
RESEARCH ARTICLE

Enabling AI in synthetic biology through

Construction File specification

Nassim Ataii1, Sanjyot Bakshi1, Yisheng Chen1, Michael Fernandez1, Zihang Shao1,

Zachary Scheftel1, Connor Tou1, Mia Vega1, Yuting Wang1, Hanxiao Zhang1,

Zexuan ZhaoID
1, J. Christopher AndersonID

1,2,3*

1 Department of Bioengineering, University of California, Berkeley, Berkeley, California, United States of

America, 2 QB3: California Institute for Quantitative Biological Research, University of California, Berkeley,

Berkeley, California, United States of America, 3 Physical Biosciences Division, Lawrence Berkeley National

Laboratory, Berkeley, California, United States of America

* jcanderson@berkeley.edu

Abstract

The Construction File (CF) specification establishes a standardized interface for molecular

biology operations, laying a foundation for automation and enhanced efficiency in experi-

ment design. It is implemented across three distinct software projects: PyDNA_CF_Simula-

tor, a Python project featuring a ChatGPT plugin for interactive parsing and simulating

experiments; ConstructionFileSimulator, a field-tested Java project that showcases ’Experi-

ment’ objects expressed as flat files; and C6-Tools, a JavaScript project integrated with

Google Sheets via Apps Script, providing a user-friendly interface for authoring and simula-

tion of CF. The CF specification not only standardizes and modularizes molecular biology

operations but also promotes collaboration, automation, and reuse, significantly reducing

potential errors. The potential integration of CF with artificial intelligence, particularly GPT-4,

suggests innovative automation strategies for synthetic biology. While challenges such as

token limits, data storage, and biosecurity remain, proposed solutions promise a way for-

ward in harnessing AI for experiment design. This shift from human-driven design to AI-

assisted workflows, steered by high-level objectives, charts a potential future path in syn-

thetic biology, envisioning an environment where complexities are managed more

effectively.

Introduction

Construction File (CF) is a domain-specific representation that encapsulates a genetic engi-

neering experiment in terms of molecular biology operations and the genetic materials

involved. Rather than being a language, it serves as an abstraction that defines the minimal

information content necessary to describe the DNA modification chemistry involved in fabri-

cating a DNA or genetic library. Despite the existence of multiple ways to express an experi-

ment as a CF, we have explored its standardization to enhance communication among

humans, software tools, and intelligent systems within a collaborative workspace. We propose

specifications for two representations of CF: a shorthand format for convenience and a JSON

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ataii N, Bakshi S, Chen Y, Fernandez M,

Shao Z, Scheftel Z, et al. (2023) Enabling AI in

synthetic biology through Construction File

specification. PLoS ONE 18(11): e0294469. https://

doi.org/10.1371/journal.pone.0294469

Editor: Pietro Cinaglia, University of Catanzaro:

Universita degli Studi Magna Graecia di Catanzaro,

ITALY

Received: July 11, 2023

Accepted: October 31, 2023

Published: November 13, 2023

Copyright: © 2023 Ataii et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All software utilized in

this study is available as open source.

PyDNA_CF_Simulator is accessible via Zenodo:

https://zenodo.org/badge/latestdoi/649457319.

ConstructionFileSimulator can be found on Zenodo

at: https://zenodo.org/badge/latestdoi/177160385.

C6-Tools (Version 1.0) is archived on Zenodo:

https://zenodo.org/badge/latestdoi/692952231.

Supplementary materials such as specification

documents, chats, movies, Construction Files, and

sequences mentioned in the paper are provided in

the supplemental information.

https://orcid.org/0000-0003-2410-0893
https://orcid.org/0000-0002-9115-7323
https://doi.org/10.1371/journal.pone.0294469
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0294469&domain=pdf&date_stamp=2023-11-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0294469&domain=pdf&date_stamp=2023-11-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0294469&domain=pdf&date_stamp=2023-11-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0294469&domain=pdf&date_stamp=2023-11-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0294469&domain=pdf&date_stamp=2023-11-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0294469&domain=pdf&date_stamp=2023-11-13
https://doi.org/10.1371/journal.pone.0294469
https://doi.org/10.1371/journal.pone.0294469
http://creativecommons.org/licenses/by/4.0/
https://zenodo.org/badge/latestdoi/649457319
https://zenodo.org/badge/latestdoi/177160385
https://zenodo.org/badge/latestdoi/692952231

version for cross-software communication. Furthermore, we provide parsers and simulators in

Python, Java, and JavaScript (Table 1). We explore human user interfaces for working with CF

objects as well as AI interfaces and their ability to reason about CF objects.

Over the past years, numerous tools have been developed to assist with the design of DNA

cloning schemes, such as J5 [1], Benchling [2], A Plasmid Editor (ApE) [3], SnapGene [4],

SBOL [5], Biopython [6], Geneious [7], pydna [8], GenoCAD [9], and poly [10]. These tools

have varying abilities to plan recombinant DNA experiments including the design of oligonu-

cleotides and prediction of the resulting products. CF can serve as a standardized representa-

tion of the outcome of these design processes. It explicitly captures the experimental steps and

their associated parameters in a minimal form independent of a specific software tool or

environment.

The CF Shorthand Specification is much like a recipe for constructing DNA in the lab.

A list of reaction steps is written in the order they should be performed, each defined by an

operation keyword and parameters, separated by spaces. For instance, a Polymerase Chain

Reaction could be specified as "PCR ForwardPrimer ReversePrimer Template ProductName",

with parameters representing names of DNA sequences or other relevant details. These

sequences can be expressed in the CF as a name and sequence pair, like "T7_Universal

TAATACGACTCACTATAGGG", or they can reference DNAs from an external source such as a

database. Although a CF does not specify implementation details such as the executor of the

process (human or robot), reagent volumes, or manufacturer choices, it is still capable of defin-

ing the product sequences that would result from any successful implementation.

We first publicly introduced a format for CF in 2007 as part of a cloning tutorial on Open-

WetWare [11], with the intention of it being a human-readable representation of the experi-

ment to aid in training and documentation. Over time, it became a practical necessity to

develop software that could verify CF and catch design errors in these documents to avoid

wasted lab resources and time. This need prompted multiple iterations of refining the ontology

and syntax of CF, culminating in the current specification. Herein we provide multiple exam-

ples of CF shorthand that have been verified in the wetlab. We also present software tools that

can read and simulate CF to ensure its completeness, syntactic correctness, and the feasibility

of the proposed chemistry.

A CF can also function as an input or specification for an experiment, executable by an

individual researcher, a core facility, or robotic systems. Although this paper does not present

software for converting a CF into more detailed plans, it demonstrates that artificial intelli-

gence can expand such a plan for human implementation. However, the current AI falls short

of translating a CF into an Autoprotocol [12], a JSON-based language that describes experi-

mental procedures in terms of robotic operations, such as liquid transfers, plate sealing and

unsealing, among others. Despite these limitations, there is potential for developing software

that can perform this translation. Therefore, a CF can serve as a pivotal intermediate represen-

tation in the design process, with the remaining details inherently predetermined, provided a

Table 1. Comparative features of CF simulation tools.

