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Abstract

K-mer-based analysis plays an important role in many bioinformatics applications, such as

de novo assembly, sequencing error correction, and genotyping. To take full advantage of

such methods, the k-mer content of a read set must be captured as accurately as possible.

Often the use of long k-mers is preferred because they can be uniquely associated with a

specific genomic region. Unfortunately, it is not possible to reliably extract long k-mers in

high error rate reads with standard exact k-mer counting methods. We propose SAKE, a

method to extract long k-mers from high error rate reads by utilizing strobemers and con-

sensus k-mer generation through partial order alignment. Our experiments show that on

simulated data with up to 6% error rate, SAKE can extract 97-mers with over 90% recall.

Conversely, the recall of DSK, an exact k-mer counter, drops to less than 20%. Further-

more, the precision of SAKE remains similar to DSK. On real bacterial data, SAKE

retrieves 97-mers with a recall of over 90% and slightly lower precision than DSK, while

the recall of DSK already drops to 50%. We show that SAKE can extract more k-mers from

uncorrected high error rate reads compared to exact k-mer counting. However, exact k-

mer counters run on corrected reads can extract slightly more k-mers than SAKE run on

uncorrected reads.

Introduction

K-mers play an important role in bioinformatics. For example, k-mers are used in alignment-

free sequence analysis and applications relying on de Bruijn graphs. In sequence analysis, the

k-mer spectrum of a read set can be used for genetic variant calling [1], metagenomic classifi-

cation [2], and repeat analysis [3, 4]. On the other hand, genome assembly and read correction

are some of the applications that take advantage of de Bruijn graphs.

The outcome of these applications is greatly affected by the length of the k-mers. If k is

small, we will usually find fewer unique k-mers. With fewer unique k-mers, it can be difficult

to make meaningful inferences from the k-mer spectrum. Short k-mers also make smaller de

Bruijn graphs (fewer nodes and edges). While the graph is easier to handle when it requires

less space, it is harder to reconstruct the underlying sequence correctly because the graph will

contain many branching paths. On the other hand, with longer k-mers a k-mer spectra can

give us more meaningful information, and it will also be easier to find longer non-branching

paths in de Bruijn graphs. In practice, the ability of current methods to extract long k-mers is

limited by the sequencing error rate, and thus many tools take advantage of short k-mers only.
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The optimal k-mer length for each application is not trivial to estimate. For some sequence

analysis tasks, it can be enough to use k-mers of length 32bp or less (this is often a convenient

restriction for programs since we can encode a 32-mer in a single 64-bit integer using two bits

for each character). However, for example in genome assembly, longer k-mers can be very

advantageous [5, 6].

It is known that a genome tends to contain repeated sequences. Very short repeats are

bound to happen by accident due to the alphabet size of four, but a genome also contains lon-

ger repeats. Repeats can be divided into two categories: local and global repeats. A local repeat

appears multiple times in succession, and a global repeat has multiple copies in different parts

of the genome. In de Bruijn graph-based genome assembly, local repeats may cause a cycle if

the repeat is longer or as long as the k-mer length. In this case, we know what characters the

underlying sequence contains, but we are unsure how many times the repeating part occurs.

With global repeats, some nodes in the graph are shared between different sections of the

genome. This causes ambiguous branching and we cannot be sure which paths in the graph

should be used to reconstruct the underlying sequence.

To overcome the problems emerging from repeated sequences, we can increase the length

of the used k-mers. If a section with a local repeat is shorter than the k-mer, the de Bruijn

graph does not form a loop. On the other hand, if a globally repeating sequence is shorter than

k, it is captured by the k-mers with information about its surroundings, and the repeated

sequences from different genomic regions do not share nodes in the graph. Unfortunately,

some repeats in the genome can be thousands of base pairs long, and at least at the moment, it

does not seem feasible to utilize k-mers of that length. However, there are also repeated

sequences that are hundreds or tens of base pairs long, and utilizing k-mers that contain these

kinds of repeats with some context around them could be possible. Therefore, especially with

genome assembly in mind, it seems beneficial to use k-mers that are as long as possible.

To obtain the k-mers of a read set, we can simply look at the reads and report all distinct k-

mers and how many times each of them appears. Due to the many k-mer use cases, many

approaches have already been developed to do this task [7]. However, when the reads contain

sequencing errors, the length of the k-mers that can be extracted by these approaches is ulti-

mately limited by the sequencing error rate.

Two approaches [8, 9] based on spaced seeds [10, 11] have been proposed to overcome sub-

stitution errors. Zentgraf and Rahmann [9] extract gapped k-mers instead of continuous k-

mers, while our previous method, LoMeX [8], extracts long k-mers in the presence of substitu-

tion errors. LoMeX uses spaced seeds to identify and group similar k-length sequences in the

reads and uses a simple method to call a consensus of these sequences, which is then reported

as a consensus k-mer. The idea behind this approach is that by grouping similar sequences we

assume they originate from the same genomic sequence and all the small differences between

them come from sequencing errors. Due to the use of spaced seeds, LoMeX is limited to han-

dling substitution errors and thus is not suited to process data with insertions and deletions.

Because insertions and deletions are common error types in long read sequencing technologies

such as Oxford Nanopore sequencing, this limitation is an important concern in practice.

In this work, we propose SAKE (Strobemer-Assisted K-mer Extraction), a method to

extract long k-mers from reads with insertion, deletion, and substitution errors. The key tech-

niques in SAKE use a variant of strobemers [12] to identify and group sequences of common

genomic origin in a set of reads and partial order alignment (POA) [13, 14] to compute the

consensus k-mers of the sequences.

Strobemers are an alternative to spaced seeds, which is a well-known technique in sequence

analysis to deal with substitution errors. A spaced seed is a pattern that instructs us to only

consider characters at fixed positions of a sequence. Thus, spaced seeds do not work well in
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the presence of insertion and deletion errors as they cause the characters in a sequence to shift

positions. Like a spaced seed, a strobemer is also determined by patterns appearing in the text.

However, in strobemers, the patterns are found within certain windows of the text, but not at

fixed positions like in spaced seeds. Therefore, strobemers are quite robust against slight shifts

of positions caused by insertions and deletions.

The consensus-building phase of SAKE is similar to the correction of sequencing errors in

reads and thus similar approaches are applicable here. When building the consensus

sequences, we rely on the well-known multiple sequence alignment technique called partial

order alignment (POA) [13, 14]. POA represents the sequences and their alignments as a

graph and the consensus sequence can then be read from a path in the graph. POA has previ-

ously been applied for example in sequencing error correction [15] and in genome assembly to

compute the consensus sequence [16, 17].

Our experiments on simulated data show that SAKE can extract k-mers accurately from

read sets up to an error rate of 6%. In these data sets, the best recall of SAKE with the used

parameter values is over 90%, whereas the recall of DSK [18], a conventional k-mer counter

relying on exact occurrences of k-mers, drops to 20% or below with long k-mers. The recall of

LoMeX behaves similarly to that of DSK. On the other hand, the precision of SAKE and DSK

remains similar, while LoMeX precision is the lowest. On a real E. coli data set with an error

rate of 7.8%, the recall of SAKE remains over 90% with the best parameter values but the preci-

sion drops to 74% on 97-mers. On the other hand, the recall of DSK on 97-mers on this data

set drops to 52% or lower, though its precision is higher than SAKE. LoMeX has a recall rate

similar to DSK, but again its precision is the lowest of the three methods. We found out that

using an error correction algorithm on the reads before giving them to DSK gave slightly better

results than just using SAKE, but correcting full reads can be an unnecessarily expensive oper-

ation timewise since only the k-mers are required to be correct.

Definitions and problem statement

Before we can apply k-mer-based methods, we need to find which k-mers are present in the

genome. Often this is done with exact k-mer counting.

Definition 1 (k-mer counting) Given a set of reads R, find all unique k-mers occurring in
the read set and for each k-mer report the number of occurrences in the read set.

The ultimate goal is to find all the k-mers that occur in the genome. Due to sequencing

errors, not all found k-mers are correct. By also counting how many times the k-mers appear

in the read set, we can estimate which of them are likely to also appear in the genome. We

define a k-mer minimum abundance threshold a. If a k-mer appears at least a times, we can

assume it is also present in the genome since it is strongly supported by the data. Many appli-

cations based on k-mer spectra can benefit from reported k-mer counts. On the other hand, in

de Bruijn graph methods we are not that interested in the specific k-mer counts as long as we

can trust the reported k-mers are part of the genome. We call the search for these k-mers k-

mer extraction.

Definition 2 (k-mer extraction) Given a set of reads sequenced from a genome, deduce the
set of k-mers present in the genome.

There is only one correct answer for k-mer extraction, but it is very difficult to find in prac-

tice because the data is never fully accurate. The presented k-mer extraction definition does

not require the counts to be reported, but k-mer counting can be used to solve the problem.

