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Abstract

Multi-drug resistant (MDR) globally disseminated extraintestinal pathogenic high-risk

Escherichia coli (ExPEC) clones are threatening the gains in bacterial disease manage-

ment. In this study, we evaluated the genomic structure including the resistome and viru-

lome of the E. coli isolates from extraintestinal infections using whole genome sequencing

(WGS). The results highlight that isolates were highly resistant (� 90.0%) to commonly

used antibiotics (Ampicillin, Trimethoprim-Sulfamethoxazole, Nalidixic acid, and Piperacillin)

and were less (<14%) resistant to last resort antibiotics; Imipenem (10.94%) and Merope-

nem (10.20%). A greater proportion of the E. coli isolates belonged to phylogroup B2

(30.52%) and phylogroup A (27.37%). The sequence types ST131 of phylogroup B2

(21.05%) and ST648 of phylogroup F (9.3%) were the dominant pandemic high-risk clones

identified in addition to the ST1193, ST410, ST69, ST38, ST405, and ST10. Many of the iso-

lates were MDR and most (64.58%) carried the blaCTX-M-15 gene for extended-spectrum

β-lactamases. There was a high correlation between phylogroups and the occurrence of

both antimicrobial resistance and virulence genes. The cephalosporin-resistance gene

blaEC-5 was only found in phylogroup B2 while blaEC-8 and blaEC-19, were only found

within phylogroup D and phylogroup F respectively. Aminoglycoside gene (aadA1) was only

associated with phylogroups D and C. The isolates were armed with a broad range of viru-

lence genes including adhesins, toxins, secreted proteases, iron uptake genes, and others.

The yfcv, chuA, and kpsE genes preferentially occurred among isolates of phylogroup B2.

The study underlines the predominance of MDR internationally disseminated high-risk

ExPEC clones with a broad range of virulence genes known to be highly transmissible in

healthcare and community settings.
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Introduction

The emergence and global spread of pandemic clones of multi-drug resistant strains of Enterobac-
teriaceae are worrisome [1]. Among them, Escherichia coli is the leading cause of both community

and healthcare–associated infections. E. coli pathogenic strains are typically divided into intestinal

pathogenic E. coli (InPEC) and extraintestinal pathogenic E. coli (ExPEC). ExPEC comprises a

highly genetically diverse group with several virulence factors that are responsible for serious

extra-intestinal infections including simple urinary tract but also life-threatening bloodstream

infections and mortalities [2, 3]. It has a high genomic plasticity that allows it to acquire and share

genetic material that enhance its fitness and capabilities to survive in harsh environments. In par-

ticular, E. coli has been demonstrated to harbor several mobile genetic elements (MGEs), such as

plasmids, transposons, and integrons, known for facilitating the acquisition and dissemination of

resistance genes across strains and different species [1]. These MGEs, plus their high armament of

virulence factors are responsible for their successful global transmission and multi-drug resistant

strains becoming endemic in most countries. Some of the strains have become resistant to carba-

penems and third-generation cephalosporins which belong to the critical category of the World

Health Organization’s (WHO) priority list of antibiotics. Infections caused by these strains have

very limited treatment options, resulting in extended hospitalizations with high costs and high

mortality, especially in resource-limited countries.

Many of the high-risk E. coli pandemic clones belong to a few of the phylogroups (A, B1,

B2, C, D, E, F, and G) and specific multilocus sequence types (MLST). Most studies have

reported several pandemic clone sequence types (ST) including ST131, ST648, ST69, ST10,

ST405, ST38, ST95, ST73, and ST1193, in health-care associated and community-acquired

infections [4–7]. The global distribution of ST131 has been more frequently reported. It is

thought to be associated with variants that carry certain resistance plasmids with genes that

encode resistance against antibiotics such as extended spectrum beta-lactamase (ESBL), cepha-

losporins, and fluoroquinolones [8, 9]. The success of this ST131 clone has been largely attrib-

uted to the acquisition of many virulence factors and resistance genes which is aggravated by

the increased use of antibiotics [10, 11]. The pandemic E. coli ST131 strains are strongly associ-

ated with blaCTX-M-15 which is the most predominant ESBL enzyme that hydrolyses beta-

lactams. These bacteria and their resistome are frequently shared by animals and humans in

the same environment enabling successful interspecies transmission. Pandemic clones such as

ST131, ST410, ST648, and ST10 have been reported in domestic animals and birds [12, 13] as

they have been in humans further complicating their control.