Software Name Language Entry Interface Operations Supported Unique Features

PyDNA_CF_Simulator Python AI Chat, REST API,

Command Line, or library

Gibson, Golden Gate, PCR, Digestion, Ligation,

Transformation

GPT-4 Interface

ConstructionFileSimulator

(CFS)

Java SimulatorView GUI,

Command Line, or library

Gibson, Golden Gate, PCR, PCA, SOEing, Klenow

Extension, Digestion, Ligation, Blunting,

Transformation

’Experiment’ Object

C6-Tools JavaScript Google Sheets Gibson, Golden Gate, PCR, Transformation Spreadsheet Interface, Real-time

Visualization, Oligo Design Tools

https://doi.org/10.1371/journal.pone.0294469.t001

PLOS ONE Enabling AI in synthetic biology through Construction File specification

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 2 / 18

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0294469.t001
https://doi.org/10.1371/journal.pone.0294469

rubric that defines the resources available in the lab where it will be executed. This underscores

the role of the CF as a critical intermediary in enabling intelligent systems, including AI, to

effectively participate in the genetic engineering process.

Results

The Construction File (CF) provides a structured framework for encoding genetic engineering

experiments. This framework is articulated through two distinct specifications: a JSON object

format (cf_JSDoc_specification.md) for precise machine-readable communication, and a

shorthand format (cf_shorthand_specification.md) for human-readable documentation and

quick notation. These specifications enable the encoding and decoding of experiment design

information and lay the groundwork for the integration of artificial intelligence in experiment

planning and simulation.

The JSON object format is a detailed representation. It consists of two main elements:

’steps’ and ’sequences’. The ’steps’ element is an array of objects representing construction

steps, including the associated operation, input sequences, and output product. The

’sequences’ element is an object with key-value pairs, where each key represents a unique iden-

tifier for a DNA sequence, and the corresponding value represents the sequence, strandedness,

and end chemistry of the DNA.

The shorthand format, on the other hand, is a more abstract and flexible representation. It

is defined as a list of Steps, where each Step represents a specific operation in a molecular biol-

ogy experiment. Steps are written on separate lines, with parameters separated by whitespace

(preferably TSV). A Step includes the names of input DNA sequence(s), non-sequence param-

eters, and concludes with the name of the product DNA sequence. The input sequences can

refer to products from previous steps. The shorthand format also allows integration of com-

ments and sequences using ’name sequence’ lines. This flexibility enables CF Shorthand to rep-

resent various DNA operations beyond those explicitly defined in the specification. However,

parsers and simulator algorithms typically require a defined scope of operations and parame-

ters to apply domain logic. To address this, level 1 of the specification specifically defines PCR,

GoldenGate, Gibson, Digest, Ligate, and Transform operations.

As shown in Fig 1, the CF Shorthand provides a structured, machine-readable alternative to

traditional illustrations of cloning strategies. Each step in the Construction File Shorthand

begins with an operation, followed by operation-specific inputs, often sequence names. The

final token in each step denotes the product, encapsulating the outcome of the operation. The

full text of this CF is also available as Examples/Construction_pSB1A2-Bca9128.txt.

Although the CF Shorthand format and the JSON format have different syntax, the only

functional difference between the two formats is the level of detail regarding strandedness and

other characteristics of the DNAs. In most real-world scenarios, cloning experiment inputs are

either double-stranded DNAs longer than 100 bp or single-stranded linear oligonucleotides

shorter than 100 bp. Consequently, the additional fields needed to express a DNA’s full struc-

ture can usually be inferred. One advantage of the shorthand format is its bidirectional com-

patibility with spreadsheets. Excel and Google Sheets can handle TSV data, allowing for easy

manipulation and maintaining the TSV syntax when transferred between a text field and

spreadsheet cells.

Considerations for the specification

The CF specification was designed with a balance between detail and simplicity in mind. One

approach could have been to describe steps in terms of lists of reagents, aligning with wetlab

automation ontologies. However, this would have led to an unnecessary over-specification and

PLOS ONE Enabling AI in synthetic biology through Construction File specification

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 3 / 18

https://doi.org/10.1371/journal.pone.0294469

would have been more difficult to simulate due to the need for a mechanistic simulation of

each enzymatic step. On the other hand, a more abstract approach, aligning with standard

assembly schemes like BioBricks and MoClo are simple to simulate, but this approach lacked

the required detail for comprehensive representation of the diversity of experiments that are

frequently performed. We also considered abstractly defining PCR to include mechanistically

similar methods like Polymerase Chain Assembly and SOEing. However, this resulted in a het-

erogenous input parameter schema, leading us to define the operations more narrowly. A sim-

ilar thing happened with Assembly. We explored an ’assemble’ operation, and Gibson was an

option for the enzyme. This abstraction didn’t add anything, and having assembly methods

explicitly stated as operations was more direct. Thus, we selected commonly-used, method-

level abstractions, encompassing the operations PCR, Digest, GoldenGate, Ligate, Gibson, and

Transform. Each of these operations, in turn, have their unique requirements and parameters.

AmpR

Input Sequences
ca1067F ccagtGAATTCgtccTCTAGAgagctgatccttcaactc
ca1067R gcagtACTAGTtccgtcaagtcagcgtaatg

Cloning Steps
PCR ca1067F ca1067R pSB1AK3-b0015 pcrpdt
Digest pcrpdt EcoRI,SpeI 1 pcrdig
Digest pSB1A2-I13521 EcoRI,SpeI 1 vectdig
Ligate pcrdig vectdig lig
Transform lig DH10B Amp pSB1A2-Bca9128

ColE1 origin

dblTerm

AmpR

KanR

pSB1AK3-b0015

mRFP1

EcoRI

SpeI

ColE1 origin

AmpR

pSB1A2-I13521

KanREcoRI SpeI

EcoRI

SpeI

ColE1 origin

AmpR

pSB1A2-Bca9128

KanR

PCR

Digest
EcoRI/SpeI

KanR

Digest

ColE1 origin

EcoRI/SpeI

Ligate

A)

B)

EcoRI
SpeI

Fig 1. Shorthand representations of a cloning strategy. (A) Conventional illustration of a cloning strategy, visually

detailing PCR, Digestion, and Ligation steps. (B) Equivalent strategy represented in Construction File Shorthand. Each

step begins with an operation (blue), followed by operation-specific inputs, often sequence names (magenta). The final

token in each step (orange) denotes the product, encapsulating the outcome of the operation. This shorthand format

provides a structured, machine-readable alternative to traditional illustrations.

https://doi.org/10.1371/journal.pone.0294469.g001

PLOS ONE Enabling AI in synthetic biology through Construction File specification

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 4 / 18

https://doi.org/10.1371/journal.pone.0294469.g001
https://doi.org/10.1371/journal.pone.0294469

Beyond the naming of these operations, some require specific non-DNA parameters. For

instance, the PCR operation includes an optional product size parameter, which is important

when using the CF as an input specification. However, it is defined as optional since the PCR

product size is unknowable if the PCR hasn’t already been simulated. Similarly, the Digest

operation includes a ’fragSelect’ index parameter. This specifies the fragment desired after

digestion, with numbering starting from the first cut of the first enzyme. This approach offers

flexibility and simplicity, as in most cases, the desired fragment is number 1. Finally, the Trans-

form operation has an optional incubation temperature field that should only be included

when it is a relevant detail. To further enhance flexibility and portability, sequences in the CF

are treated in a specific way.

In the CF, sequences are referenced by their names, not as objects. This loose coupling

allows a CF to be syntactically valid before the sequences associated with the names have been

defined, thus allowing a CF to also serve as a specification for the design of the sequences. It

also allows a CF to have alternate input sequences injected during simulation such that a simi-

lar sequence of cloning steps can be applied to different input DNAs. Additionally, it improves

portability since memory-intensive sequence data does not need to be transferred.