The k-mer extraction definition could be extended to also report an estimated number of

times each k-mer appears in the genome. This way it would also be more suitable for k-mer

spectrum applications. However, in this paper, we focus on the simpler k-mer extraction
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problem definition, which still gives useful results for applications like the ones utilizing de

Bruijn graphs.

k-mer counting would be a perfectly fine solution to k-mer extraction if the given data was

error-free. However, the machines we use to read biological sequences are not completely

accurate. For example in genome sequencing, while it is possible to get relatively low error

rates with short reads, the machines that produce longer reads tend to have increased error

rates. Using a minimum threshold a with exact k-mer counting can work when we are search-

ing for shorter k-mers (standard 32bp and shorter) since it is likely that with enough read cov-

erage we can find enough error-free occurrences of the correct k-mers. But once we raise the

value of k, k-mer counting becomes unreliable. The longer the k-mers are, the more likely it is

that they do not appear without errors in the reads.

The first solution one might think of is to first correct the errors in the data and then use

the exact k-mer counting method. This is definitely an easy choice that will improve the results.

However, correcting full reads is a task that can take a lot of time. The question we aim to

answer in this work is if it is possible to extract k-mers and perform the error correction only

on the k-mers during the k-mer searching process. Our intuition is that this kind of approach

would be more efficient and lightweight than unnecessarily correcting the full reads before

doing exact k-counting. Therefore, we aim to find out if our proposed approach meaningfully

improves the precision and accuracy of the reported k-mers when we are extracting k-mers

from reads that contain substitution, insertion, and deletion errors.

Related work

SAKE uses a similar pipeline as LoMeX [8]: First we identify and group common origin k-

mers and then we find the consensus between the grouped k-mers. However, LoMeX is limited

to reads with only substitution errors, whereas SAKE allows insertions and deletions too. To

do this, we devise an improved way to find common origin k-mers, and to find their consen-

sus. The k-mer grouping step is done with strobemers [12] instead of spaced seeds, and the

consensus k-mer step is done using partial order alignment [13] instead of position-wise char-

acter counts. In this section, we give an overview of LoMeX [8] and review the building blocks

of SAKE: strobemers and partial order alignment.

LoMeX. The development of SAKE was motivated by our interest in improving the

LoMeX [8] method. LoMeX is a k-mer extraction program that can find long k-mers in erro-

neous sequencing data more accurately than the standard counting method. LoMeX is based

on finding consensus k-mers between k-mers in the reads that are believed to originate from

the same genomic k-mer. The k-mers in the reads are grouped using spaced seeds [10, 11]. If

two k-mers have the same characters in the fixed positions indicated by the spaced seed,

LoMeX assumes they correspond to the same genomic k-mer. k-mers with the same origin can

be grouped correctly even if the k-mers have substitution errors in the “don’t care” positions of

the spaced seed.

Next, k-mers in the same group are “stacked” on top of each other. Then, column by col-

umn, LoMeX finds the consensus between the k-mers to determine which characters should

be used for the consensus k-mer positions. After all k-mer groups have been processed this

way, the produced consensus k-mers are reported as the output of the program.

We found out that LoMeX is capable of finding long k-mers more accurately than DSK [18]

which uses the exact k-mer counting method. In these experiments, the prevalent error type in

the reads was substitution, which is the intended use case for LoMeX. The drawback of

LoMeX is that it is not well suited for data where the errors also contain a non-insignificant

number of insertions and deletions. The reason for this is that if a k-mer in a read contains
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such errors, the characters that are intended to be at fixed positions might move to a “don’t

care” position and vice versa. Thus, it becomes unlikely that we can correctly group k-mers of

the same origin through spaced seeds.

Strobemers. To group similar sequences in the presence of insertions and deletions, we

cannot use spaced seeds at fixed positions. Another popular approach to find candidate

sequences for alignments is to use minimizers. A minimizer is the smallest k-mer in a specific

text window. To determine which k-mer is the smallest one, any ordering can be used. For

example, using lexicographical order to find the 3-mer minimizer in text TAGAACC would

mean that the minimizer is AAC. SAKE utilizes strobemers to group similar sequences. A stro-

bemer [12] can be seen as a spaced seed where the fixed positions characters are replaced by

minimizers. This makes it possible to identify matching sequences even if they contain some

insertions and deletions.

Specifically, a strobemer Si at position i in a sequence s is a concatenation of n sequences

m1,m2, . . .,mn (called strobes), each of length l. The first strobe m1 is the l-mer starting at

position i, i.e.m1 = s[i: i + l − 1]. All the following strobesm2,m3, . . .,mn are minimizers that

come from windows defined by parameters wmin and wmax. For allmi with i> 1,mi is the

minimizer between all l-mers whose first character is found in window s[i + wmin + (n − 2)

wmax: i + wmin + (n − 1)wmax]. The full strobemer Si is simply a concatenation of the first l-mer

m1 and the minimizers m2,m3, . . .,mn in order. Fig 1 (middle) illustrates the definition.

Fig 1. Strobemer definition example. An example read (top), and how to find the strobemer at position i = 1 according to the original strobemer

definition (middle) and our modified strobemer definition (bottom).

https://doi.org/10.1371/journal.pone.0294415.g001
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Due to the challenges emerging from reverse complement sequences, we did not use the

original strobemer definition directly. Instead, we modified the definition slightly to better suit

SAKE. We will explain the differences between the original definition and our modified one in

the Methods section.

Partial order multiple sequence alignment. As our method needs to accommodate also

insertions and deletions, we cannot use the same consensus k-mer generation method as in

LoMeX. Thus, we use partial order alignment (POA) [13] for the multiple sequence alignment

(MSA) and consensus sequence generation step. POA is used to build an MSA graph for given

sequences, and then a consensus sequence generation algorithm [14] finds the consensus

between the sequences.

Partial order multiple sequence alignment (PO-MSA) graph generation works by aligning

and adding sequences to the graph one by one. First, the current sequence is transformed into

a simple one-dimensional graph where each character is a node, and consecutive character

nodes are connected with a directed edge. Next, this one-sequence graph is aligned to the

PO-MSA graph using a dynamic programming solution. The sequence-to-graph alignment

algorithm works similarly to a sequence-to-sequence alignment algorithm, except in a graph a

character attached to a node can have multiple “previous characters” (nodes corresponding to

incoming edges). So, when the optimal score for each cell in the dynamic programming matrix

is calculated, there can be more than the usual three options (insertion, deletion, match).

Once the optimal alignment between the current sequence and the PO-MSA graph is

found, the graph of the sequence is added to the PO-MSA graph. This happens by fusing

aligned nodes and then deleting unnecessary edges. If a node in the sequence is aligned to a

node in the PO-MSA graph and these nodes have the same character, the nodes are fused. If

the aligned sequence and PO-MSA nodes have different characters, but the PO-MSA node is

already aligned with another PO-MSA node that has the same character as the sequence node,

then those nodes are fused instead. Lastly, if the sequence and PO-MSA nodes are aligned and

have different characters, and the PO-MSA graph node is not aligned to a node whose charac-

ter matches the sequence node character, no nodes are fused. Instead, they are marked as

aligned nodes. If a node in the sequence is not aligned to any node in the PO-MSA graph, then

that node simply becomes a new unaligned node in the graph. After the graph fusion, if nodes

that have more than one edge between them are found, the excess edges are removed.

During the graph construction process, information about the sequence ID and position in

the sequence is stored in each node. This way it is possible to traverse the graph and recon-

struct any sequence used to build it, so no information is lost.

Consensus sequence generation. After the PO-MSA graph is ready, it can be used to gen-

erate consensus sequences. For example, Lee [14] introduces one such algorithm called heavi-
est bundle. The algorithm works by processing nodes in the graph in topological order and

calculating optimal scores for them. The weight of an edge is defined as the number of

sequences in the PO-MSA graph which contain this edge. First, the starting node, i.e. node

with no incoming edges, is given a score of zero. When the algorithm assigns scores to the rest

of the nodes, it looks at all the incoming edges and picks the one with the highest weight.

Then, the algorithm assigns a score to the node that is the sum of the weight of the heaviest

incoming edge and the score of the node that the edge is coming from. After all node scores

have been calculated, the algorithm picks the node with the highest score and traces back the

sequence of nodes contributing to its score. The sequence spelled by these nodes is the consen-

sus sequence.

The next step is to bundle sequences with the consensus sequence. This means that the algo-

rithm looks at all sequences in the graph and determines if they are similar enough to the con-

sensus sequence to be bundled with it. A sequence of length ℓ is deemed similar enough if its
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path through the PO-MSA graph shares at least b�ℓ nodes with the consensus sequence path,

where b is the bundling threshold parameter (with value between 0 and 1). The sequences that

are bundled are the ones that most likely contributed to the generation of the consensus

sequence. A more detailed explanation of the bundling step can be found in the original publi-

cation [14].

Finally, the weight contributions of the bundled sequences in the graph are adjusted. For

example, if we do not want to use them to generate more consensus sequences, the algorithm

can subtract 1 from the edge weights for each bundled sequence that uses that edge. Essentially,

this completely removes the bundled sequences from the graph. After bundling and edge

reweighting, the process starts from the beginning. The algorithm stops after no sequences are

bundled to the current consensus sequence because otherwise no reweighting would happen

and the same consensus sequence would be found again in the next round. In the end, the

algorithm reports all found consensus sequences, their bundled sequences, and the MSAs of

each bundle.