Despite the availability of sequencing capabilities and national antimicrobial resistance

(AMR) surveillance activities, there have been limited detailed characterizations of these pan-

demic clones in Africa. Such data is critical to estimate the burden and track these strains in the

health care and community to improve treatment and management of infections and to insti-

tute and evaluate interventions for their containment. Some of the few studies done across sub-

Saharan Africa tend to highlight the growing burden of the ESBL and multi-drug resistance

(MDR) clonal groups in hospital and community infections especially the ST131 [4–7]. Our

study set out to establish the genomic population structure of ExPEC isolates recovered from

tertiary healthcare settings in Uganda to identify potential high-risk pandemic clones and their

resistome and virulome that may pose a challenge in the management of their infections.

Materials and methods

Study area

The samples were collected from patients who received healthcare services from three govern-

ment hospitals in Uganda. These hospitals were Gulu Regional Referral Hospital, Bombo
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Hospital, and Bwera General Hospital. The Gulu Regional Referral Hospital is in northern

Uganda and has a bed capacity of 370. It receives medical referral cases from Amuru, Gulu,

Kitgum, Lamwo, and Pader districts. Bombo Hospital is in the central part of Uganda with a

bed capacity of 250. It is designed to provide healthcare services to military personnel, their

families and the civilian population around them. The Bwera General Hospital is in Kasese

District located in the Western Region of Uganda and has a bed capacity of 200. This hospital

borders the Democratic Republic of Congo and receives patients from the Democratic Repub-

lic of Congo. All the samples were collected between the year of 2013 to 2020

Study setting

The samples for bacterial isolation were collected from wounds, urine, pus, and endocervical

swabs, and others. The samples were obtained from inpatients, and outpatients. Samples were

directly inoculated on MacConkey agar (Oxoid, Remel Inc USA) and incubated at 37˚C for 24

hrs. A single colony of lactose-fermenting bacteria were sub-cultured on Eosin methylene blue

(EMB) agar (Oxoid, Remel Inc USA) at 37˚C for another 24 hrs. Colonies with metallic sheen

appearance were picked and presumptively identified as E. coli based on API-20E kits (bio-

Mérieux—Boston, MA, USA) and later confirmed upon sequence analysis. The isolates were

further sub-cultured onto nutrient agar and pure colonies stored in Brain Heart Infusion

(BHI) broth (Oxoid, Manchester, UK) containing 50% glycerol at -80˚C until further analysis.

Antimicrobial susceptibility and selection of MDR isolates

The isolates were subjected to antimicrobial susceptibility testing against 17 antimicrobials by

disc diffusion assay as previously described [14] on Mueller-Hinton agar (MHA) (Oxoid,

Manchester, UK). A suspension of 0.5 McFarland standard turbidity was spread on the surface

of MHA plates using a sterile cotton swab. Antibiotic discs with the corresponding strengths

indicated in parenthesis: amikacin (AMK30μg), gentamicin (C10μg), ampicillin (AMP10μg),

cefotaxime (CTX30μg), amoxicillin-clavulanic acid (AMC20/10μg), ceftazidime (CAZ30μg),

ceftriaxone (CRO30μg), cefuroxime (CXM 30μg), trimethoprim-sulfamethoxazole (SXT1.25/

23.75μg), chloramphenicol (C30μg), tetracycline (TE30μg), ciprofloxacin (CIP5μg), nalidixic

acid (NA30 μg), nitrofurantoin (F300μg), imipenem (IPM10μg), ertapenem (ETP10μg) and

meropenem (MEM10μg) were placed onto MHA agar plates and incubated at 37˚C for 24

hours. The zone of inhibition was measured to the nearest millimeter and interpreted based

on the guidelines of the Clinical and Laboratory Standards Institute (CLSI M100 Ed33) [15]

using E. coli ATCC1 25922 as a control strain. E. coli that showed resistance to three or more

classes of antimicrobial agents were classified as multidrug resistant (MDR) [16] and subjected

to whole genome sequencing.

Whole genome sequencing, assembly, and annotation

Whole genome sequencing was performed as described [17]. In summary, libraries were pre-

pared with Kapa HyperPlus library preparation kits (Roche Diagnostics, Indianapolis, IN,

USA). The concentration of the prepared library was determined using the Kapa library quan-

tification kit Illumina/Bio-Rad iCycler (Roche Diagnostics) in a CFX96 real-time cycler (Bio-

Rad, Hercules, CA, USA) and sequencing was done on Illumina NextSeq (Illumina, Inc., San

Diego, CA) at Walter Reed Army Institute (WRAIR) Multidrug-Resistant Organism Reposi-

tory and Surveillance Network (MRSN). Btrim was used to remove sequence adapters and

regions with low-quality base calls [18]. De novo raw reads were assembled using Newbler

(v2.9) [19]. Contigs were annotated using DFAST pipeline version 1.2.18 [20]. The sequences
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were deposited to the NCBI database under BioProject ID PRJNA955428 (https://www.ncbi.

nlm.nih.gov/bioproject/955428/).