In developing the sequence representation for the CF, we considered several formats

including TSV, FASTA, Dseqrecord [9], and a custom class, Polynucleotide. The simplest

option, name and sequence of the ’watson’ strand, was adopted for the shorthand format. For

the JSON representation, we opted for a more detailed Polynucleotide object, capturing sticky

ends, 5’ modifications, strandedness, and circularity. This representation, as illustrated in Fig

2, reflects the DNA’s state as it undergoes operation-specific transformations to yield expected

products. This format accommodates atypical DNA forms and aligns with how molecular biol-

ogists often describe sticky ends. We also considered a Dseqrecord-like format wherein both

strands of the DNA are expressed as strings along with an overhang integer. This offers chemi-

cal precision but requires additional processing and complex operations for AI reasoning.

Moreover, the pydna implementation of Dseqrecord, while comprehensive, carries unneces-

sary complexity for our purposes and does not express 5’ modification chemistry. It also

includes many fields inherited from Biopython’s SeqRecord about semantics and annotations

which are not needed to specify the chemistry. A middle-ground representation, specifying

whether the DNA is a plasmid, a dsDNA, or an oligo, was also included in shorthand. This

covers most real-world scenarios and can be readily compiled to the Polynucleotide form.

Assessment of AI in interpreting, designing, and simulating CF

We conducted a series of experiments to assess the capabilities of AI, specifically GPT-4 via

ChatGPT [13], in interpreting, converting, and simulating CF. These experiments serve as an

initial exploration of how AI can be integrated into the process of designing genetic engineer-

ing experiments. In each experiment, the shorthand specification text was provided at the start

of the chat. The full transcripts of these chats are available as supplemental information under

’Chats’, or via URL. A summary of the errors observed is provided in Table 2.

ChatGPT demonstrated a remarkable ability to interpret complex scientific text and con-

vert it into CF shorthand. As illustrated in Fig 3, when presented with a published description

of a cloning experiment involving the preparation of two ribosome binding site libraries [14],

ChatGPT accurately interpreted the steps and converted them into CF shorthand, despite the

complexity of the experiment and the need to infer unstated steps from the text (invasin_par-

se_test.html). This result suggests that a literature mining effort to extract the history of pub-

lished recombinant experiments is within reach of current technology, although it is beyond

the scope of this study.

PLOS ONE Enabling AI in synthetic biology through Construction File specification

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 5 / 18

https://doi.org/10.1371/journal.pone.0294469

polyA:
5'-pCCGGCTgaattcAG -3'
3'- GActtaagTCCTAG-5'
{
 "sequence": CTGAATTCAG,
 "ext5": "CCGG",
 "ext3": "GATC",
 "is_double_stranded": true,
 "is_circular": false,
 "mod_ext5": "phosphate",
 "mod_ext3": "hydroxyl"
}

Digest polyA EcoRI 0 polyB
fragment[0]:
5'-pCCGGCTg -3'
3'- GActtaap-5'
 +
fragment[1]:
5'-paattcAG -3'
3'- gTCCTAG-5'
polyB:
{
 "sequence": CTG,
 "ext5": "CCGG",
 "ext3": "AATT",
 "is_double_stranded": true,
 "is_circular": false,
 "mod_ext5": "phosphate",
 "mod_ext3": "phosphate"
}

PLOS ONE Enabling AI in synthetic biology through Construction File specification

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 6 / 18

https://doi.org/10.1371/journal.pone.0294469

We also explored if ChatGPT could perform zero-shot design of a CF. After providing the

shorthand specification, we tasked it with performing a ’prefix insertion’ on two BioBrick plas-

mids (design_biobrick.html). ChatGPT returned a syntactically correct CF, correctly inferring

the need for two digestion reactions and one ligation reaction. However, it initially chose

incorrect enzymes for the digests. After providing additional information from an external

website, ChatGPT corrected the enzymes and structure in the CF. The only remaining error

was the ambiguity of the fragmentSelection indices, which was resolved with further prompt-

ing about the orientation of the input sequences. This experiment demonstrated that, with cor-

rective prompting, GPT can be guided to author accurate construction files.

Interconversion between different forms of CF is another area where ChatGPT showed

proficiency (syntax_conversions.html). Given the specifications for shorthand and JSON for-

mats, it was able to convert a CF from shorthand to JSON, correctly inferring the strandedness

and circularity details for the DNAs involved (Examples/Construction_pSB1A2-Bca9128.

json). We also asked it to generate an XML version (Examples/Construction_pS-

B1A2-Bca9128.xml), demonstrating the flexibility of CF and the ability of GPT to handle dif-

ferent formats.

The generation of human-readable work plans and Autoprotocols from CFs is a more com-

plex task, and here ChatGPT showed both its capabilities and limitations. When asked to

reduce a CF to a work plan that could be passed to a technician (technician_instructions.

html), ChatGPT produced mostly correct instructions. However, it hallucinated locations for

preexisting samples and omitted some steps that are typically included in such instructions,

such as full calculation of the reagent volumes and consideration of DNA concentrations.

When asked to generate an Autoprotocol, a JSON-based language for robotic liquid handlers,

ChatGPT struggled (autoprotocol_instructions.html). Despite being familiar with Autoproto-

col, it was unable to produce valid JSON, indicating that the leap from CF to Autoprotocol is

currently beyond GPT’s capabilities.

Fig 2. Polynucleotide object representation for simulating molecular biology operations. The hypothetical DNA

’polyA’ is a linear, double-stranded DNA previously cut with BamHI, dephosphorylated, and subsequently cut with

XmaI. In the Polynucleotide object representation, the fully duplexed DNA portion is captured as the "sequence".

Single-stranded overhangs are represented by the coding strand sequence as ext5 and ext3, denoting the overhangs on

the left and right of the diagram, respectively. Modifications at the ends are indicated by enumerated types as

mod_ext5 and mod_ext3. The simulation of an EcoRI digestion of this DNA would yield two fragments, indexed as 0

and 1. The ’fragmentSelection’ field of the shorthand statement is set to 0, resulting in ’polyB’ being returned as

depicted. In the simulation software, Polynucleotides serve as dynamic representations of DNAs, reflecting their states

as they undergo operation-specific transformations to yield expected products. Simulation software currently supports

PCR, Digest, Ligate, GoldenGate, Gibson, and Transform operations.

https://doi.org/10.1371/journal.pone.0294469.g002

Table 2. Limitations of GPT-4 in handling CFs.