Methods

In the Introduction section, we introduced the two key concepts behind SAKE: strobemers

[12] and POA [13]. Now, we will present our contribution by giving a more detailed descrip-

tion of SAKE.

Overview of SAKE

Counting exact k-mers in a read set with a high error rate is unlikely to yield accurate results

especially when the value of k is high. Still, with a high enough coverage, the read set should

contain a decent number of copies of all genomic k-mers, even if some instances contain

few errors. To find what these genomic k-mers are without the errors introduced by imper-

fect sequencing, SAKE tries to find all k-mers in the reads that correspond to the same

genomic k-mer and use their consensus to infer what the error-free genomic k-mer looks

like.

Our solution to the k-mer extraction problem has two main phases: (i) identify and

group sequences in the reads that correspond to the same k-mer in the genome and (ii) find

the consensus between the sequences to solve what the correct k-mer is. In LoMeX, spaced

seeds were used to identify a feature in a k-mer (called spaced k-mer), and k-mers that

shared the same feature belonged to the same group. Spaced seeds work when the only type

of error in the data is substitution. If a notable amount of insertions and deletions are also

present, grouping read k-mers correctly becomes difficult. Additionally, due to these error

types, the sequences in the reads that correspond to a genomic k-mer are not necessarily of

length k. For these reasons, we need to use some other feature than spaced seeds that allows

us to group sequences with a common origin, even in the presence of insertions and

deletions.

As mentioned, in LoMeX we used spaced k-length patterns with certain fixed positions as

features to identify and group k-mers with a common origin. The k-length pattern, or spaced

seed [10, 11], is applied to all k-mers in the reads, and the k-mers with matching characters in

the fixed positions are put in the same group. For example, if we have 5-mers ATTGC and

ACTCC and the spaced seed is 10101 (where ones mark the fixed positions), then both of

these 5-mers yield the same spaced 5-mer A*T*C and they are put into the same group. This

method works well when the most prevalent error type is a substitution, but when a consider-

able number of insertions and deletions are also present, it becomes more unlikely to group k-
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mers correctly. Even in the non-fixed positions, insertions and deletions can shift the charac-

ters in fixed positions, causing us to group k-mers incorrectly.

To overcome the problem of insertions and deletions, we take a different approach

where the use of spaced seeds is replaced by strobemers [12]. However, our definition of

strobemers slightly differs from the original definition introduced in the Introduction sec-

tion to make it more suitable for SAKE. Nevertheless, we will use the term strobemer to

refer to our modified definition, which will be introduced in the following Strobemer search

section.

SAKE pipeline starts by finding all strobemers that appear in the input reads. Once all solid

strobemers (that appear at least a times where a is a threshold set by the user) are found, they

are used to group sequences that are likely from the same genomic origin. The lengths of the

grouped sequences would ideally be k, but in reality, the lengths vary because of insertions and

deletions. Therefore, we cannot simply stack the sequences on top of each other and solve the

consensus by counting the most common character column by column like it was done in

LoMeX. Instead, we have to solve the multiple sequence alignment and consensus sequence

generation in a different way.

To find the consensus k-mers we align the grouped sequences using partial order alignment

(POA) [13] and then generate a consensus sequence from the graph. We use the POA method

to build a partial order multiple sequence alignment (PO-MSA) graph using a ready imple-

mentation called SPOA [19]. The heaviest bundle algorithm provided by the implementation

to generate the consensus sequence did not produce good enough sequences for our method

so we devised a new more suitable one. We will explain how we used POA and what modifica-

tions we made to the consensus generation algorithm in more detail in the Consensus

sequence generation section.

One drawback in using strobemers is that the consensus sequences are not always of length

k because the input sequence lengths vary. For this reason, if a consensus sequence is longer

than k, we have to output all k-mers that appear in it. This means that sometimes two different

consensus sequences from different groups can produce the same k-mer, so we need a cleanup

step at the end where duplicate k-mers are removed from the output.

There is also the opposite concern: what if a consensus sequence is shorter than k? In this

case, SAKE would be unable to produce any consensus k-mers from that sequence. To avoid

this problem, we make sure that all sequences used in consensus generation are at least of

length k. Thus, it should be very unlikely that a consensus sequence shorter than k is produced,

which was also supported by our observed consensus sequences. The length of the desired k-

mers affects how long the input sequences need to be for the consensus generation, which is

then determined by the strobemer parameters. We will discuss how to choose the strobemer

parameters in the Output k-mer splitting section so that the strobemers find long enough

sequences for the consensus generation.

In summary, our proposed method SAKE contains the following steps:

• Find all solid strobemers in the reads.

• Find where these solid strobemers appear, and group the sequences covered by the strobe-

mers accordingly.

• Use POA to find the consensus sequences of each strobemer group.

• Split too long consensus sequences into appropriately sized k-mers.

• Take the canonical versions of the k-mers and remove duplicates.

SAKE flowchart with these steps can be seen in Fig 2.
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Strobemer search

SAKE identifies and groups sequences of common origin based on their strobemers. Unfortu-

nately, we could not use the original strobemer definition. This is because we needed a strobe-

mer definition with well-defined canonical strobemers. In other words, we want a way to

extract the same strobemer from a sequence regardless of whether it is in forward or reverse

complementary orientation.

In the original definition, the first part (i.e. strobe) of the strobemer is located in a fixed

position, unlike the following strobes which are minimizers whose position varies. We rede-

fined the strobemer for SAKE so that already the first strobe of the strobemer is a minimizer.

Now each strobe is found from an equally long minimizer window, and the distance between

consecutive minimizer windows is always the same. Therefore, the minimizer windows in the

forward and reverse orientation of a sequence cover the same characters. For example, let us

assume the first minimizer window in the forward orientation starts at position i and looks for

anm-length minimizer in an s-sized minimizer window. The last character we need to look at

to determine the minimizer for this window is at position i + s +m − 1. On the other hand, in

the reverse orientation, the last window would start at position i + s +m − 1 (using the forward

strand indexing). The last possible minimizer in this window would start at position i + s +m
− 1 − s = i + s − 1, and it would end at position i. Thus, the first minimizer window in the for-

ward orientation and the last minimizer window in the reverse orientation use the same char-

acters of the sequence. And because the distance between the windows in both orientations is

the same, the second window in the forward orientation overlaps with the second to last win-

dow in the reverse orientation, and so on, until the last window in the forward orientation

overlaps with the first window of the reverse orientation.

With this strobemer definition, we are considering the same characters of a sequence

regardless of its orientation. This way, if the characters covered by the minimizer windows

in one orientation are error-free, they are also guaranteed to be error-free in the reverse ori-

entation. Defining a reverse strobemer that holds this property for the original strobemer

definition seemed difficult since the first strobe is always at a fixed position. We decided to

make this modification because it made the reverse (and canonical) strobemer definition

more consistent. Consensus sequence generation also becomes more efficient if we only

need to consider the canonical strobemer instead of two strobemers from both

orientations.

Fig 2. SAKE flowchart. First, we find solid strobemers from the read set with the modified BFCounter. Next, the solid

strobemers are given to SAKE with the reads so it can find and index the sequences covered by the solid strobemers.

Then, with the help of POA, consensus sequences are generated for each strobemer using the sequences they cover in

the reads. Finally, the consensus sequences are split into k-mers which are then reported to the user.

https://doi.org/10.1371/journal.pone.0294415.g002
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Another reason we wanted to change the definition was that because in the original one the

first strobe comes from a fixed position, it is unlikely that strobemers from consecutive posi-

tions are identical. Conversely, in the modified definition all the strobes are minimizers, which

means that we can expect to sometimes see identical strobemers from consecutive read posi-

tions. This leads to fewer different strobemers being extracted, making the consensus genera-

tion even more efficient.

Because of the strobemer definition modification, we also had to redefine its parameters. In

our definition, the parameter w expresses the length of the minimizer window. By the length

of the window, we mean how many minimizer candidate starting positions the window has

(not the number of minimizer candidates that fit in the window). Parameter v shows the dis-

tance between two consecutive minimizer window starting positions. And finally, we have the

parameters n and l also present in the original definition to show how many minimizers are

needed for the strobemer concatenation and how long the minimizers should be, respectively.

Here is the exact definition of the modified strobemer:

Definition 3 (Strobemer) A strobemer Si in string s at position i with parameters n, l, v, and
w is a concatenation of n sequences m1,m2, . . .,mn, where sequence mj 1� j� n is the minimizer
of all l-length sequences with a starting position in window s[i + (j − 1)v: i + (j − 1)v + w − 1].

In Fig 1 we can see an example of a read, and how we can find a strobemer according to the

original definition (middle) and our modified definition (bottom) with some arbitrarily cho-

sen parameters.

To find a strobemer, we need to build it using minimizers. Defining a minimizer requires a

metric to determine the order of the sequences. The simplest way is to use alphabetical order.