Genome sequence analysis

The SNPs calling, filtering, and SNP site validation from the assembled genome sequences

(n = 95) was done with CSI Phylogeny [21]. A phylogenetic tree was constructed using the

concatenated alignment derived from high-quality SNPs and the tree was viewed and anno-

tated using Interactive Tree of Life (https://itol.embl.de/). The genetic diversity was deter-

mined based on phylogroup, Multi Locus Sequence Typing (MLST), Serotypes, and Fimtypes.

The phylogroup typing was based on the ClermonTyping scheme and was done according to

Beghain and others [22]. Multilocus Sequence Typing of assembled genome sequences was

done using MLST v2.0 database [23]. SerotypeFinder v2.0 was used to assign the isolates to

their corresponding serotypes [24]. FimTyper v1.0 database curated by Henrik Hasman was

used for the classification of E. coli isolates into different FimH types [25]. Characterization of

the E. coli into H30Rx subclones was done based on profiling single nucleotide mutation

within peptide antibiotic transporter and putative allantoin permease genes [26]. A combina-

tion of ResFinder 4.1, AMRFinder, and CARD databases was used to identify and confirm the

presence of acquired antibiotic-resistance genes within the genome of the E. coli strains [27–

29]. The occurrence of different virulence genes within the genome of the E. coli isolates was

determined using VirulenceFinder v2.0 [30]. Isolates with these four virulence genes (chuA,

fyuA, vat, and yfcV) were assigned as presumptive uropathogenic strains as described [31].

Contigs were assigned as derivatives from plasmids using a combination of mlplasmids v2.1.0,

PlasmidFinder v2.1, and NCBI blast [32, 33]. The plasmid replicons for contigs derived from

plasmids were determined using PlasmidFinder v2.1. The location of AMR genes within con-

tigs that were confirmed to be derived from plasmids was determined using ResFinder 4.1,

AMRFinder, and CARD database. The arrangement of the AMR genes within contigs derived

from the plasmid was mapped using clinker software [34]. Default parameters were used for

each of the software unless specified otherwise.

Ethics approval

This work was undertaken under “Protocol RV 309, Antimicrobial Resistance Surveillance in

Uganda”, approved by the Makerere University School of Public Health Higher Degrees and

Research Ethics Committee (HDREC 087), Uganda National Council of Science and Technol-

ogy (HS775) and Walter Reed Army Institute of Research IRB (WRAIR #1711).

Results

Phenotypic antimicrobial susceptibility of the isolates

The 95 isolates were recovered from wounds (n = 4), pus (n = 29), urine (n = 57), endocervical

swabs (n = 2), devices (n = 1), and others (n = 2) among patients in the outpatient departments

(OPD) and inpatient departments (IPD). The number of isolates tested for each antibiotic var-

ied and the frequency of resistance is summarized in Fig 1. The results highlight that most of

the E. coli isolates were susceptible to imipenem (85.94%) and meropenem (89.80%) antibiot-

ics. However, for the other antibiotics tested, a higher proportion of isolates with resistant

traits were observed. For example, the proportion of isolates resistant to ampicillin, trimetho-

prim-sulfamethoxazole, nalidixic acid, and piperacillin were� 90.0%. Isolates resistant to

amox/clavulanate (86.76%) and aztreonam (80.95%) were equally high in proportion. The pro-

portion of isolates resistant to cefotaxime, ceftazidime, ceftriaxone, and cefuroxime was nearly
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the same and was in the range of 76.67% __78.85%. Overall, a significantly higher proportion

of isolates were multi-drug resistant (MDR).

Phylogroups, serotypes, fimH type, and sequence type of the E. coli isolates

The isolates belonged to diverse phylogroups, serotypes and sequence types (Fig 2). Isolates

were distributed in seven phylogroups: A, B1, B2, C, D, F, and G. Phylogroup B2 (30.523%)

and phylogroup A (27.37%) had the highest frequency of occurrence and occurred in nearly

equal proportion between the two hospitals. A marginal difference was observed in the propor-

tion of E. coli isolates in phylogroup B1 (12.63%), phylogroup D (11.58%), and phylogroup F