Task/Context Specific Error Impact & Consequence Evidence (S1 File)

1 Translating CF to

Autoprotocol

Unable to produce valid JSON Cannot automate lab tasks using

Autoprotocol

autoprotocol_instructions.html

2 Human-readable Work

Plans

Hallucinated locations and omitted some steps Incomplete or incorrect instructions technician_instructions.html

3 Simulating CFs Token limit exceeded; failed to simulate result Cannot simulate complex or large

CFs

invasin_simulation.html

4 Converting CF to pydna

script

Incorrectly used ’Assembly’ function; several

other mistakes

Generated script is unrunnable cf_to_pydna.html

5 Java Code to Apps Script Insufficient grasp of algorithmic task for

translating languages

Required extensive manual

adjustment

java_simulator_conversion.html

6 Testing Python Plugin

Wrapper

Token limit restricts utility with larger DNA

sequences

Limited to handling small DNA

sequences

pydna_plugin_test.html and

pydna_plugin_test.mov

https://doi.org/10.1371/journal.pone.0294469.t002

PLOS ONE Enabling AI in synthetic biology through Construction File specification

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 7 / 18

https://doi.org/10.1371/journal.pone.0294469.g002
https://doi.org/10.1371/journal.pone.0294469.t002
https://doi.org/10.1371/journal.pone.0294469

Simulating CFs directly in ChatGPT also presented challenges. When given the entire text

of a CF, the token limit was exceeded due to the long length of plasmid sequences. Shortening

the sequences in the CF allowed ChatGPT to accept the prompt, but it failed to simulate the

result due to the task’s complexity (invasin_simulation.html). Thus, while GPT shows promise

in understanding and interconverting CF, it struggles to accurately design, simulate, or com-

pile them into wetlab instructions. Given the paramount importance of accuracy for BioCAD

tools, these findings underscore the need for a more precise approach, such as could be

achieved with a GPT plugin.

Simulation of construction files

We wrote three separate software tools in Python [15], Java [16], and JavaScript [17]. Each

illustrates the use of Construction File in a different languages, interaction mode, and scope of

features as illustrated in Table 1.

PyDNA_CF_Simulator: A Python-based ChatGPT plugin for CF simulation using

PyDNA. To explore the possibility of GPT directly invoking python scripts for simulation

tasks, we attempted to have GPT generate a pydna script representing the pSB1A2-Bca9128

example CF (cf_to_pydna.html). The pydna library shares a similar ontology with CF and

includes simulators for PCR, digestion, ligation, and Gibson assembly methods. However, the

resulting script from GPT required us to make several manual adjustments, including moving

Fig 3. Zero-shot natural language processing interpretation of construction files by ChatGPT. After being

prompted with the shorthand specification document, ChatGPT (GPT-4) demonstrates its ability to interpret plasmid

construction text from a scientific paper into a construction file with high accuracy. This demonstration underscores

the potential of A.I. to automatically extract construction files from scientific literature, opening new possibilities for

large-scale, automated analysis of genetic engineering experiments from unstructured archival text. Partial, illustrative

representation; see supplemental for complete chat.

https://doi.org/10.1371/journal.pone.0294469.g003

PLOS ONE Enabling AI in synthetic biology through Construction File specification

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 8 / 18

https://doi.org/10.1371/journal.pone.0294469.g003
https://doi.org/10.1371/journal.pone.0294469

the pip statement, adding the DNA sequences, and removing the API requests to GenBank.

Despite these corrections, GPT incorrectly used an ’Assembly’ function to simulate ligations

rather than the ’+’ operand on the sequence objects, rendering the script unrunnable. This

experiment led us to conclude that GPT’s current capabilities are insufficient for writing this

executable representation of CF.

While Python scripts are useful, they present several challenges when used as documenta-

tion for construction files in an AI interface. Firstly, they are written in free-form Python,

there are potential security issues with an interface that executes these scripts. Secondly, they

assume a specific software implementation, limiting extensibility and interoperability in a

multi-tool environment. Lastly, Python scripts do not readily enable inspection, a crucial fea-

ture for using CF as a specification.

To address these limitations, we developed a Python plugin wrapper, PyDNA_CF_Simula-

tor [15], capable of parsing CF and executing the appropriate pydna syntax for simulation. We

created Python classes for ConstructionFile and Polynucleotide according to the jsDoc spec,

and developed functions for parsing Strings of CF shorthand or JSON into these classes. Func-

tions were also created to interconvert between Polynucleotide and Dseqrecord representa-

tions. We then developed a function that simulates a ConstructionFile instance, executing the

appropriate operations and returning the resulting product sequences. Finally, we created an

API wrapper to host the simulator as a REST endpoint, along with a YAML and manifest con-

taining the shorthand specification for communication with ChatGPT.

Testing of the Python plugin wrapper revealed several limitations. While the plugin success-

fully handles simple cases like PCR on short templates (pydna_plugin_test.html and pydna_-

plugin_test.mov), its token limit in the low thousands significantly curtails its utility with

larger DNA sequences. This limit is far from sufficient to encode complex structures like plas-

mid sequences, let alone the millions+ tokens required to express a genome sequence. Due to

its limited utility, we have not submitted PyDNA_CF_Simulator for inclusion as an official

ChatGPT plugin. However, the code is available on Github under the open-source MIT

license.

Further limitations were found within the pydna library itself. Pydna’s inability to simulate

Golden Gate reactions, a cornerstone of modern synthetic biology, greatly restricts its utility

for a wide range of experiments. Although the source code includes a script for it, it is not fully

implemented. While Golden Gate could be described as sequential digestion and ligation

steps, which are implemented, this is not equivalent to the simultaneous cutting and ligation

that occurs in the actual process which requires additional logic. Additionally, pydna allows

non-DNA letters, even permitting the entire alphabet as syntax.

While the Python plugin wrapper effectively delegates the simulation task to reliable, well-

tested code, it has notable limitations. A significant challenge with this type of interface is the

absence of visualization and persistence for both the resulting sequences and the Construction

File itself. Ideally, an additional interface would be integrated into the workflow to provide

users with a clearer understanding of the process and its outcomes. These findings highlight

the necessity for further development and enhancements to the AI interface, particularly in the

areas of user interface design and strategies to circumvent token limits.

ConstructionFileSimulator: A Java-based tool for validation and simulation of CF.

There are two distinct types of software that could be developed for simulating Construction

Files (CFs): one that validates the CF, and another that calculates the product. While these

objectives may seem similar, they lead to different design decisions and implementations. For

instance, consider a Golden Gate assembly of three fragments, where one fragment has com-

patible ends on both sides and thus will re-ligate. A tool focused on calculating the product

would correctly simulate this scenario and return the single-fragment product. However, a

PLOS ONE Enabling AI in synthetic biology through Construction File specification

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 9 / 18

https://doi.org/10.1371/journal.pone.0294469

tool focused on validating a CF would instead identify this scenario as a problem, alerting the

user to the potential issue rather than simply returning the result. This focus on error detection

and prevention is crucial for ensuring the validity and success of genetic engineering

experiments.

With this validation objective in mind, we developed the first iteration of ConstructionFile-

Simulator (CFS) in Java [16]. We employed a programming style reminiscent of Functional

Programming with mostly-pure functions and immutable classes. It interprets CF shorthand

text into a ConstructionFile object, subsequently simulating the expected reaction product

step by step. If an error arises during simulation, it triggers an error response which terminates

the operation and delivers a detailed message to guide corrective action.

The relationship between CF operations and simulator functions in CFS is largely one-to-

one, but the concurrent development of the CF syntax, CFS, and wetlab usage has led to the

need for backward compatibility with past versions of CF. As a result, CFS can handle a

broader array of syntax than the specified shorthand, and the codebase contains more com-

plexity than strictly necessary. It also supports PCA (Polymerase Chain Assembly), SOE (Splic-

ing by Overlap Extension), and Klenow (Klenow extension) operations which are not in the

specification. From a system architecture perspective, it’s worth noting that a strict one-to-one

correspondence between operations and functions is not always the most efficient or effective

design. For example, lower-level functions such as reverse complementation (RevComp.java)

are used across multiple algorithms and are therefore implemented as standalone functions

rather than being associated with specific operations. Furthermore, to accommodate a variety

of PCR-like scenarios, we generalized these techniques in the simulation. While this abstrac-

tion was challenging to express in shorthand, it provides a compact solution at the functional

level. The CFS codebase also includes several exploratory and vestigial features that we have

omitted from this discussion for the sake of focus.

