in many molecular biology experiments, signifies a
phase where the DNA is subject to further chemical modifications. For example, DNA nicks
can undergo resealing, and the host’s dam and dem systems can introduce novel methylation
patterns. Nonetheless, the existing Transform operation neither accounts for these modifica-
tions nor verifies the presence of a selectable marker or a suitable origin of replication. More-
over, it does not confirm whether the replicon will replicate in the designated host, or if other
plasmids originating from the same incompatibility group already exist in the strain. To fully
validate a transformation, the Transform operation would need to incorporate these checks.
Furthermore, the current ontology, with its E. coli-centric focus, presumes the use of antibiot-
ics that may not be suitable for yeast work or transfection in plant or animal cells.

Beyond these fundamental verifications, the Transform operation could be enhanced to
encompass a more exhaustive simulation of the biological processes initiated upon the entry of
DNA into the cell. Such a simulator could scrutinize the introduced DNA for proper gene

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 14/18

https://doi.org/10.1371/journal.pone.0294469

PLOS ONE

Enabling Al in synthetic biology through Construction File specification

structure and assess the overall cellular system for biochemical accuracy, a first pass at which
we presented in our previous work [18]. This would entail simulating the intracellular bio-
chemical reactions and forecasting the cellular response to the introduced DNA. For example,
the simulator could check if a sufficient grouping of genes was introduced to complete a path-
way to a desired metabolite. It could infer promoter behavior and determine what regions of
the DNA would be transcribed and translated. By juxtaposing this inferred pathway data with
a functional specification, the simulator could ascertain whether the designed system would
operate as intended, or if it could potentially be toxic to the cell or contain elements that might
cross-react. Incorporating a transform simulator would provide an additional layer of valida-
tion, ensuring the precision of experimental designs and thereby enhancing the overall
dependability and trust in the CF.

Appraising user interface considerations for effective CF deployment

During the development of CF, we explored a range of interfaces, each presenting unique
advantages and challenges. These interfaces include the Python scripting interface, the Simula-
torView shorthand editor interface, the Experiment folder-based interface with CFS, the
spreadsheet interface via C6-tools, the API interface with PyDNA_CF_Simulator, and the
ChatGPT conversational interface.

The Python scripting interface provides a robust and flexible platform for designing and
simulating experiments, a feature that programmers will find familiar. However, its accessibil-
ity is limited to those with coding experience. Conversely, the SimulatorView shorthand-script
based interface is perfectly suited for crafting bespoke, detailed experiments. Yet, it may be
cumbersome when handling many files due to its manual nature.

The spreadsheet interface, facilitated by C6-tools, offers the advantages of visual arrange-
ment, lookup properties, and easy portability. It also enables the use of all the other spreadsheet
functions, including the ability to drag the contents of a field across a range. This makes it par-
ticularly useful for describing sets of constructs, such as an ortholog or promoter scan.

The Experiment folder-based interface offers portability and compatibility with filesystem
contexts like Github or Google Drive. It can be zipped and sent via email, making it a conve-
nient option for sharing and collaborating on experiments. The API interface with PyD-
NA_CF_Simulator allows for programmatic interaction with the CF tools, providing another
layer of flexibility.

If’s pertinent to highlight that the most common approach to authoring CF likely does not
involve direct typing. Instead, a collection of design functions could generate the CF or Experi-
ment object. Consider, for instance, an ortholog scan function. This function would take as
input the initial prototype plasmid, specify the ORF to be scanned, and the organisms from
which an ortholog is desired. The function would then execute a BLAST search of the ORF
sequence to be replaced against the specified organisms, select an appropriate cloning strategy,
design all necessary oligos, and output an Experiment object ready for simulation or execution.
Preliminary versions of such algorithms are presented for oligo design in C6-tools, but we
reserve the development of such functions for future work. Ultimately, a comprehensive
library of such design functions could be established to cater to a wide array of scenarios.