(10.53%). Phylogroup C (5.26%) and phylogroup G (2.10%) had a marginal proportion of

occurrence. Multi-locus sequence typing revealed high genetic diversity among the isolates

clustering into 34 different MLST groups. The ST131 (21.05%) and ST648 (9.47%) were the

dominant STs and belonged to the globally disseminated pandemic high-risk clones. Other

globally disseminated high-risk clones detected were ST1193, ST410, ST69, ST38, ST405, and

ST10. Most of the isolates in phylogroup B2 were ST131 clonal group (68.96%) while the other

STs were distributed across the different phylogroups. The high-risk clones (ST131, ST648,

ST410, and ST69) were distributed in both hospitals whereas all the ST10 isolates were from

Fig 1. Antimicrobial susceptibility of the isolates.

https://doi.org/10.1371/journal.pone.0294424.g001
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Bwera General Hospital. In-silico serotyping showed the isolates similarly diversified belonging

to 24 different O-serotypes with O101(22.11%) and serotype O25 (16.84%) being predomi-

nant. A proportion (10.24%) of the isolates could not be typed into a known serotype group

(Fig 2). Several H-serotypes were identified including H4 (18.95%), H10 (13.68%), H6

(12.63%), H9 (11.58%), H30 (7.37), H5 (5.26%), H7 (4.21%), and H18 (4.21%) (Fig 2). The dif-

ferent major H-serotypes were observed to occur in both hospitals. However, the frequency of

occurrence of H-serotypes follows that of phylogroups and STs. For example, the H4 serotype

was distributed only among phylogroups B2 (16.84%) and A (n = 2.1%). As well, the H9 sero-

type was distributed among phylogroup A (9.47%) and phylogroup C (3.16%). Similarly, the

majority of serotype H10 occur within phylogroup A. H6 serotypes were restricted within only

phylogroup F and ST648 (Fig 2).

The isolates also had a high diversity of fimH types distributed across the different phy-

logroups and STs withH30 clones being the predominant one found mostly within the ST131

(Fig 2). A total of 50% of the H30 clones belong to H30-Rx groups which originated from an

Fig 2. Core genome SNP-based phylogenetic tree of the 95 E. coli strains analyzed in this study characterized by phylogroup, sequence type (ST),

serotype, and fimtype with the corresponding antimicrobial resistance genes (shown in colored circles according to class of antibiotics). The hospital

codes (Bwera: Bwera Hospital, Bombo: Bombo Hospital, and Gulu: Gulu Hospital). The figure was produced using the iTOL tool.

https://doi.org/10.1371/journal.pone.0294424.g002

PLOS ONE Resistome and virulome of high-risk pandemic EXPEC E. coli clones from Uganda

PLOS ONE | https://doi.org/10.1371/journal.pone.0294424 November 22, 2023 6 / 18

https://doi.org/10.1371/journal.pone.0294424.g002
https://doi.org/10.1371/journal.pone.0294424


H30-R sub-clone. All the ST131-H30 clones tested were resistant to ciprofloxacin, nalidixic

acid, and several beta-lactams. A greater proportion of H30 isolates were found to carry the

blaCTX-M-15 gene.

Detection of AMR genes

Several AMR genes for different classes of antibiotics (aminoglycosides, beta-lactams, sulpho-

namides, tetracyclines, macrolides, and trimethoprim) were detected (Fig 2). Most of the iso-

lates carried multiple resistance genes with a wide distribution for specific genes in the

different classes of antibiotics. The proportion of the following aminoglycosides resistance

genes aph (6)-Id (75.79%), and aph (3)-Ib (72.63%) was high among the E. coli isolates while

sul2 (75.79%) and sul1 (57.89%) genes were the most frequent sulphonamide resistance genes

(Fig 2). A total of 69.47% of isolates were detected with macrolide-resistance gene mph(A).
The blaCTX-M-15 was widely distributed (66.32%) across the different phylogroups and so

was blaTEM-1B (60.00%) and blaOXA-1 (43.16%). The blaCTX-M-27, which has been of

global concern was detected in three isolates of the ST131-O25 serotype in phylogroup B2. Tet-

racycline resistance genes tet(A) (46.32%) and tet(B) (37.89%) were also widely spread among

isolates. Antibiotic-resistant genes such as aph(6)-Id, aph(3)-Ib, aadA5, blaCTX-M-15, bla-
TEM-1, tet(A), tet(B), catA1, dfrA17, mdf(A), sitABCD,mph(A), and qacE were found in all

phylogroups (Figs 2 and 3). However, an apparent association of some resistance genes with

some E. coli phylogroups was observed. For example, the blaEC-8 gene majorly occurred

among isolates of phylogroup D whereas the blaEC-19 gene was detected only within phy-

logroup F, and the blaCTX-M-14 gene was restricted to phylogroup A (Figs 2 and 3). Fosfomy-

cin-resistance gene fosA7.5 was the only gene detected in one isolate for fosfomycin resistance

and only detected in a novel serotype in ST846 belonging to phylogroup B1. The qnrS1-gene

occurs in (8.42%) of isolates derived from pus and urine samples. The isolates carrying qnrS1-

gene were of phylogroups (B1 and A) and serotypes (O101 and O8). Similarly, the two isolates

that had the qnrB19 gene were of phylogroups (B1 and A) but of serotypes (O10 and O88).