Within this architecture, the project houses two PCR simulators, each designed to address

specific experimental scenarios. The simpler one, encoded in the method perfect18Simulation,

is only activated when a singular template and two oligos are present, with both oligos perfectly

matching the template over 18 bp at their 3’ ends. This condition is usually met for standard

cloning experiments. However, for non-standard scenarios, such as site-directed mutagenesis

involving 20-mer oligonucleotides with a central mismatch, a more mechanistic simulation is

needed. This includes simulating PCA, SOEing, or Klenow Extension, where template varieties

from single-stranded to double-stranded, and their quantities from 0 to n, must be considered.

To accommodate these scenarios, the PCRSimulator employs a backup algorithm, which mim-

ics pairwise DNA annealing and extension. It checks for alignments where the 3’ six bases of

the oligo exactly match the template, then uses JAligner and Tm calculations for further detec-

tion of annealing sites. However, this more complex function, while generally reliable, occa-

sionally struggled with scenarios that a simpler algorithm could handle correctly. Additionally,

it was computationally demanding, causing failures for longer templates and occasional inabil-

ity to detect obvious annealing sites. To mitigate this, the simpler version is used as a first

attempt before falling back to the more mechanistic simulation when necessary. The simulator

can now handle more scenarios than outlined in the specification documents, including

unique cases like mixtures of single-stranded and double-stranded templates. Both algorithms

have been rigorously tested and confirmed to work on linear and circular templates, including

inverse PCRs, and they handle 5’ modifications, 5’ extensions, and common issues such as

multiple annealing sites and orientation errors.

The Digest operation uses a REBASE database-derived file for restriction enzyme informa-

tion, making it capable of handling more enzymes than mentioned in the specification. It cor-

rectly handles degenerate cutters, both 5’ and 3’ extensions, and appropriately assigns

PLOS ONE Enabling AI in synthetic biology through Construction File specification

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 10 / 18

https://doi.org/10.1371/journal.pone.0294469

phosphates to the 5’ modifications of freshly cut DNAs. Though there is a method in the code

(cutOnce) that simulates a single cutting event, the Digest operation is assumed to mean ’cut

to completion’ and thus does not support partial digests.

In the simulation of ligation, the presence of a 5’ phosphate and matching sticky ends are

checked, and two matching ends of two input Polynucleotides are concatenated into one. This

process is repeated until only one fragment remains. If its ends are compatible, it is denoted as

a circular DNA, and the sticky ends are integrated into the sequence field of the resulting

Polynucleotide.

The simulation of GoldenGate primarily involves cutting with the type IIS enzyme and

ligating the fragments, with additional checks for orientation, number of sites in the molecule,

and the appropriateness of the generated sticky ends. Gibson simulation finds exact 20 bp

matches between homologous ends and connects the DNAs pairwise.

The simulation of transformation, while implemented, is currently limited to checking that

the product is circular. This is because transformation of a bacterium with a DNA requires it

to be circular. However, it’s worth noting that CFS fully enables the generation of in vitro lin-

ear DNAs, which can be useful in certain scenarios, such as library fabrication.

CFS includes rigorous checks for possible design errors and provide comprehensive error

messages when triggered. Over the course of three years, our use of the CFS for validating

wetlab designs, along with its extensive application by over 100 students, has enabled us to

identify and rectify numerous bugs. This iterative process led to the creation of a multitude of

unit tests for various edge case scenarios, enhancing the reliability and robustness of our simu-

lator. The development history is documented as issues in the ConstructionFileSimulator

repository on Github.

CFS’s most straightforward interface is its SimulatorView Swing GUI, launched by execut-

ing the jar file without arguments. This interface accepts a construction file’s shorthand text

and outputs the final step’s product. As illustrated in Fig 4, we supplied the GUI with steps

parsed by ChatGPT from the native invasin text, along with the sequences of the three input

plasmid sequences (Chats/ invasin_cf.txt). The resulting sequence of pBACr-AraInvasin

matches the expected map and aligns with sequenced isolates, validating the simulator’s accu-

racy and utility. We have provided an array of real-world examples (found in the supplemental

Examples folder), showcasing the successful application of CFS. These examples feature exper-

iments that involve degenerate bases, the creation of libraries, SOEing, PCA, and Klenow

extension, all of which the simulator correctly handles.

Mitigating clerical mistakes with ’experiment’ objects in ConstructionFileSimulator.

While simulating a CF is an effective way to detect technical errors in experimental design,

such as oligo design issues, it doesn’t account for clerical errors that often occur in larger

experiments involving multiple CFs or during collaborations among research teams. These

errors, such as maintaining different versions of input sequences, are surprisingly common

and can severely impact the success of an experiment. To address these issues, we’ve intro-

duced the concept of an ’Experiment’ object into CFS.

The creation of an ’Experiment’ object begins by passing a hard drive path to a folder con-

taining all relevant files to a parser. This includes sequence files in TSV or GenBank format (.

gb,.seq,.str, and.ape), CFs expressed as plain text files, and additional sequence files, primarily

for oligos, in a TSV format that also allows additional columns. This format is particularly use-

ful as it aligns with the IDT oligo form, reducing the risk of error when copying and pasting

between what is simulated and what is ordered. The parser then outputs an ’Experiment’ object

that encapsulates all the provided information. Once the ’Experiment’ is created, it can be sim-

ulated to ensure the accuracy of the documentation.

PLOS ONE Enabling AI in synthetic biology through Construction File specification

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 11 / 18

https://doi.org/10.1371/journal.pone.0294469

Executing a list of CFs requires additional analysis to determine the correct order of execu-

tion. This is crucial to ensure that the products of earlier files can be used as inputs for later

files. For example, in the pTP2_reporter example, a series of unrelated experiments was used

to construct a reporter plasmid. To correctly simulate this, the software must identify the

order of execution for each CF. We also had to consider the potential for name reuse, such as

"pcrpdt" to refer to products of intermediate steps. To address this, the CFS implementation of

ConstructionFile includes an explicit singular output from the entire file, which is set as the

product of the last step during parsing. This addition, while not explicitly part of the specifica-

tion, is necessary to resolve potential conflicts and implies that a ConstructionFile describes

not only an ordered list of steps but also a specific product outcome.

The need for this higher-order ’Experiment’ object is heavily dependent on the user inter-

face. Our current approach treats files as contents of a folder, but other systems might use a

database, potentially reducing the impact of clerical errors if the design and simulation func-

tions were integrated. Furthermore, the exact content and format of an ’Experiment’ are yet to

be defined. Within the CFS, it encompasses sequences and CFs, but a more comprehensive

specification could include measurement data, analysis, and more. Therefore, while this

’Experiment’ functionality is part of the CFS project, we currently propose no standards for it

and present it as an exploratory feature.