The ChatGPT conversational interface facilitates a more intuitive interaction by leveraging
natural language processing. However, it is currently limited by token limits, which restricts
the complexity and length of the interactions. Ideally, the AI could be aware of all the other
interfaces such that it could, for example, build a spreadsheet that invoked the functions, or
translated a spreadsheet to the experiment folder format. This would allow the Al to leverage
the benefits of each interface, while mitigating their individual limitations.

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 15/18

https://doi.org/10.1371/journal.pone.0294469

PLOS ONE

Enabling Al in synthetic biology through Construction File specification

Challenges and opportunities in integrating AI for experimental design

Synthetic biology stands on the cusp of a new era as we explore the complex but promising
task of integrating it with artificial intelligence (AI). This fusion has the potential to revolution-
ize experiment design through automation and streamlined efficiency, thereby reducing man-
ual labor and cognitive load. Our study demonstrates that GPT-4 exhibits impressive
proficiency in working with CFs. However, the road to effective integration is filled with signif-
icant challenges.

The development of reliable Al interfaces stands as the first hurdle. These interfaces must
understand CFs in their entirety and demonstrate proficiency in various tasks such as design-
ing CFs, compiling them into robot commands or human-readable instructions, and even
locating CFs using intricate queries. The interfaces should also be capable of querying the
sequences tied to the experiments and maintain an inventory awareness. They need to under-
stand and invoke a myriad of API functions related to CFs. This requires an in-depth under-
standing of the CF specification and the biological processes it encapsulates, coupled with the
capacity to handle complex data structures and large sequence files, which constitute substan-
tial computational challenges.

To address the issue of token limits, we propose a decoupling strategy. By assigning unique
names to well-defined objects, we can create loosely-coupled references, significantly reducing
token usage. This not only simplifies data manipulation across various levels of abstraction but
also allows the Al to focus on task-specific requirements within the scope of relevant
information.

In light of synthetic biology’s extensive functional scope, we recommend adopting a
dynamic plugin system. This would enable the Al to access a wide-ranging function library
dynamically, choosing the right function along with its API information for precise execution.
This strategy circumvents the need for an Al to be pre-trained on extensive API data and
allows for the addition of further functions without necessitating comprehensive Al rewrites.

While it’s crucial to ensure that CFs, the associated sequences, and compiled instructions
are stored persistently and readily accessible, the inherently error-prone and fleeting nature of
Al memory requires this storage to take place on the plugin side of the interface. The Al should
reference these stored objects by their unique names. However, this approach does present
challenges, including ensuring that the Al is aware of the objects stored within the plugin and
defining how new objects are added and persisted.

In the integration of AI with CFs, biosecurity remains a paramount concern. It is critical to
have human oversight to prevent any direct execution of code, particularly when it involves
robotic genetic engineering processes. The Al needs to be semantically aware of its tasks and
carry out continuous checks against known biohazards such as toxins, virulence factors, and
gene drives. As we strive to overcome computational and biosecurity challenges in the integra-
tion of Al with CFs, we recognize that the interplay of Al capabilities and synthetic biology,
despite its hurdles, holds the key to a future where efficiency, precision, and safety transform
the landscape of biological experimentation and discovery.

Supporting information

S1 File. Comprehensive supplemental material. This ZIP file contains all essential supporting
documents, including specification documents, chats, movies, Construction Files, and
sequences, as referenced in the main text. A detailed description of contents is provided in the
accompanying README.txt.

(Z1P)

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 16/18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0294469.s001
https://doi.org/10.1371/journal.pone.0294469

PLOS ONE

Enabling Al in synthetic biology through Construction File specification

Acknowledgments

Evan Cory, Kristen Delgado, Cole Ingamells, Madhumita Kannan, Lauren Mathis, Sisi Morris-
Gavrieli, Mona Zheng, students of iGEM at Berkeley and BioE 140L contributed to testing
ConstructionFileSimulator and C6-Tools. While ConstructionFileSimulator was developed
prior to ChatGPT, the Al played a substantial role in other facets of this study. ChatGPT aided
in demonstrations, informed content and organizational discussions, and assisted with text
editing for clarity and readability.