Among the high-risk clones, ST1193 and ST405 isolates were found to carry blaCTX-M-15
and blaOXA-1 besides aac(6)-Ib-cr5 and aac(3)-IIe genes. The blaEC-5 gene preferentially

occurs among the high-risk clone ST131. Also, the preferential occurrence of the blaEC-19

gene was observed among the ST648 clone. The catB3 and aac (6)-Ib-cr5 genes were most

detected among the ST410 clone. The following genes blaEC-8, tet(A), blaTEM-1B, sul1, aph

Fig 3. Relative abundance of antimicrobial resistance genes among E. coli phylogroups.

https://doi.org/10.1371/journal.pone.0294424.g003
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(3)-Ib, sul2, and aph (6)-Id were present in all the ST69 high-risk clones. A higher proportion

of (blaEC-8, aadA1, blaOXA-1, blaCTX-M-15, aph (3)-Ib, sul2, and aph(6)-Id) was observed

among high risk clone ST38. Chromosomal point mutations within the gyrA gene responsible

for ciprofloxacin resistance phenotype were detected in 82.1% of the isolates. The observed

change in nucleotide was from TCG to “TTG/GTG” in the isolates detected with gyrAmuta-

tion (S1 File). Similarly, a mutation within the parC gene occurred in 73.68% of the isolates.

The mutation within the parC gene led to the changes in nucleotide from codon AGC to ATC

or AGC to ATT which resulted in a change in amino acid from serine (S) to isoleucine (I) (S1

File). A total of 72.63% of isolates had a mutation in both parC and gyrA genes that is known

to result in ciprofloxacin resistance phenotypes.

Antibiotic-resistance phenotypes and genotypes among high-risk sequence

types

The highest proportion of high-risk clone, ST131 isolates were resistant to quinolones and

extended spectrum beta lactam antimicrobials. However, the majority of the ST131 tested

were susceptible to chloramphenicol and amikacin. A similar resistant pattern to ciprofloxacin

was observed in all the isolates of high-risk group ST648 and ST410 that were tested, while, all

the isolates of the high-risk clone ST69 tested were susceptible to ciprofloxacin antimicrobials

but were all resistant to trimethoprim-sulfamethoxazole and ampicillin. There was an observed

relationship between some antimicrobial-resistance genes and the antimicrobial resistance

phenotypes among the high-risk clone ST131. Trimethoprim resistance phenotype was partic-

ularly high among ST131 isolates (81.25%) with the dfrA17 gene (S1 File). A similar pattern of

antibiotic resistance phenotypes was observed with beta-lactam antibiotics tested against the

ST131 clone. For example, a high level of resistant phenotypes to ampicillin (86.67%), aztreo-

nam (85.7%), cefotaxime (100%), ceftazidime (78.57%), ceftriaxone (83.33%), and cefuroxime

(90.91%) antibiotics were observed predominantly among the ST131 isolates with blaCTX-M-
15 gene (S1 File). Moreover, a greater proportion of ST131 isolates with blaEC-5 gene were

resistant to ampicillin (93.33%), aztreonam (85.71%), cefotaxime (100%), ceftazidime

(85.71%), ceftriaxone (88.89%), and cefuroxime (81.81%) antibiotics (S1 File).

Distribution of plasmids and resistance determinants

Several classes of plasmid replicons were identified on some of the contigs derived from the

plasmids (Fig 4). The most frequent plasmid replicons detected were IncFIB (n = 72), IncFIA
(n = 57), IncFII (n = 57), IncQ1 (n = 26), Col156 (n = 20), and Col (BS512) (n = 11) (Fig 4).