This is not the optimal choice though, since alphabetical order seems to favor specific mini-

mizer window positions and it can also lead to some unintended behavior with real data due

to sequencing errors in homopolymer regions. In the original strobemer publication [12], dif-

ferent versions of the strobemer were defined based on how the minimizer was determined.

Here we use theminstrobe approach, where minimizers between different windows are inde-

pendent of each other. We use an invertible hash function (https://naml.us/post/inverse-of-a-

hash-function/) to determine the minimizer which is already used e.g. in minimap [20].

Before we can group sequences in the reads that have a common genomic origin based on

strobemers, we first need to determine which strobemers exist in the read set and which ones

are solid. This step is very similar to the classic k-mer counting process: find all strobemers

and their counts, and only accept strobemers where the count is at least equal to a threshold

value a. These strobemers are solid. We chose to use BFCounter [21] to count the occurrences

of strobemers in the reads because it can handle larger k-mers and it was relatively easy for us

to modify the code to search strobemers instead of regular k-mers. BFCounter is a k-mer

counting tool that utilizes a Bloom filter to first find k-mers that appear at least twice and then

count how many times exactly those k-mers are found in the reads. After our modification, the

program uses the same counting method but finds strobemers instead of k-mers. Instead of

inputting the desired k-mer length, the modified BFCounter must be given the strobemer

parameters (n, l, w, v). As an output, it produces all strobemers that appear at least a times and

the exact number of times they occur.

Strobemer occurrence gathering

After the modified BFCounter has found all solid strobemers, they are given to SAKE. The

user can set the value for abundance threshold a, but it should be at least 2 to filter out errone-

ous strobemers. Experimentation was made with different values of parameter a, and this is

discussed more in the SAKE Parameter selection section.
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SAKE builds a map where all solid strobemers are set as keys, and the corresponding value

for each key is an empty list where the strobemer occurrences are stored. Next, SAKE starts

scanning the reads to find all occurrences of the solid strobemers and adds them to the map.

In this phase, SAKE looks at each position in each read. If it finds a strobemer that was

reported as solid, the sequence covered by this strobemer is added to its list in the map. We

define the sequence covered by a strobemer to be the part of the read that falls between the

first minimizer and the last minimizer of the strobemer (including the minimizers). If multiple

consecutive positions in a read produce the same strobemer, the area covered by them all is

added to the map only once as a single sequence.

As an example, we can look at Fig 1 where we determined that the canonical strobemer is

ACACTGACG. In this strobemer, the first minimizer is ACA and the last minimizer is ACG.

The strobemer was found in the forward strand and the sequence covered by it is

ACAAGTGTCTGATAACCTACG. The reason we define the covered sequence like this is

that all the sequences that are grouped under the same strobemer are identical at the beginning

and end. This makes it easier to construct the PO-MSA graph for consensus generation. After

this step is complete, the map holds all solid strobemers and the sequences they cover in the

reads, and we are ready to move on to consensus generation.

Consensus sequence generation

When all solid strobemers and sequences they cover are available, we can start generating con-

sensus sequences. As mentioned in the Introduction section, we use partial order alignment

(POA) [13] to solve the necessary MSAs.

First, we build a PO-MSA graph for each strobemer using the sequences the strobemer cov-

ers in the reads. The graph is built by aligning and adding sequences to the graph one sequence

at a time. The nodes in the graph are labeled with characters and edges connect nodes that

appear next to each other in a sequence. To implement POA we used SPOA, the fast SIMD

version as implemented by Vaser et al. [19].

After all sequences are added to the graph, we can start generating consensus sequences.

Unfortunately, based on our initial trials, the heaviest bundle algorithm described in the Intro-

duction section did not produce good enough consensus sequences. We then modified the

heaviest bundle algorithm so that dependencies between distant nodes in the graphs are also

considered to get more accurate consensus sequences.

Modified heaviest bundle algorithm. When several regions in the genome produce the

same strobemer, sequences from all of them are included in the same PO-MSA graph. To

avoid consensus sequences that combine parts from different regions, we use an algorithm

similar to the isoform generation mode presented by Lee [14]. The difference between our

method and the isoform generation mode is the way we choose the sequences to be

reweighted. Additionally, we perform a filtering step where only strongly supported consensus

sequences are considered for k-mer generation.

We follow the same idea as in the original heaviest bundle algorithm. However, before we

start calculating scores for the nodes, we aim to reweight edges that correspond to sequences

from the same genomic region. Reweighting starts by finding the average sequence length

between the sequences in the graph. Then, we determine a weight threshold tw for strongly

supported edges. If an edge has a weight that is at least tw, it is considered to be strongly sup-

ported by the data. We choose tw to be the weight of the ith heaviest edge among all edges in

the graph, where i is the average sequence length. This way, we have at least i strong edges in

the graph. Thus, if there is one path in the graph that is supported by most sequences, then

most edges in this path should also be considered strongly supported.

PLOS ONE SAKE: Strobemer-assisted k-mer extraction

PLOS ONE | https://doi.org/10.1371/journal.pone.0294415 November 29, 2023 11 / 31

https://doi.org/10.1371/journal.pone.0294415


After we have determined which edges in the graph are strongly supported, we can find

which sequence in the graph is most strongly supported. To do this, we calculate a weakness

score sw for each sequence in the graph. The weakness score should be low when the path of

the sequence in the graph contains a lot of strong edges. On the other hand, the weakness

score should be high when the sequence contains a lot of edges that are not strongly supported.

Combining these two aspects makes it so we do not discriminate against shorter sequences.

Longer sequences are naturally more likely to contain many strong edges, but their weakness

score is increased for each weak edge too. The weakness score for a sequence is defined as sw =

em + ew, where em is the number of strongly supported edges that are not part of the sequence,

and ew is the number of edges in the sequence that are not strongly supported. After weakness

scores are calculated, we can find which sequence has the lowest weakness score and select that

as the most strongly supported sequence.

We use the strongest sequence as a backbone for consensus generation. We do not want to

simply raise the weight of the edges that correspond to the strongest sequence because that

would make the process too biased towards one specific sequence (and any errors within it).

Instead, we find other sequences that are similar to the strongest sequence. These sequences

are likely from the same genomic region, and if we give bonus weight to them all, we can favor

a specific genomic region without being biased toward one specific sequence. In order to find

these similar sequences, we first raise the weight of the edges of the strongest sequence. Then,

we use the consensus generation algorithm to find an initial consensus sequence and its associ-

ated bundle of sequences. In this step, the consensus sequence is likely to be identical to the

strongest sequence since that was the only one given bonus weight. The generated bundle con-

tains sequences that are similar to the strongest sequence, and we raise the weights of these

bundled sequence edges. After reweighting the edges, we are now focusing on a group of

sequences that are likely to originate from the same genomic region.

Next, we can move on to generating the actual consensus sequence. Again, this is done

using the original SPOA implementation of this step. Once we find the consensus sequence

and its bundled sequences, they are recorded to be reported later. All the edges whose weight

was raised before are returned to normal, and sequences that are part of the consensus

sequence bundle are removed from the graph by setting their weight to zero. If a proper con-

sensus sequence is found with enough bundled sequences, we start from the beginning to gen-

erate the next consensus sequence. We do this until we cannot find a new consensus sequence.

Fig 3 shows an example POA graph and two cases of consensus generation. The top graph

shows how the original consensus generation algorithm can fail by finding an incorrect con-

sensus sequence. In the bottom graph, the modified algorithm has given additional weight to a

set of sequences that originate from the same genomic region, and we are able to find the cor-

rect consensus sequence.

Consensus sequence filtering. We do not accept all consensus sequences produced from

a graph. To filter out bad consensus sequences, we take a look at their bundled sequences. Dur-

ing the consensus sequence generation, the heaviest bundle algorithm considers all the

sequences in the graph. Using the default or user-specified bundling threshold b, a sequence

with length ℓ is added to the bundle if it shares at least b�ℓ nodes with the consensus sequence.

The purpose of the bundled sequences is to support the existence of the consensus sequence in

the genome. In order to verify that a consensus sequence has enough support, the algorithm

first requires that the bundle contains enough sequences. There are two different thresholds

for the bundling support: absolute threshold g and proportional threshold z. Let us assume we

have a consensus sequence C, and B is the set of sequences in its bundle. Now, C is considered

to have large enough bundle (and thus support from the input data) if |B|�max(g, z|S|),

where S is the set of all sequences corresponding to this specific strobemer.
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In addition to the bundle size filtering, we also require each character in the consensus

sequence to have enough support from the sequences in its bundle. For this, we look at the

MSA of a consensus sequence and its bundle sequences that is provided by the SPOA imple-

mentation. For each position in the consensus sequence, we check if the character appears at

least c times in the bundled sequences as well. Dashes (deletions) that appear in the MSA for

the consensus sequence are ignored. This just means that some bundled sequences have inser-

tions that do not appear in the consensus sequence. If all the characters in the consensus

sequence are supported by at least c bundled sequences, it is accepted as a consensus sequence.

Using this modified version of the heaviest bundle algorithm with additional filtering gives

us a set of consensus sequences that we would like to report as the found k-mers. The problem

is, that not all consensus sequences are exactly k characters long. We still need to add one step

where consensus sequences are transformed into k-mers.