Author Contributions
Conceptualization: Nassim Ataii, Sanjyot Bakshi, Yisheng Chen, Michael Fernandez, Zihang

Shao, Zachary Scheftel, Connor Tou, Yuting Wang, Hanxiao Zhang, Zexuan Zhao, J. Chris-
topher Anderson.

Data curation:]. Christopher Anderson.

Formal analysis:]. Christopher Anderson.
Funding acquisition:]. Christopher Anderson.
Investigation: J. Christopher Anderson.
Methodology: J. Christopher Anderson.

Project administration: J. Christopher Anderson.
Resources: J. Christopher Anderson.

Software: Nassim Ataii, Sanjyot Bakshi, Yisheng Chen, Michael Fernandez, Zihang Shao,
Zachary Scheftel, Connor Tou, Mia Vega, Yuting Wang, Hanxiao Zhang, Zexuan Zhao, J.
Christopher Anderson.

Supervision: J. Christopher Anderson.
Validation: J. Christopher Anderson.
Visualization: J. Christopher Anderson.

Writing - original draft: Nassim Ataii, Sanjyot Bakshi, Yisheng Chen, Michael Fernandez,
Zihang Shao, Zachary Scheftel, Connor Tou, Mia Vega, Yuting Wang, Hanxiao Zhang,
Zexuan Zhao, J. Christopher Anderson.

Writing - review & editing:]. Christopher Anderson.

References

1. Hillson NJ, Rosengarten RD, Keasling JD. j5 DNA assembly design automation software. ACS Synth.
Biol. 2012; 1(1):14-21. https://doi.org/10.1021/sb2000116 PMID: 23651006

Benchling. https://www.benchling.com/

3. Davis MW, Jorgensen EM. ApE, A Plasmid Editor: A Freely Available DNA Manipulation and Visualiza-
tion Program. Front. Bioinform. 2022; 2:818619. https://doi.org/10.3389/fbinf.2022.818619

4. SnapGene. https://www.snapgene.com/

Gorelenkov V, Antipov A, Lejnine S, Daraselia N, Yuryev A. Set of novel tools for PCR primer design.
Biotechniques. 2001; 31(6):1326—1330. https://doi.org/10.2144/01316bc04 PMID: 11768662

6. Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: freely available Python
tools for computational molecular biology and bioinformatics. Bioinformatics. 2009; 25(11):1422—-1423.
https://doi.org/10.1093/bioinformatics/btp163 PMID: 19304878

7. Geneious. https://www.geneious.com/

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 17/18

https://doi.org/10.1021/sb2000116
http://www.ncbi.nlm.nih.gov/pubmed/23651006
https://www.benchling.com/
https://doi.org/10.3389/fbinf.2022.818619
https://www.snapgene.com/
https://doi.org/10.2144/01316bc04
http://www.ncbi.nlm.nih.gov/pubmed/11768662
https://doi.org/10.1093/bioinformatics/btp163
http://www.ncbi.nlm.nih.gov/pubmed/19304878
http://www.geneious.com/
https://doi.org/10.1371/journal.pone.0294469

PLOS ONE

Enabling Al in synthetic biology through Construction File specification

10.
11.
12.
13.
14.

15.

16.

17.

18.