An ’Experiment’ folder can be parsed and simulated using the SimulateExperimentDirec-

tory function. This function is executed when the user runs the jar from the command line

and passes in the path to the folder as a parameter. SimulatorView will also execute this func-

tion when such a folder is dragged-and-dropped on the GUI. Upon execution, the simulator

generates a GenBank file for each product sequence and creates two log files: C5seqs.txt, which

Fig 4. Simulation of Invasin Construction File in a script editor. SimulatorView, a simple GUI included with

ConstructionFileSimulator, accepts the text of a construction file and outputs the product of the final step. In this

instance, the GUI is provided with the steps parsed by ChatGPT, along with the sequences of the three input plasmid

sequences. The complete document can be found in the supplementary file ’invasin_cf.txt’. Upon clicking ’run’, the

construction file is simulated step-by-step. The resulting sequence of pBACr-AraInvasin aligns with the expected map

and is consistent with sequenced isolates, demonstrating the accuracy and utility of the simulation.

https://doi.org/10.1371/journal.pone.0294469.g004

PLOS ONE Enabling AI in synthetic biology through Construction File specification

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 12 / 18

https://doi.org/10.1371/journal.pone.0294469.g004
https://doi.org/10.1371/journal.pone.0294469

contains all sequences (inputs, intermediates, and products), and C5log.txt, which provides a

detailed account of all events that occurred during execution. These log statements are also

outputted to the command line when the jar is run from there. This information is helpful for

identifying and correcting errors in the experiment’s design or documentation.

There are two supplemental examples of ’Experiment’ folders that can be run with CFS.

The Lycopene2 example demonstrates a scenario where several construction files are per-

formed in parallel using a shared set of oligos in different combinations. The pTP2_reporter

example illustrates a chain of sequential CFs where the product of one becomes an input to

another. A demonstration of running CFS on this example is available at cfs_experiment.mov.

C6-tools: Simplifying CF simulations and oligo design in Google Sheets. The Java

implementation of CFS is well-tested, reliable, and effective for validating correct CF. How-

ever, students have found it somewhat challenging to identify errors in the CF. The log file

details all events, which, while helpful in pinpointing errors, can result in a complex interac-

tion akin to code debugging. Typically, we run simulations through the IDE and leverage its

debugging tools. A significant part of this challenge stems from the lack of visual representa-

tion during simulation. Although this issue could be addressed by creating more graphical

user interfaces, this also presents another learning hurdle.

Driven by these usability concerns, we ventured into developing a variant of CFS, named

C6-Tools [17], using Google Apps Script (JavaScript) within a Google Sheet. In addition to

simulation functions, we also integrated algorithms for oligo design. Displaying individual

design and simulation events in a 2D spreadsheet grid significantly simplifies the visualization

of ongoing operations and error identification. Additionally, this interface is highly familiar

and requires little explanation for new users and can be easily accessed via url. While C6-Tools

offers a lower entry barrier compared to CFS, it is a newer tool and has not been as extensively

tested.

Initially, our aim in developing C6-Tools was to leverage GPT-4 to automatically translate

the Java code into Apps Script. However, the majority of the functions proved this task to be

not as straightforward. We were unsuccessful directly converting our Java classes into Apps

Script with a single prompt as illustrated in the supplementary chat wherein we attempted to

convert the Gibson algorithm (java_simulator_conversion.html). The task is complicated by

the length of the algorithms, but also the complexity and nuance of the logic. One notable

complication was the Sheets’ inability to accept objects as cell values, necessitating their addi-

tional management as JSON. Despite these hurdles, ChatGPT was instrumental in facilitating

this process with extensive prompting and revision.

Given the prevalence and versatility of Gibson Assembly and Golden Gate cloning in mod-

ern genetic engineering, traditional methods like digestion and ligation have become less rele-

vant. Therefore, we decided not to include support for these older ’cut and paste’ methods in

C6-Tools. Additionally, this led to significant simplification of the code. Though Polynucleo-

tide and its tracking of end chemistry is needed to simulate separate digestion and ligation

steps, it is not needed to accurately simulate PCR, Golden Gate, and Gibson methods which

can be well handled by simple sequence strings. Nevertheless, we include a class definition for

Polynucleotide as an option for future development in JS.

Nonetheless, constraints such as the lack of a testing environment, the inability to import

libraries, and the non-portability of the code hamper further development of C6-Tools in its

current form. In the case of Apps Script, the scripts must be either within the Sheet file, requir-

ing duplication, or transcluded from a library with a complete wrapper. This quality of Apps

Script limits the ability to maintain and extend the library. However, for users who may wish

to customize their own version of C6-Tools, the independence offered by the current imple-

mentation may be preferable over a development team’s oversight.

PLOS ONE Enabling AI in synthetic biology through Construction File specification

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 13 / 18

https://doi.org/10.1371/journal.pone.0294469

Discussion

The CF specification, as it currently stands, covers a wide range of common molecular biology

operations, including PCR, Digest, GoldenGate, Ligate, Gibson, and Transform. However,

there are several common methods that are not explicitly represented in the CF specification.

These include USER cloning, Ligase Chain Assembly (LCA), QuikChange mutagenesis, site-

specific recombination systems like CRE/Lox and Gateway, homologous recombination meth-

ods like Datsenko-Wanner, and transposon-based methods. In addition, the CF specification

does not currently support simple annealing of oligos to form a duplex DNA, CRISPR-medi-

ated DNA cutting, or TOPO-TA cloning.

Each of these methods has unique requirements and parameters that would need to be

incorporated into the CF specification to enable simulation. For example, QuikChange muta-

genesis involves a PCR-like process, but the product is not the same as a typical PCR product.

The CF PCR algorithm, while generalized, does not currently infer homology and reclosure of

ends that QuikChange would require. Similarly, site-specific recombination systems like CRE/

Lox and Gateway involve specific recognition sequences, which would need to be identified

during the simulation process.

In addition to these specific methods, there are also broader categories of techniques that

are not currently covered by the CF specification. For example, the CF specification does not

currently support the representation of mixed pools of entirely different sequences, which are

often used in library construction. Nor does it support the representation of more complex

DNA structures, such as DNA bubbles or mixed RNA/DNA structures.

However, the question remains: do we need to include all these methods in the CF specifi-

cation? The answer largely depends on the specific goals and use cases of the CF specification.

If the goal were to create a comprehensive database of all cloning experiments, then a compre-

hensive representation of all possible methods would be necessary. On the other hand, if the

goal is to provide a simple and intuitive interface for designing common molecular biology

experiments, then a more limited set of operations may be sufficient. In any case, the decision

to include or exclude specific methods from the CF specification should be made with careful

consideration of the trade-offs between comprehensiveness, simplicity, and practical utility.

Particularly for interacting with intelligent systems, where token limits are important con-

straints, having to include endpoints or API info about all these different operations gets

heavy. If the user isn’t going to do all these things, then why are they in the tool?

Broadening the scope of the Transform operation for greater experimental

accuracy

The Transform operation, a pivotal step in many molecular biology experiments, signifies a

phase where the DNA is subject to further chemical modifications. For example, DNA nicks

can undergo resealing, and the host’s dam and dcm systems can introduce novel methylation

patterns. Nonetheless, the existing Transform operation neither accounts for these modifica-

tions nor verifies the presence of a selectable marker or a suitable origin of replication. More-

over, it does not confirm whether the replicon will replicate in the designated host, or if other

plasmids originating from the same incompatibility group already exist in the strain. To fully

validate a transformation, the Transform operation would need to incorporate these checks.

Furthermore, the current ontology, with its E. coli-centric focus, presumes the use of antibiot-

ics that may not be suitable for yeast work or transfection in plant or animal cells.