Output k-mer splitting

Because the consensus sequences are not necessarily of length k, we need to cut them into

appropriately sized k-mers. The strobemer parameters n, l, v, and w are chosen so that

sequences used in PO-MSA are at least k characters long. Thus, it is unlikely that a consensus

sequence would be shorter than k. During our experimentation, we observed that input

sequences that were at least k characters long produced hardly any consensus sequences

shorter than k. For example, with a simulated 40x 4% error rate read set, a common occurrence

was that only about 0.001% of the consensus sequences ended up being too short.

Fig 3. A very simple POA graph example. The graph represents two sequences from different positions of the genome:

AGACA and ATATA. The graph consists of six sequences that originate from these two genomic sequences: AGAA (blue),

AGACA (yellow), AGACA (red), ATTA (green), ATATA (black), and ATATA (purple). Blue and green sequences have an

error in them, specifically one deletion in each making them skip a node. The numbers next to the nodes show the node

weight calculated according to the heaviest bundle algorithm. Note that in a real POA graph there can be only one edge

between two nodes, but in this example, we have drawn edges for each individual sequence to make the example clearer.

You can think of the weight of an edge between two nodes in this picture to be the number of edges between the nodes. If we

try to find the consensus sequence using the original heaviest bundle algorithm (top) so that all sequences have the same

weight, we will generate an incorrect sequence AGATA which is a combination of the two genomic sequences represented

in the graph. On the other hand, if we use our modified version (bottom), we can find a correct consensus sequence

AGACA if we weight the sequences properly. The algorithm detects that blue, yellow, and red sequences are similar and

gives them additional weight. This way the path corresponding to their genomic origin sequence is favored and we can

generate it successfully.

https://doi.org/10.1371/journal.pone.0294415.g003
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We also want the consensus sequences to be close to the desired length so the need for cut-

ting them into k-mers would be minimized. If the consensus sequence is too short, which is a

very unlikely case, it cannot be used to produce a k-mer. If the length of the consensus

sequence is exactly k, we can just accept it as it is. In the case where the consensus sequence is

too long, we simply take all k-mers that appear in it. It is usually the case that k-mer counters

return only the canonical k-mers because the strand is unknown. We also do this after consen-

sus sequences are split into k-mers. Because multiple sequences can produce the same k-mer

we will only report one such k-mer in its canonical form.

To guarantee that input sequences for PO-MSA are of length at least k, we need to set stro-

bemer parameters properly. As we explained earlier in the Strobemer occurrence gathering

section, the sequence covered by a strobemer starts where the first minimizer begins, and ends

where the last minimizer ends. To decide what strobemer parameters to use, we need to know

what is the shortest sequence a strobemer can cover. Given strobemer parameters n, l, v, and

w, the shortest possible sequence the strobemer can cover has length (n − 1) × v−w + l + 1.

This happens when the first minimizer is at the last position of its window and the last mini-

mizer is at the first position of its window. For example, in Fig 4 with parameters n = 3, l = 4,

v = 16, and w = 8, the smallest possible area covered is (3 − 1) × 16 − 8 + 4 + 1 = 29 characters

long. So, if we were searching for 29-mers, these parameters would be suitable since it is

unlikely we will produce consensus sequences shorter than 29. In the general case, we can

define the following inequality relationship between k and the strobemer parameters:

ðn � 1Þ � v � wþ lþ 1 � k ð1Þ

For any given k, it is desirable to choose the strobemer parameters so that they just barely

satisfy the inequality. This way, the generated consensus sequences are more likely to be close

to k in length to avoid unnecessary work producing duplicate consensus k-mers. We will dis-

cuss how the SAKE parameter values were chosen in the following SAKE parameter selection

section.

SAKE parameter selection

SAKE has a few parameters the user can adjust to affect the precision and recall of the reported

k-mers. Also, the modified BFCounter has new parameters to determine the shape of the stro-

bemers. These parameters are listed in Table 1. Before the experiments shown in the Results

section were performed, we needed to find what values to use for these parameters.

Our goal was not to fully optimize the parameters since this would have taken unnecessarily

long. Instead, we were satisfied with using a reasonable set of parameter values if tweaking

them would not significantly improve the precision and recall of the produced k-mers. For

Fig 4. Strobemer parameters and how they affect the minimum area covered by the strobemer. Squares represent characters and the number in the

square is the index of the character. With parameters n = 3, l = 4, w = 8, and v = 16 the shortest area the strobemer at position i = 1 can cover is (3 − 1) ×
16 − 8 + 4 + 1 = 29 characters long. The colored squares represent the shortest sequence the strobemer can cover.

https://doi.org/10.1371/journal.pone.0294415.g004
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some parameters, we could reason out the values that would work well. For the rest that could

not be as easily reasoned, we made initial guesses and performed experiments to see if adjust-

ing them would make a meaningful difference. Of course, this does not necessarily lead to an

optimal set of parameter values. Still, the amount of time it would have taken to find the best

parameter values for a marginal increase in result quality did not seem worthwhile, especially

since the “best” parameter values are dependent on the used data set. Also, it is difficult to

determine what are the optimal parameter values, since there is often a tradeoff between preci-

sion and recall.

The experiments to determine parameter values were performed with multiple runs on sim-

ulated 40x 6% error rate E. coli reads. We reasoned out the values for parameters n and l, but

for the rest of the parameters we made the following initial guesses: w = 11, a = 3, g = 3, z = 0.4,

b = 0.8, and c = 3. The value of parameter v is not fixed a priori, because it was used to adjust

the size of the area covered by the strobemer to fit each individual k-mer length according to

Eq (1) in the Output k-mer splitting section.

First, we decided which values to use for the strobemer parameters n, l, v and w. This choice

is guided by the inequality (n − 1) × v − w + l + 1� k defined in Eq (1), which ensures that the

sequences that are used for consensus generation are of length at least k. Fixing some of the

parameter values will affect what values we can choose for the other parameters. We decided

that the length of the strobemer (the sum of the strobe lengths nl, not including the gaps

between them) should not be dependent on the length of the searched k-mers. The reasoning

behind this was that the strobemer characters are the only ones that are fixed in consensus

sequence generation, and we wanted the probability that they contain an error to be the same

in all experiments regardless of the k-mer length. Thus, we used the same value for n and l in

all experiments.

When deciding the value for l, we should consider that we want it to be likely that a mini-

mizer should be unique in its window. For parameter n we also need to take into account that

the number of the minimizers should be at least two (and preferably more) for the inequality

(and the strobemer itself) to make sense. On the other hand, we do not want the strobemer

length nl to be too long, because the longer the strobemer is, the more likely it is that the stro-

bemer contains an error. Sahlin [12] ran experiments where the total strobemer length was 30.

Table 1. SAKE and modified BFCounter parameters and their descriptions.

Parameter Program Type Description

n BFCounter Positive integer Number of minimizers used to determine a strobemer.

l BFCounter Positive integer Strobemer minimizer length. This is the length of the strobes that are used to construct a strobemer.

v BFCounter Positive integer Distance between the beginning positions of two consecutive minimizer windows.

w BFCounter Positive integer Strobemer minimizer window size. This is the number of l-mers from which a minimizer, i.e. strobe, is chosen.

a SAKE Positive integer Minimum strobemer abundance. This value shows how many occurrences a strobemer needs to have in the reads for

the system to start generating consensus k-mers for the strobemer instance.

g SAKE Positive integer Minimum bundle support threshold. This value shows the minimum number of sequences that are required to be in a

consensus sequence bundle for the consensus sequence to be used in consensus k-mer generation.

z SAKE Number between 0

and 1

Minimum bundle support threshold relative to the bundle size. Multiplied with the number of sequences used to build

a POA graph, the value shows the minimum number of sequences that are required to be in a consensus sequence

bundle for the consensus sequence to be used in consensus k-mer generation.

b SAKE Number between 0

and 1

Bundling threshold. Used to determine if a sequence used to build a POA graph belongs to the same bundle with a

generated consensus sequence.

c SAKE Positive integer Character support threshold. Used to make sure each character in a consensus k-mer has enough support from the

bundled sequences.

https://doi.org/10.1371/journal.pone.0294415.t001
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We tried using a similar setup with parameters n = 3 and l = 10 which leads to the same strobe-

mer length. Unfortunately, this did not work out well enough and the recall rate was not as

high as we would have hoped. We assume that in SAKE the effects of errors in the read are

multiplied because we are matching strobemers to other strobemers in the grouping step. On

the other hand, Sahlin [12] only matched strobemers to a reference genome, so the longer stro-

bemers are tolerated better with similar error rates. We deduced the strobemers of length 30

made it too probable for them to contain an error making it difficult to identify matching stro-

bemers. We had to adjust the parameters so that the total strobemer length was lower. We

decided to keep the number of minimizers at three but lower the minimizer length to seven,

leading to the strobemers being 21 characters long. With this setup, we observed that the recall

increased to a reasonable range and we were satisfied with the chosen values.