Czar MJ, Cai Y, Peccoud J. Writing DNA with GenoCAD. Nucleic Acids Res. 2009; 37(Web Server
issue):W40-W47. https://doi.org/10.1093/nar/gkp361 PMID: 19429897

Pereira F, Azevedo F, Carvalho A, Ribeiro GF, Budde MW, Johansson B. Pydna: a simulation and doc-
umentation tool for DNA assembly strategies using python. BMC Bioinformatics. 2015; 16(1):142.
https://doi.org/10.1186/s12859-015-0544-x PMID: 25933606

Poly. https://github.com/TimothyStiles/poly

Anderson JC. Introduction To Oligo Design. https://openwetware.org/wiki/Arking:JCAQOligoTutoriald
Transcriptic. Autoprotocol. https://autoprotocol.org/

OpenAl. ChatGPT-4. https://www.openai.com/chatgpt/

Anderson JC, Clarke EJ, Arkin AP, Voigt CA. Environmentally controlled invasion of cancer cells by

engineered bacteria. J. Mol. Biol. 2006; 355(4):619-627. https://doi.org/10.1016/j.jmb.2005.10.076
PMID: 16330045

Anderson JC. PyDNA_CF_Simulator [Software]. Available at GitHub Repository: https:/github.com/
UCB-BioE-Anderson-Lab/PyDNA_CF_Simulator; Zenodo: https://zenodo.org/badge/latestdoi/
649457319

Ataii A, Bakshi S, Chen Y, Fernandez M, Scheftel Z, Shao Z, et al. ConstructionFileSimulator [Soft-
ware]. Available at GitHub Repository: https://github.com/UCB-BioE-Genetic-Design-Automation/
ConstructionFileSimulator; Zenodo: https://zenodo.org/badge/latestdoi/177160385

Anderson JC. C6-Tools (Version 1.0) [Software]. Available at Google Sheets: https://docs.google.com/
spreadsheets/d/18GhA2s-x9kX1ar5YRMghXjcOHNW63eaZiDOfTT4xC60/edit#gid=452338215;
GitHub Repository: https://github.com/UCB-BioE-Anderson-Lab/C6-Tools; Zenodo: https://zenodo.org/
badge/latestdoi/692952231

Hsiau TH-C, Anderson JC. Engineered DNA Sequence Syntax Inspector. ACS Synth. Biol. 2014; 3
(2):91-96. https://doi.org/10.1021/sb400176e PMID: 24364864

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 18/18

https://doi.org/10.1093/nar/gkp361
http://www.ncbi.nlm.nih.gov/pubmed/19429897
https://doi.org/10.1186/s12859-015-0544-x
http://www.ncbi.nlm.nih.gov/pubmed/25933606
https://github.com/TimothyStiles/poly
https://openwetware.org/wiki/Arking:JCAOligoTutorial1
https://autoprotocol.org/
https://www.openai.com/chatgpt/
https://doi.org/10.1016/j.jmb.2005.10.076
http://www.ncbi.nlm.nih.gov/pubmed/16330045
https://github.com/UCB-BioE-Anderson-Lab/PyDNA_CF_Simulator
https://github.com/UCB-BioE-Anderson-Lab/PyDNA_CF_Simulator
https://zenodo.org/badge/latestdoi/649457319
https://zenodo.org/badge/latestdoi/649457319
https://github.com/UCB-BioE-Genetic-Design-Automation/ConstructionFileSimulator
https://github.com/UCB-BioE-Genetic-Design-Automation/ConstructionFileSimulator
https://zenodo.org/badge/latestdoi/177160385
https://docs.google.com/spreadsheets/d/18GhA2s-x9kX1ar5YRMghXjcOHNW63eaZiD0fTT4xC60/edit#gid=452338215
https://docs.google.com/spreadsheets/d/18GhA2s-x9kX1ar5YRMghXjcOHNW63eaZiD0fTT4xC60/edit#gid=452338215
https://github.com/UCB-BioE-Anderson-Lab/C6-Tools
https://zenodo.org/badge/latestdoi/692952231
https://zenodo.org/badge/latestdoi/692952231
https://doi.org/10.1021/sb400176e
http://www.ncbi.nlm.nih.gov/pubmed/24364864
https://doi.org/10.1371/journal.pone.0294469