Beyond these fundamental verifications, the Transform operation could be enhanced to

encompass a more exhaustive simulation of the biological processes initiated upon the entry of

DNA into the cell. Such a simulator could scrutinize the introduced DNA for proper gene

PLOS ONE Enabling AI in synthetic biology through Construction File specification

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 14 / 18

https://doi.org/10.1371/journal.pone.0294469

structure and assess the overall cellular system for biochemical accuracy, a first pass at which

we presented in our previous work [18]. This would entail simulating the intracellular bio-

chemical reactions and forecasting the cellular response to the introduced DNA. For example,

the simulator could check if a sufficient grouping of genes was introduced to complete a path-

way to a desired metabolite. It could infer promoter behavior and determine what regions of

the DNA would be transcribed and translated. By juxtaposing this inferred pathway data with

a functional specification, the simulator could ascertain whether the designed system would

operate as intended, or if it could potentially be toxic to the cell or contain elements that might

cross-react. Incorporating a transform simulator would provide an additional layer of valida-

tion, ensuring the precision of experimental designs and thereby enhancing the overall

dependability and trust in the CF.

Appraising user interface considerations for effective CF deployment

During the development of CF, we explored a range of interfaces, each presenting unique

advantages and challenges. These interfaces include the Python scripting interface, the Simula-

torView shorthand editor interface, the Experiment folder-based interface with CFS, the

spreadsheet interface via C6-tools, the API interface with PyDNA_CF_Simulator, and the

ChatGPT conversational interface.

The Python scripting interface provides a robust and flexible platform for designing and

simulating experiments, a feature that programmers will find familiar. However, its accessibil-

ity is limited to those with coding experience. Conversely, the SimulatorView shorthand-script

based interface is perfectly suited for crafting bespoke, detailed experiments. Yet, it may be

cumbersome when handling many files due to its manual nature.

The spreadsheet interface, facilitated by C6-tools, offers the advantages of visual arrange-

ment, lookup properties, and easy portability. It also enables the use of all the other spreadsheet

functions, including the ability to drag the contents of a field across a range. This makes it par-

ticularly useful for describing sets of constructs, such as an ortholog or promoter scan.

The Experiment folder-based interface offers portability and compatibility with filesystem

contexts like Github or Google Drive. It can be zipped and sent via email, making it a conve-

nient option for sharing and collaborating on experiments. The API interface with PyD-

NA_CF_Simulator allows for programmatic interaction with the CF tools, providing another

layer of flexibility.

It’s pertinent to highlight that the most common approach to authoring CF likely does not

involve direct typing. Instead, a collection of design functions could generate the CF or Experi-

ment object. Consider, for instance, an ortholog scan function. This function would take as

input the initial prototype plasmid, specify the ORF to be scanned, and the organisms from

which an ortholog is desired. The function would then execute a BLAST search of the ORF

sequence to be replaced against the specified organisms, select an appropriate cloning strategy,

design all necessary oligos, and output an Experiment object ready for simulation or execution.

Preliminary versions of such algorithms are presented for oligo design in C6-tools, but we

reserve the development of such functions for future work. Ultimately, a comprehensive

library of such design functions could be established to cater to a wide array of scenarios.

The ChatGPT conversational interface facilitates a more intuitive interaction by leveraging

natural language processing. However, it is currently limited by token limits, which restricts

the complexity and length of the interactions. Ideally, the AI could be aware of all the other

interfaces such that it could, for example, build a spreadsheet that invoked the functions, or

translated a spreadsheet to the experiment folder format. This would allow the AI to leverage

the benefits of each interface, while mitigating their individual limitations.

PLOS ONE Enabling AI in synthetic biology through Construction File specification

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 15 / 18

https://doi.org/10.1371/journal.pone.0294469

Challenges and opportunities in integrating AI for experimental design

Synthetic biology stands on the cusp of a new era as we explore the complex but promising

task of integrating it with artificial intelligence (AI). This fusion has the potential to revolution-

ize experiment design through automation and streamlined efficiency, thereby reducing man-

ual labor and cognitive load. Our study demonstrates that GPT-4 exhibits impressive

proficiency in working with CFs. However, the road to effective integration is filled with signif-

icant challenges.

The development of reliable AI interfaces stands as the first hurdle. These interfaces must

understand CFs in their entirety and demonstrate proficiency in various tasks such as design-

ing CFs, compiling them into robot commands or human-readable instructions, and even

locating CFs using intricate queries. The interfaces should also be capable of querying the

sequences tied to the experiments and maintain an inventory awareness. They need to under-

stand and invoke a myriad of API functions related to CFs. This requires an in-depth under-

standing of the CF specification and the biological processes it encapsulates, coupled with the

capacity to handle complex data structures and large sequence files, which constitute substan-

tial computational challenges.

To address the issue of token limits, we propose a decoupling strategy. By assigning unique

names to well-defined objects, we can create loosely-coupled references, significantly reducing

token usage. This not only simplifies data manipulation across various levels of abstraction but

also allows the AI to focus on task-specific requirements within the scope of relevant

information.

In light of synthetic biology’s extensive functional scope, we recommend adopting a

dynamic plugin system. This would enable the AI to access a wide-ranging function library

dynamically, choosing the right function along with its API information for precise execution.

This strategy circumvents the need for an AI to be pre-trained on extensive API data and

allows for the addition of further functions without necessitating comprehensive AI rewrites.

While it’s crucial to ensure that CFs, the associated sequences, and compiled instructions

are stored persistently and readily accessible, the inherently error-prone and fleeting nature of

AI memory requires this storage to take place on the plugin side of the interface. The AI should

reference these stored objects by their unique names. However, this approach does present

challenges, including ensuring that the AI is aware of the objects stored within the plugin and

defining how new objects are added and persisted.

In the integration of AI with CFs, biosecurity remains a paramount concern. It is critical to

have human oversight to prevent any direct execution of code, particularly when it involves

robotic genetic engineering processes. The AI needs to be semantically aware of its tasks and

carry out continuous checks against known biohazards such as toxins, virulence factors, and

gene drives. As we strive to overcome computational and biosecurity challenges in the integra-

tion of AI with CFs, we recognize that the interplay of AI capabilities and synthetic biology,

despite its hurdles, holds the key to a future where efficiency, precision, and safety transform

the landscape of biological experimentation and discovery.

Supporting information

S1 File. Comprehensive supplemental material. This ZIP file contains all essential supporting

documents, including specification documents, chats, movies, Construction Files, and

sequences, as referenced in the main text. A detailed description of contents is provided in the

accompanying README.txt.

(ZIP)

PLOS ONE Enabling AI in synthetic biology through Construction File specification

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 16 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0294469.s001
https://doi.org/10.1371/journal.pone.0294469

Acknowledgments

Evan Cory, Kristen Delgado, Cole Ingamells, Madhumita Kannan, Lauren Mathis, Sisi Morris-

Gavrieli, Mona Zheng, students of iGEM at Berkeley and BioE 140L contributed to testing

ConstructionFileSimulator and C6-Tools. While ConstructionFileSimulator was developed

prior to ChatGPT, the AI played a substantial role in other facets of this study. ChatGPT aided

in demonstrations, informed content and organizational discussions, and assisted with text

editing for clarity and readability.

Author Contributions

Conceptualization: Nassim Ataii, Sanjyot Bakshi, Yisheng Chen, Michael Fernandez, Zihang

Shao, Zachary Scheftel, Connor Tou, Yuting Wang, Hanxiao Zhang, Zexuan Zhao, J. Chris-

topher Anderson.