Next, the size of the minimizer window w should be chosen so that even if the areas between

the windows have insertions and deletions causing the position of the minimizer window to

shift from its correct position, it is still likely the correct minimizer can be found within the

minimizer window. Thus, the window should contain a good number of minimizer candidates

so the majority of them stay in the intended window even if a few insertions or deletions shift

the position of the window. On the other hand, we do not want the window to be too big to

ensure there is a unique minimizer in the window (which is also affected by the minimizer

length l). More importantly, if the window is too long, the resulting strobemers are less likely

to be unique to their specific position in the genome causing us to group sequences from dif-

ferent areas of the genome making the consensus generation more difficult. We wanted the

window length w to be at least l long so there was no character in the window that was shared

by all the minimizer candidates. We then chose a few test values w = 9, 11, 13, 15 around our

initial guess w = 11 to see if the guessed value should be adjusted. In these experiments, we

used the already chosen n = 3 and l = 7 parameters, and the initial guess values for the other

parameters (v was chosen based on Eq (1)). We searched for 47-mers and 97-mers and mea-

sured the precision and recall using the k-mers found in the reference genome. The results can

be seen in Fig 5.

We observed that the effects of the window size between these values were very small. The

precision had a tiny decrease as the window size grew larger. Nevertheless, both precision and

recall were good with all the tested values, and we chose to keep our initial guess value w = 11

for the rest of the experiments.

Finally, for the strobemer parameters, we are left to set the value for the distance between

minimizer windows v. We used this parameter to fit the different values of k. And as men-

tioned earlier, the value of v is not fixed and it is used to scale the length of the sequence cov-

ered by the strobemer to fit the different k-mer lengths.

After this, we were ready to decide the non-strobemer parameters. As previously men-

tioned, our initial guesses for them were b = 0.8, z = 0.4, and a, g, c = 3. First, we decided to

check if the bundling threshold b = 0.8 was reasonable. We used the already decided strobemer

parameters n = 3, l = 7, and w = 11, and the initial guesses for the other parameters. We tried

using values 0.5, 0.6, 0.7, 0.8, and 0.9 for the bundling threshold. The results can be seen in Fig

6. We observed that with the test data set, the difference in precision and recall between these

values was minuscule. The experiments did not definitively indicate which value was the best,

so we decided to stick with our initial guess b = 0.8 for the bundling threshold. We thought

this would allow enough flexibility for the sequences to be bundled together even with some

errors, without bundling sequences that are obviously not from the same genomic region.

After b was fixed, we moved on to find a value for the relative bundle support threshold z.
This value determines if the bundle size is big enough for the consensus sequence to be

accepted. If the number of sequences in the bundle divided by the number of all sequences in
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the PO-MSA graph is at least z, the consensus sequence is considered to have enough support.

Our initial guess for this parameter was 0.4, but we also experimented with values 0.2, 0.3, 0.5,

and 0.6. One thing that should be noted about this parameter is that its value determines what

is the maximum number of consensus sequences we can produce from a single PO-MSA

graph. For example, if one sequence has enough support when z = 0.6, then the next consensus

sequence can have at most 1−0.6 = 0.4 support because the sequences of the first bundle are

removed from the graph. We ran similar tests as before using the chosen strobemer parame-

ters, b = 0.8, and initial guesses a, g, c = 3 to search for 47-mers and 97-mers. The result of this

experiment can be seen in Fig 7. Again, we saw very little difference between the tested values,

which implied that most of the time a single graph produced at most one consensus sequence.

Still, we chose to keep the guessed value z = 0.4, which allows one graph to produce two con-

sensus sequences while requiring them to have a reasonably large supporting bundle.

Finally, we were left to find what values to choose for parameters a, g, and c. We decided to

group these parameters together because they are dependent on each other. For example, if

c = 5, the characters in a consensus sequence are required to have support from five bundled

sequences. If this is the case, it does not make sense to set parameter g to be less than five,

because if the bundle size was allowed to be four, then no character in the consensus sequence

would have enough support. Similarly, it would not make sense to set a to be less than five,

because the number of strobemer occurrences determines how many sequences appear in the

PO-MSA graph, which directly sets a maximum value for the bundle size. Because of these

Fig 5. Parameter w experiment results. This experiment was used to evaluate the initial parameter guess w = 11 for

the minimizer window length. We performed this experiment on simulated 40x 6% error rate E. coli data. Note that the

y-axis starts from 0.8.

https://doi.org/10.1371/journal.pone.0294415.g005
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parameter dependencies, we decided to treat them as a single parameter when choosing their

values.

As our initial guess, we had set all these parameters to be 3. Lower values could not bring

better results, so we ran experiments where we set these parameters to be 3, 5, 7, 9, and 11 and

used the other already decided parameter values to extract 47-mers and 97-mers. The results

of these experiments can be seen in Fig 8. The higher values 7, 9, and 11 did not work well with

the data set, so we had to decide between the smaller values. With a, g, c = 3 the recall was bet-

ter than with a, g, c = 5, while the precision was lower. Looking at these results the best overall

value for a, g, c would probably be 4 or 5. Thus, in the Results section, we decided to show

experiment results with three different values 3, 4, and 5.

Results

To evaluate the performance of SAKE, we compared it to LoMeX [8] and DSK [18], which is a

k-mer counter that uses the exact k-mer counting method. SAKE is available on GitHub at

https://github.com/Denopia/SAKE.

Program parameters

SAKE has a few parameters the user can adjust to affect the precision and recall of extracted k-

mers. One of the most impactful parameters is a, the minimum strobemer abundance thresh-

old. This parameter value shows how many sequences a strobemer must have in its group for

Fig 6. Parameter b experiment results. This experiment was used to evaluate the initial parameter guess b = 0.8 for

the bundling threshold. We performed this experiment on simulated 40x 6% error rate E. coli data. Note that the y-axis

starts from 0.8.

https://doi.org/10.1371/journal.pone.0294415.g006
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the program to produce consensus k-mers for that group. A similar parameter m is also pres-

ent in LoMeX, where it determines how many k-mers must be in the same group for it to pro-

duce consensus k-mers. The parameter a in SAKE andm in LoMeX thus perform a similar

function to the k-mer abundance threshold abundance-min in DSK, where it is the minimum

number of times a k-mer must occur in the reads for it to be reported. Because we consider

abundance parameters a,m, and abundance-min to be analogous to each other, after this point

we will refer to all of them with the same letter a (which method’s abundance we are talking

about will be clear from the context).

Since a in DSK is the only parameter that should affect the output k-mers, we decided to

only vary its value and the values of the corresponding parameters in SAKE and LoMeX.

Other parameters in LoMeX were set to their default values. The spaced seed parameter deter-

mines the length of the extracted k-mers. In these experiments, we extracted 47-mers,

57-mers, 67-mers, 77-mers, 87-mers, and 97-mers. The spaced seeds used to find them were:

• 4 − 6 − 4 − 7 − 5 − 7 − 4 − 6 − 4

• 4 − 9 − 4 − 9 − 5 − 9 − 4 − 9 − 4

• 4 − 11 − 4 − 12 − 5 − 12 − 4 − 11 − 4

• 4 − 14 − 4 − 14 − 5 − 14 − 4 − 14 − 4

• 4 − 16 − 4 − 17 − 5 − 17 − 4 − 16 − 4

Fig 7. Parameter z experiment results. This experiment was used to evaluate the initial parameter guess z = 0.4 for the

relative bundle support threshold. We performed this experiment on simulated 40x 6% error rate E. coli data. Note that

the y-axis starts from 0.8.

https://doi.org/10.1371/journal.pone.0294415.g007
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• 4 − 19 − 4 − 19 − 5 − 19 − 4 − 19 − 4

In this spaced seeds representation the numbers at odd positions show how long the fixed

positions streaks are, and the numbers at even positions show how long the “don’t care” posi-

tion streaks between them are. The sum of these numbers is equal to the k-mer length. The

total number of fixed characters in the spaced seeds was chosen to match the number of char-

acters that appear in the strobemers used by SAKE. There is a similar way to adjust the strobe-

mer parameters in SAKE to match the extracted k-mer lengths, which was already discussed in

SAKE parameter selection section.

Experiment setup

We used the three programs to find solid k-mers from three data sets: Real Escherichia coli
reads [22], simulated Escherichia coli reads, simulated Drosophila melanogaster reads, and real

human chromosome 1 reads [23]. Information about the used data sets can be found in

Table 2. The use of simulated data allowed us to modulate the error rate so we could experi-

ment and observe how the programs performed with increasing error rates. We also ran an

experiment with real reads to gauge the performance with a more realistic error profile. In

these experiments, the errors in the simulated reads were uniformly distributed and each error

type was equally likely to occur.

Fig 8. Parameter a, g, c experiment results. This experiment was used to evaluate the initial parameter guesses a, g,
c = 3 for the minimum strobemer abundance a, absolute bundle support threshold g, and character support threshold

c. We performed this experiment on simulated 40x 6% error rate E. coli data.

https://doi.org/10.1371/journal.pone.0294415.g008
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The performance of the programs was analyzed using precision (real reported k-mers

divided by all reported k-mers) and recall (real reported k-mers divided by all real k-mers).