Plasmid replicons IncFIA, IncFIB, IncFII, and IncQ1 were found in all phylogroups. However,

some replicons were only present in a few phylogroups including IncHI1A and IncHI1B which

were detected in only one isolate of phylogroup A and phylogroup B1 respectively. Only one

isolate of phylogroup D and two isolates of phylogroup F were detected with plasmid replicon

p0111. Also, two isolates each from phylogroups A and C, and one isolate of phylogroup D

had plasmid replicon IncI. None of the two isolates of phylogroup G had plasmid replicons

Col, IncHI1A, IncHI1B, IncI, IncY, IncR, and p0111 (Fig 4). We observed that contigs/frag-

ments having some plasmid replicons were associated with the occurrence of certain AMR
genes. For example, aminoglycoside resistance genes (aph (3’’)-Ib and aph (6)-Id) and sulpho-

namides resistance gene (sul2) were located within contig carrying plasmid replicon IncQ1.

blaTEM-1Bmainly occurred within the contigs having plasmid replicon IncFII.
Some plasmid contigs or fragments-derived plasmids carry multiple antibiotic resistance

genes. For example, the aminoglycoside gene (aac(6’)-Ib-cr) was often found to occur in the

same contig as the amphenicol resistance gene (catB3) and beta-lactam resistance gene
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(blaOXA-1). A total of 35.41% of isolates had plasmid contigs having both (aac(6’)-Ib-cr),
(catB3), and (blaOXA-1). As well, the aminoglycoside resistance gene (aadA5), sulphonamide-

resistant gene (sul1), and macrolide resistance gene mph(A) were carried together in the same

plasmid contigs. The blaCTX-M-15 genes were located downstream of the mobile genetic ele-

ment ISEcp1 (Fig 5).

Characteristics and distribution of virulence genes

Numerous virulence genes were detected (Fig 6 and S1 Fig). All the isolates had Enteroaggre-

gative immunoglobulin repeat protein (air) and Tellurium ion resistance protein (terC). Other

frequently detected virulence genes were glutamate decarboxylase (gad) (83.33%), siderophore

receptor (fyuA) (75%), high molecular weight protein 2 non-ribosomal peptide synthetase

(irp2) (75%), iron transport protein (sitA) (70.83%), and Ferric aerobactin receptor (iutA)
(66.62%) (Fig 6 and S1 Fig). Other virulence genes that were detected at moderate proportions

were kpsE, chuA, iss, and ompT. The pattern of occurrence of other virulence genes was deter-

mined by the phylogroups of the E. coli isolates except for air, terC, and gad genes that occur at

high frequency in all phylogroups. All the isolates of phylogroups B1, F, and C had virulence

gene lpfA whereas none of the isolates of phylogroups (B2 and A) had the gene (Fig 6 and S1

Fig). The yfcv gene was detected only among phylogroups B2 and F. Similarly, the chuA and

kpsE virulence genes were detected only among phylogroups (B2, D, and F) with a higher pro-

portion of occurrence (Fig 6 and S1 Fig). Generally, Phylogroup B1 and A lacked most of the

virulence genes that tend to occur in phylogroup B2. A total of 13.85% of the isolates were

detected with all four virulence genes (chuA, fyuA, vat, and yfcV) that define uropathogenic

strains of E. coli. All the presumptive uropathogenic strains detected were of phylogroup B2

Fig 4. Relative abundance of plasmid replicons among E. coli phylogroups.

https://doi.org/10.1371/journal.pone.0294424.g004
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and were randomly distributed among seven different sequence types (ST127, ST543, ST636,

ST827, ST978, ST998, ST1193) and the two hospitals.

Discussion

Our study identified highly diverse virulence and multidrug resistance genes among ExPEC

with predominance of the globally disseminated high-risk pandemic clones. These clones have

been reported with high frequency and pose a threat to the management of both community

and hospital-acquired infections because of their high transmission in both settings [35–37].

Escherichia coli is a normal inhabitant of the gastro-intestinal system but can cause serious

clinical conditions including bloodstream infections, urinary tract infections, meningitis, and

diarrhea, some of which have very high mortality. The high genetic diversity and increasing

resistance of E. coli has been reported in many parts of Africa [38]. Also E. coli is reported as

being responsible for the biggest proportion of the burden of AMR globally [39].

Our study revealed the dominance of the phylogroups B1, A, and B2 with most of the iso-

lates belonging to one of the pandemic high-risk ST131 clones. While several ExPEC lineages

have been reported to be responsible for human extraintestinal infections, most reports suggest

that specific lineages are responsible for the major burden of these infections despite their STs

being genetically diverse [2]. Indeed, we reported a high genetic diversity with 34 STs, 24 dif-

ferent serotypes, and several fim types further confirming the differences in the genetic back-

ground that were also found with highly divergent virulence, and resistance gene carriage

thought to be mediated by persistence and adaptation in the intestinal tract. Our findings are

consistent with other reports in Uganda [7, 40] and in other African countries [41]. The suc-

cess of some of the most successful pandemic clones is attributed to the broad armament with

virulence genes but also their resistance to the barrage of antimicrobials used commonly in

healthcare and community settings. Our study revealed the occurrence of several of these

international high-risk pandemic clones including ST131, ST648, ST38, ST405, ST1193,

Fig 5. Gene arrangement showing a close association between antimicrobial resistance gene blaCTX-M-15 and

mobile genetic element ISEcp1.

https://doi.org/10.1371/journal.pone.0294424.g005
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ST410, and ST10. These strains have been reported globally causing not only community-

acquired infections but also healthcare-associated infections, worldwide.