Data curation: J. Christopher Anderson.

Formal analysis: J. Christopher Anderson.

Funding acquisition: J. Christopher Anderson.

Investigation: J. Christopher Anderson.

Methodology: J. Christopher Anderson.

Project administration: J. Christopher Anderson.

Resources: J. Christopher Anderson.

Software: Nassim Ataii, Sanjyot Bakshi, Yisheng Chen, Michael Fernandez, Zihang Shao,

Zachary Scheftel, Connor Tou, Mia Vega, Yuting Wang, Hanxiao Zhang, Zexuan Zhao, J.

Christopher Anderson.

Supervision: J. Christopher Anderson.

Validation: J. Christopher Anderson.

Visualization: J. Christopher Anderson.

Writing – original draft: Nassim Ataii, Sanjyot Bakshi, Yisheng Chen, Michael Fernandez,

Zihang Shao, Zachary Scheftel, Connor Tou, Mia Vega, Yuting Wang, Hanxiao Zhang,

Zexuan Zhao, J. Christopher Anderson.

Writing – review & editing: J. Christopher Anderson.

References
1. Hillson NJ, Rosengarten RD, Keasling JD. j5 DNA assembly design automation software. ACS Synth.

Biol. 2012; 1(1):14–21. https://doi.org/10.1021/sb2000116 PMID: 23651006

2. Benchling. https://www.benchling.com/

3. Davis MW, Jorgensen EM. ApE, A Plasmid Editor: A Freely Available DNA Manipulation and Visualiza-

tion Program. Front. Bioinform. 2022; 2:818619. https://doi.org/10.3389/fbinf.2022.818619

4. SnapGene. https://www.snapgene.com/

5. Gorelenkov V, Antipov A, Lejnine S, Daraselia N, Yuryev A. Set of novel tools for PCR primer design.

Biotechniques. 2001; 31(6):1326–1330. https://doi.org/10.2144/01316bc04 PMID: 11768662

6. Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: freely available Python

tools for computational molecular biology and bioinformatics. Bioinformatics. 2009; 25(11):1422–1423.

https://doi.org/10.1093/bioinformatics/btp163 PMID: 19304878

7. Geneious. https://www.geneious.com/

PLOS ONE Enabling AI in synthetic biology through Construction File specification

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 17 / 18

https://doi.org/10.1021/sb2000116
http://www.ncbi.nlm.nih.gov/pubmed/23651006
https://www.benchling.com/
https://doi.org/10.3389/fbinf.2022.818619
https://www.snapgene.com/
https://doi.org/10.2144/01316bc04
http://www.ncbi.nlm.nih.gov/pubmed/11768662
https://doi.org/10.1093/bioinformatics/btp163
http://www.ncbi.nlm.nih.gov/pubmed/19304878
http://www.geneious.com/
https://doi.org/10.1371/journal.pone.0294469

8. Czar MJ, Cai Y, Peccoud J. Writing DNA with GenoCAD. Nucleic Acids Res. 2009; 37(Web Server

issue):W40–W47. https://doi.org/10.1093/nar/gkp361 PMID: 19429897

9. Pereira F, Azevedo F, Carvalho Â, Ribeiro GF, Budde MW, Johansson B. Pydna: a simulation and doc-

umentation tool for DNA assembly strategies using python. BMC Bioinformatics. 2015; 16(1):142.

https://doi.org/10.1186/s12859-015-0544-x PMID: 25933606

10. Poly. https://github.com/TimothyStiles/poly

11. Anderson JC. Introduction To Oligo Design. https://openwetware.org/wiki/Arking:JCAOligoTutorial1

12. Transcriptic. Autoprotocol. https://autoprotocol.org/

13. OpenAI. ChatGPT-4. https://www.openai.com/chatgpt/

14. Anderson JC, Clarke EJ, Arkin AP, Voigt CA. Environmentally controlled invasion of cancer cells by

engineered bacteria. J. Mol. Biol. 2006; 355(4):619–627. https://doi.org/10.1016/j.jmb.2005.10.076

PMID: 16330045

15. Anderson JC. PyDNA_CF_Simulator [Software]. Available at GitHub Repository: https://github.com/

UCB-BioE-Anderson-Lab/PyDNA_CF_Simulator; Zenodo: https://zenodo.org/badge/latestdoi/

649457319

16. Ataii A, Bakshi S, Chen Y, Fernandez M, Scheftel Z, Shao Z, et al. ConstructionFileSimulator [Soft-

ware]. Available at GitHub Repository: https://github.com/UCB-BioE-Genetic-Design-Automation/

ConstructionFileSimulator; Zenodo: https://zenodo.org/badge/latestdoi/177160385

17. Anderson JC. C6-Tools (Version 1.0) [Software]. Available at Google Sheets: https://docs.google.com/

spreadsheets/d/18GhA2s-x9kX1ar5YRMghXjcOHNW63eaZiD0fTT4xC60/edit#gid=452338215;

GitHub Repository: https://github.com/UCB-BioE-Anderson-Lab/C6-Tools; Zenodo: https://zenodo.org/

badge/latestdoi/692952231

18. Hsiau TH-C, Anderson JC. Engineered DNA Sequence Syntax Inspector. ACS Synth. Biol. 2014; 3

(2):91–96. https://doi.org/10.1021/sb400176e PMID: 24364864

PLOS ONE Enabling AI in synthetic biology through Construction File specification

PLOS ONE | https://doi.org/10.1371/journal.pone.0294469 November 13, 2023 18 / 18

https://doi.org/10.1093/nar/gkp361
http://www.ncbi.nlm.nih.gov/pubmed/19429897
https://doi.org/10.1186/s12859-015-0544-x
http://www.ncbi.nlm.nih.gov/pubmed/25933606
https://github.com/TimothyStiles/poly
https://openwetware.org/wiki/Arking:JCAOligoTutorial1
https://autoprotocol.org/
https://www.openai.com/chatgpt/
https://doi.org/10.1016/j.jmb.2005.10.076
http://www.ncbi.nlm.nih.gov/pubmed/16330045
https://github.com/UCB-BioE-Anderson-Lab/PyDNA_CF_Simulator
https://github.com/UCB-BioE-Anderson-Lab/PyDNA_CF_Simulator
https://zenodo.org/badge/latestdoi/649457319
https://zenodo.org/badge/latestdoi/649457319
https://github.com/UCB-BioE-Genetic-Design-Automation/ConstructionFileSimulator
https://github.com/UCB-BioE-Genetic-Design-Automation/ConstructionFileSimulator
https://zenodo.org/badge/latestdoi/177160385
https://docs.google.com/spreadsheets/d/18GhA2s-x9kX1ar5YRMghXjcOHNW63eaZiD0fTT4xC60/edit#gid=452338215
https://docs.google.com/spreadsheets/d/18GhA2s-x9kX1ar5YRMghXjcOHNW63eaZiD0fTT4xC60/edit#gid=452338215
https://github.com/UCB-BioE-Anderson-Lab/C6-Tools
https://zenodo.org/badge/latestdoi/692952231
https://zenodo.org/badge/latestdoi/692952231
https://doi.org/10.1021/sb400176e
http://www.ncbi.nlm.nih.gov/pubmed/24364864
https://doi.org/10.1371/journal.pone.0294469