The experiments were run on a computing cluster with eight 15GB cores for a total of

8x15GB = 120GB memory with the exception of human data experiments which were run

with eight cores with 300GB memory each. We performed the experiments to extract k-mers

of varying lengths, between 47bp and 97bp. Other than the length of the k-mers, we also varied

the abundance threshold a. We ran experiments with different a values, and for each program,

we report results with three a values that we considered to give the best tradeoff between preci-

sion and recall. For SAKE the best performance was given by a values 4, 5, and 6. For LoMeX,

a values were 3, 4, and 5, and for DSK the three smallest a values 2, 3, and 4 gave the best

results.

Precision and recall experiments

We measured how the precision and recall of the extracted k-mers by SAKE differs from those

of LoMeX and DSK. To examine this, we first experimented with a 40x coverage simulated E.
coli data set. We used all three programs to extract six different k-mers: 47-mers, 57-mers,

67-mers, 77-mers, 87-mers, and 97-mers. We ran these experiments with four different error

rates, 4%, 6%, 8%, and 10%. For each program, we did three runs for each error rate with vary-

ing abundance parameters. As mentioned earlier, the abundance values for SAKE were 4, 5,

and 6, for LoMeX they were 3, 4, and 5, and for DSK they were 2, 3, and 4. The results of these

experiments can be seen in Fig 9.

From these experiments, we can see that with the simulated E. coli data set, SAKE performs

generally better than LoMeX. The recall of SAKE is also always better than that of DSK, while

sometimes DSK gets better precision. On the other hand, if we look at the tradeoff between

precision and recall, SAKE seems to perform the best, especially with higher values of k.

We also wanted to see how these programs performed when k-mers were extracted from a

longer genome. For this experiment, we simulated a 40x coverage 6% error rate read set from

the D. melanogaster reference genome. The result of this experiment can be seen in Fig 10.

The larger genome experiments with simulated D. melanogaster reads show very similar

results to the ones we performed with E. coli. Overall, it seems like SAKE is able to give the

best tradeoff between precision and recall.

To evaluate how the programs perform on real data, we sampled a 40x read set from a larger

set of real Nanopore E. coli reads. To estimate the error rate of this read set, we used minimap2

[24, 25] to align the reads to a reference genome and samtools [26] to calculate the error rate.

The estimated error rate we got for this data set is 7.8%. The result of this experiment can be

seen in Fig 11.

The results between the different methods with real E. coli reads are closer to each other

compared to what we witnessed with the less realistic simulated reads. Still, SAKE seems to

Table 2. Data sets used in the experiments.

Organism Read set and error rate Reference accession Reference length Coverage Number of reads Avg. read length

E. coli Real 7.8% error GCA_000005845.2 4,641,652 40x 29,215 6,435

E. coli Simulated 4% error GCA_000005845.2 4,641,652 40x 37,140 4,999

E. coli Simulated 6% error GCA_000005845.2 4,641,652 40x 37,148 4,998

E. coli Simulated 8% error GCA_000005845.2 4,641,652 40x 37,160 4,997

D. melanogaster Simulated 6% error GCA_000001215.4 143,726,002 40x 1,125,396 4,998

Human Chromosome 1 Real 4.8% error CM039011 251,946,536 69x 770,676 22,383

https://doi.org/10.1371/journal.pone.0294415.t002
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Fig 9. Simulated E. coli experiment results. SAKE, DSK and LoMeX precision and recall comparison with simulated

E. coli data with 4%, 6%, 8%, and 10% error rate and 40x coverage.

https://doi.org/10.1371/journal.pone.0294415.g009
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outperform LoMeX, but with smaller values of k, SAKE and DSK have similar precision/recall

tradeoffs. With bigger values of k, DSK admittedly has better precision, but SAKE has a signifi-

cantly higher recall. Overall, at least with higher k values, SAKE seems to produce k-mers with

the best tradeoff between precision and recall.

Time and memory usage experiments

Optimizing time and memory usage of SAKE was not our primary goal, but we still recorded

them to get a general idea of how SAKE fares against DSK and LoMeX in these aspects. In

Table 3, we show the peak memory usages and wall clock times of the programs in twelve

experiments. We measured these statistics for different kinds of situations. For all programs,

we show two runs for all three data sets, so that the first run is for the shortest k-mer, 47-mer,

and the second run is for the longest k-mer, 97-mer. For SAKE, the output sequences can

sometimes be longer than k, so they are split into k-mers. After this, the k-mers are oriented

into their canonical form according to standard alphabetical order. Then they are sorted, and

Fig 10. Simulated D. melanogaster experiment results. SAKE, DSK and LoMeX precision and recall comparison

with simulatedD. melanogaster data with 6% error rate and 40x coverage.

https://doi.org/10.1371/journal.pone.0294415.g010

Fig 11. Real E. coli experiment results. SAKE, DSK and LoMeX precision and recall comparison with real E. coli data

with estimated error rate 7.8% and 40x coverage.

https://doi.org/10.1371/journal.pone.0294415.g011
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any unnecessary duplicate k-mers are deleted. We have a script for this cleanup step and it is

included in the time measurement. We have a similar script to orient the k-mers from LoMeX.

DSK produces its canonical k-mers not according to a standard lexicographic order (instead it

is A< C< T< G). We had to orient these k-mers too for our precision and recall calculations,

but for the time and memory measurements that phase is not included.

From these results, it is clear that in its current form, SAKE is slower and uses more mem-

ory than DSK. LoMeX falls between these two programs, except with the D. melanogaster data

set it uses the most memory. On the other hand, this happened using the default values, and

the user can adjust the parameters to decrease memory usage at the expense of running time.

The reason for the high SAKE memory usage is that it keeps all the reads in memory simul-

taneously. We could improve this by splitting the process into multiple iterations and only

keeping in memory the relevant reads or sequences for a smaller number of strobemers. Time-

wise, it is unlikely SAKE could be optimized to be faster than DSK since it is not just simply

counting the k-mers. SAKE spends most of the time building the POA graphs and finding the

consensus sequences from them. We used a ready POA implementation called SPOA [19] that

we modified slightly to fit SAKE. It is certainly possible that with more optimization we could

achieve shorter running times, but the focus of this work was to see how SAKE would perform

from the perspective of precision and recall.

Experiments with corrected reads

Since SAKE performs k-mer extraction and also tries to correct errors while doing it, one

might question how it fares against DSK if the reads for DSK were corrected first. To find this

out, we ran the same real E. coli experiment as before, but the reads given to DSK were cor-

rected with a read correction program called CONSENT [15]. SAKE was given the uncor-

rected original reads. The results from this experiment can be seen in Fig 12.

Table 3. Time and memory usage comparison between DSK, LoMeX, and SAKE.

Program Data k Time [hh:mm:ss] Memory [kB]

DSK Real E. coli 47 00:00:12 1,636,244

LoMeX Real E. coli 47 00:07:55 3,818,000

SAKE Real E. coli 47 00:15:27 5,740,556

DSK Simulated E. coli 47 00:00:11 1,549,172

LoMeX Simulated E. coli 47 00:05:12 3,809,852

SAKE Simulated E. coli 47 00:12:00 5,405,816

DSK Simulated D. melanogaster 47 00:04:26 4,763,124

LoMeX Simulated D. melanogaster 47 03:06:35 25,435,768

SAKE Simulated D. melanogaster 47 07:11:36 15,123,208

DSK Real E. coli 97 00:00:10 2,875,696

LoMeX Real E. coli 97 00:07:25 3,818,148

SAKE Real E. coli 97 00:21:15 5,725,400

DSK Simulated E. coli 97 00:00:17 2,768,656

LoMeX Simulated E. coli 97 00:03:27 3,811,804

SAKE Simulated E. coli 97 00:15:26 5,388,812

DSK Simulated D. melanogaster 97 00:07:03 4,705,416

LoMeX Simulated D. melanogaster 97 02:02:15 25,435,868

SAKE Simulated D. melanogaster 97 09:40:26 15,143,492

https://doi.org/10.1371/journal.pone.0294415.t003
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In addition to this corrected E. coli experiment, we ran a similar corrected reads experiment

with a human chromosome 1 real read set. Since these experiments took a long time to run, we

performed them to only extract 47-mers, 67-mers, and 97-mers. The results from this experi-

ment can be seen in Fig 13. Unfortunately, we were unable to correct the reads with CON-

SENT so we used the error correction tool NECAT [27] instead.

Fig 12 shows that with the same a values as before, DSK is able to find more real k-mers on

the real E. coli data. On the other hand, its precision is generally slightly lower than with the

uncorrected reads. With these parameter values, SAKE still seems to have a better precision/

recall tradeoff. However, if we raise the abundance threshold of DSK to a = 10, then DSK is

able to beat SAKE in both precision and recall. This is not too surprising since the error correc-

tion process of CONSENT is more thorough compared to the consensus k-mer generation of

SAKE.