ST131 was the most dominant clonal group and was isolated from urine, pus, and abscesses

in both geographical areas highlighting they are widely spread within Uganda. ST131 is known

to be associated with serious or fatal extra-intestinal infections [42, 43] which is of clinical and

public health importance. The ST131 clone is notably responsible for the global spread of

AMR in E. coli, especially against high-priority antibiotics such as fluoroquinolones and

extended-spectrum cephalosporins (ESCs). ST131 emerged around the year 2000 and rapidly

spread across the world and became the predominant ExPEC clone throughout the world [44].

It has been reported within African countries such as Malawi, Nigeria, Congo, Rwanda, and

Fig 6. Core genome SNP-based phylogenetic tree of the 95 E. coli strains analyzed in this study characterized by phylogroup, sequence type (ST),

serotype, and fimtype with the corresponding virulence genes (shown in colored circles according to the virulence gene group). The hospital codes

(Bwera: Bwera General Hospital, Bombo: Bombo Hospital, and Gulu: Gulu Regional Referral Hospital). The figure was produced using the iTOL tool.

https://doi.org/10.1371/journal.pone.0294424.g006
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many other countries [3–5, 45]. We identified two O serotypes in our study O25-ST131-H30R

and O16-ST131-H41R similar to what is commonly reported elsewhere [46–48]. The

O25-ST131-H30 identified in this study has been more predominant in many similar studies

and has emerged as the major clonal group in Uganda [49]. All the O25-ST131 strains were of

the fimbrial adhesin gene fim30 type except one that was fimH1190. The ST131-H30 is exten-

sively resistant and has been globally and epidemiologically a successful clonal subset, desig-

nated so because it contains allele 30 of the type-1 fimbriae adhesin gene fimH [9, 26]. Two

dominant antimicrobial resistance sub lineages have been identified within ST131-H30/clade

C: H30R which is characterized by resistance to fluoroquinolones, and H30Rx (or clade C2),

which is characterized by resistance to fluoroquinolones as well as production of a CTX-M-15
type extended-spectrum beta-lactamase (ESBL) that confers resistance to extended-spectrum

cephalosporins [50–52]. Half of the ST131 isolates in our study were ST131 C1/H30R while the

other half were ST131 C2/H30Rx and these sub clonal groups produced CTX-M-15 consistent

with reports from other studies [53]. Our study detected ST131 with the blaCTX-M-27 gene

which used to occur in Japan and is getting more frequently reported globally [54]. The cur-

rent shift and spread of the blaCTX-M-27 E. coli and its pandemic potential are still largely not

well understood. The other common MLST group in our study was ST-648 clonal group

which has been reported to have the potential of carrying more non-β-lactam antimicrobial

drug resistance genes [55]. However, besides these, there were several other sequence types

among different phylogroups with highly variable serotypes and fimH types demonstrating the

extensive genetic diversity of EXPEC in our study. This observation is consistent with other

studies in Uganda and elsewhere [3–5, 37].

Most of the STs are particularly known for their association with extensive resistance to sev-

eral antibiotics. The E. coli isolates from both hospitals carried multiple resistance genes. The

most common ones observed were against the commonly used antimicrobials such as penicil-

lins, tetracyclines, sulphonamides/trimethoprim which is consistent with the phenotypic resis-

tance observed and commonly reported in many countries including Uganda [56–58]. Of

major concern, is the finding of resistance genes to third-generation cephalosporin-resistant

that belong to the WHO priority list of critical antimicrobials. Most of the isolates in our study

carried resistance genes to extended beta lactams and third and fourth generation cephalospo-

rins including blaCTX-M-15, while a few blaCTX-M-14, blaCTX-M-55 were reported and have

also been observed in other studies in Uganda [59]. The blaCTX-M-15 and blaOXA-1 genes

were distributed among the different MLST groups including the pandemic clones of ST-648,

ST-617, and ST-131 which also carried several antimicrobial resistance genes. In addition, the

CTX-M-27 was reported in only 3 isolates. This resistance gene was first reported in Japan and

has been increasing and causing serious concerns because of its presence in clonal groups such

as ST10, ST69, and ST131 [60–62]. In the current study, this blaCTXM-27 was only found

within the O25-ST131. Furthermore, we identified a fosA7.5 resistance gene responsible for

resistance against fosfomycin in a lone ST847 with a novel serotype and fimH32 that was the

only isolate among all isolates. Fosfomycin is often the last resort antibiotic used against MDR

E. coli strains and increasing resistance has been reported globally mainly due to fosA3 gene

[63–65]. A high prevalence of fosA-7.5 gene was reported on animal farms in China which

may confirm that food animals may serve as a potential reservoir for the resistance genes espe-

cially due to the frequent association with mobile elements, that would accelerate the transmis-

sion of fosA-like gene in E. coli strains [66]. We also identified blaEC gene that codes for

cephalosporin resistance in specific phylogroups and MLSTs specifically blaEC-5, blaEC-19,

and blaEC-8 in phylogroup B2, F and D respectively. The management and treatment of life-

threatening infections caused by multidrug resistance (MDR) bacteria are challenged by an

increase in resistance to third and fourth generation cephalosporins (broad-spectrum β-lactam
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antimicrobial agents) which are among the list of antibiotics categorized as critically important

by world health organization. While most of the high-risk clones also showed resistance to fluo-

roquinolones, we observed only a few isolates 8/95 and 2/95 with Qnr protective proteins qnrS1
and qnrB19 respectively shown to be associated with low-level resistance. The carriage of the

resistance genes on mobile genetic elements (MGEs) such as plasmids has been reported in sev-

eral studies and is highly responsible for the successful transmission of AMR. We profiled con-

tigs to trace resistance gene sources and observed that couples of AMR genes were derived from

plasmids. It was observed that all contigs with plasmids replicon IncFIB had antibiotic resistance

gene blaTEM-1B while contigs with IncR plasmid replicons were found in association with

many resistant determinants such as qacL, aadA1, sul3, dfrA12, aadA2, and cmlA1.

The success of these MDR strains is partly due to the simultaneous possession of a wide

range of virulence factors besides the resistance to antimicrobial agents. E. coli has a variety of

virulent factors including toxins, iron/heme-acquisition systems, adhesins, and iron ion trans-

port. Fimbriae is critical for successful attachment (adhesion) to surfaces (epithelial cells) of

intestines, kidneys, or lower urinary tracts, in order to establish extraintestinal infections. Our

study revealed a diverse collection of virulence genes that are associated with E. coli isolates.

Most of the isolates had the enteroaggregative immunoglobulin repeat protein (air) virulence

gene implicated in the promotion of E. coli aggregation and adherence as well as tellurium ion

resistance protein (terC), glutamate decarboxylase (gad), siderophore receptor (fyuA), high

molecular weight protein 2 non-ribosomal peptide synthetase (irp2), iron transport protein

(sitA) and Ferric aerobactin receptor (iutA). Phylogroups B2, D, and F carried more variety of

virulence genes including air, terC, yfcv, gad, pic, senB, kpsE, OMPT, paC, papaF43 and iha
than the rest of the phylogroups. These findings are consistent with similar studies that have

characterized these strains [10, 67–70]. The predominant occurrence of different virulent fac-

tors within phylogroup B2, F, and D may directly relate to their evolutionary fitness to estab-

lish and maintain themselves as well as cause infection. Similar virulence strains are shared

and have been reported in animals potentiating the possibility of transmission to humans [71].

Like AMR, some of the virulence genes are carried on plasmids that further enhance their

transmission [72–74].

Conclusion

Our study confirmed the occurrence of the globally disseminated high-risk extra-intestinal E.

coli pandemic clones exhibiting resistance to some of the critically important antibiotics and

are a threat to the management and treatment of serious infections caused by multidrug-resis-

tant (MDR) bacteria. We demonstrated the high genetic diversity of the isolates with multiple

sequence types, serotypes, and fimbrial antigenic types distributed across 7 of the 8 E. coli phy-

logroups that possess broad resistome and virulome that enhances their transmission within

the healthcare and community settings. The finding of third and fourth generation cephalo-

sporins resistance genes against broad-spectrum β-lactam antimicrobial agents classified as

critically important for human and animal medicine is of great concern. Some of the high-risk

clones detected in this study have been reported in food, animals, and the environment

highlighting the one-health nature of this problem that needs concerted efforts including long

term genomic surveillance in all niches to generate the needed evidence to inform optimal

containment strategies.
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S1 Fig. Relative abundance of virulent genes among E. coli phylogroups.
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