Fig 12. Corrected real E. coli experiment results. SAKE and DSK precision and recall comparison with real E. coli
data with estimated error rate 7.8% and 40x coverage. The plot shows the results for DSK with corrected and

uncorrected reads, and the results for SAKE only with uncorrected reads.

https://doi.org/10.1371/journal.pone.0294415.g012

Fig 13. Corrected real human chromosome 1 experiment results. SAKE and DSK precision and recall comparison

with real Human chromosome 1 data with estimated error rate 4.8%. The reads given to DSK were corrected

beforehand with the read correction program NECAT while SAKE still used the original uncorrected reads.

https://doi.org/10.1371/journal.pone.0294415.g013
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On the other hand, human chromosome 1 experiments show that if the reads are first cor-

rected with NECAT, then DSK gives more accurate results than running SAKE on uncorrected

reads. NECAT and DSK combination is also faster than SAKE.

We observed that read correction with CONSENT does not come without a downside. Cor-

recting the reads will take significantly more time compared to only running DSK. For exam-

ple, correcting the real 40x E. coli read set with CONSENT took us 30 minutes and 39 seconds.

On the other hand, SAKE took 15 minutes and 27 seconds on this data set. However with

NECAT, human data error correction is very efficient. The correction process took 15 hours

and 9 minutes. After this, even the longest DSK run was finished within 15 minutes. As com-

parison, even the fastest SAKE runs took at least 24 hours. However, as stated earlier SAKE is

not optimised for speed.

Extraction after assembly experiments

Related to the experiments with corrected reads, it is interesting to also see how SAKE fares

against standard k-mer counting when the reads have been assembled beforehand. We decided

to use Canu [28] to assemble the reads, and only use real reads to perform the experiment. We

set the time limit to 7 days, and unfortunately Canu was unable to assemble the human reads

within the time period. However, we managed to run the experiment on the smaller E. coli
data set. The results of the experiment can be seen in Table 4.

After assembly DSK is very accurate, but the process is slower compared to the SAKE times

found in Table 3. SAKE was able to extract 47-mers in under 16 minutes and 97-mers in under

22 minutes. In both cases DSK with Canu too over 36 minutes. The same time usage for DSK

with Canu with all values of k is explained by the fact that the assembly process is the same in

all cases, and the resulting data set (assembled reads) is significantly more compact so DSK is

able to extract all k-mers very quickly (total time was around 3 seconds for every value of k).

The memory peak in every case was achieved during the Canu assembly. One of the drawbacks

of assembling the reads before k-mer extraction is that we cannot obtain the exact k-mer

counts of the reads. However, this is a fair comparison against SAKE since it does not report

counts either.

Graphical precision/recall comparison against SAKE can be found in Fig 14. From the plot

we can observe that assembling the reads before extracting k-mers gives higher precision and

recall. This is expected, since Canu has its own read correction phase and will produce a good

representation of the genome for DSK to extract the k-mers from.

Downstream application experiments

To see how k-mers extracted by SAKE might perform in downstream applications, we used

BCALM [29] to construct a de Bruijn graph and build unitigs with different extracted k-mer

Table 4. Results of running first Canu on the real E. coli data set and then DSK on the assembly produced by

Canu.

k Precision Recall Time [hh:mm:ss] Memory [kB]

47 0.969 0.969 00:36:44 6,393,756

57 0.963 0.962 00:36:44 6,393,756

67 0.956 0.956 00:36:44 6,393,756

77 0.949 0.949 00:36:44 6,393,756

87 0.942 0.942 00:36:44 6,393,756

97 0.936 0.936 00:36:44 6,393,756

https://doi.org/10.1371/journal.pone.0294415.t004
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sets. This experiment was performed with the k-mers extracted from the real E. coli data,

except only 47-mers, 67-mers, and 97-mers were used. We analyzed the obtained unitigs using

QUAST [30] and recorded the NGA50 values and the reference genome coverages in Table 5.

From these results we can observe that longer unitigs can be produced with SAKEk-mers

compared to plain DSK. However, DSK clearly produces longer unitigs if the reads are cor-

rected beforehand but SAKE still has a better genome coverage.

Discussion

Experiments with the uncorrected simulated data show that with a uniformly distributed error

profile, SAKE gives the best tradeoff between precision and recall compared to the other meth-

ods. We observed that SAKE outperforms LoMeX in both metrics. On the other hand, DSK

sometimes manages to get higher precision, but in these cases, the recall is very low. The results

were similar in both simulated cases: the smaller E. coli genome and the bigger D. melanogaster
genome. Still, the simulated read experiments can only estimate how the k-mer extraction

could work with real data sets.

The estimated error rate in the experiments with the real uncorrected E. coli reads is 7.8%,

so one could expect the results will fall somewhere between the 6% and 8% simulated read

results. Comparing the results, we can see that the SAKE precision is slightly lower than one

could expect from the simulated case, while the recall is considerably better than expected. A

similar trend can be seen with LoMeX and DSK: the recall with them is also better than

expected. The precision with DSK is slightly worse, while LoMeX precision is better. Some of

the surprising behavior between simulated and real reads can be explained by the estimated

7.8% error rate being off, but also the specific error profile of the real Nanopore reads is likely

to play a part in the observed differences. Nevertheless, we would still claim that even with this

realistic error profile, SAKE provides the most balanced results between precision and recall.

While SAKE looks like it could be the best option based only on these experiments, we

should also discuss its shortcomings. First, looking at the resource usage in Table 3, it becomes

very clear that at least in its current form SAKE is slower and requires more memory to run

Fig 14. Extraction after assembly experiments. SAKE and DSK precision and recall comparison with real E. coli data

with estimated error rate 7.8% and 40x coverage. SAKE uses the original reads while the DSK was given the assembly

results produced by Canu.

https://doi.org/10.1371/journal.pone.0294415.g014
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than DSK, which simply reads the data set and counts how many times each k-mer is seen. We

believe the method deployed by SAKE can be optimized to lessen the resource requirements,

but it was not in the scope of this work.

Second, the results in Figs 12 and 13 show that if the reads are corrected and the abundance

threshold is raised to an appropriate value, DSK can beat SAKE in precision and recall. Of

course, correcting the reads can take a lot of time depending on the size of the read set and the

correction method applied, so taking this approach does not necessarily come without a cost.

As mentioned, correcting the real E. coli read set took over 30 minutes which is longer than it

took SAKE to find even the longest 97-mers. On the other hand, NECAT was able to correct

the human chromosome 1 reads in 15 hours, whereas SAKE took 24 hours to extract the k-

mers. Nevertheless, correcting full reads is unnecessary when we only need the extracted k-

mers to be correct. The experiments with DSK k-mer counting on Canu-assembled data show

similar results as the corrected read experiments. Assembling the reads beforehand produces

accurate results, but takes significantly longer than just counting the k-mers, at least with with

the Canu assembler.

Table 5. NGA50 and genome fraction of SAKE and DSK with real E. coli data.

Program Reads k a NGA50 Genome fraction

DSK Uncorrected 47 2 92 95.887

DSK Uncorrected 67 2 136 99.359

DSK Uncorrected 97 2 169 93.922

DSK Uncorrected 47 3 151 96.407

DSK Uncorrected 67 3 171 96.560

DSK Uncorrected 97 3 134 77.750

DSK Uncorrected 47 4 197 94.375

DSK Uncorrected 67 4 144 91.325

DSK Uncorrected 97 4 111 58.818

DSK Corrected 47 2 490 99.026

DSK Corrected 67 2 498 99.687

DSK Corrected 97 2 505 99.794

DSK Corrected 47 3 598 98.991

DSK Corrected 67 3 605 99.591

DSK Corrected 97 3 610 99.726

DSK Corrected 47 4 694 98.972

DSK Corrected 67 4 703 99.511

DSK Corrected 97 4 712 99.707

DSK Corrected 47 10 1,362 98.852

DSK Corrected 67 10 1,390 99.240

DSK Corrected 97 10 1,426 99.462

SAKE Uncorrected 47 4 257 97.686

SAKE Uncorrected 67 4 273 99.900

SAKE Uncorrected 97 4 291 99.977

SAKE Uncorrected 47 5 285 96.890

SAKE Uncorrected 67 5 275 99.691

SAKE Uncorrected 97 5 266 99.885

SAKE Uncorrected 47 6 258 95.343

SAKE Uncorrected 67 6 235 99.312

SAKE Uncorrected 97 6 223 99.637

https://doi.org/10.1371/journal.pone.0294415.t005
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Lastly, in its current state, SAKE does not provide k-mer counts. In LoMeX, direct

counts cannot be given either, but the k-mer counts are estimated using the number of

grouped k-mers and the number of produced consensus k-mers. Something similar could

be implemented for SAKE, but it is not as straightforward. We could estimate the counts

using the number of bundled sequences, but the same k-mer can sometimes be produced

by two different strobemers and then these two counts for the same k-mer would need to

be combined. If all the sequences between the strobemers are from different genomic

regions, then summing the estimated counts would work. But in the case that there are

overlapping sequences between the groups means that then we would overestimate the

count. In the end, we did not implement estimating the counts and left it for future work

instead.

In summary, SAKE gives the most balanced results out of the three k-mer counting/extrac-

tion programs regardless of if the reads are simulated or real Nanopore reads if the reads are

not corrected. The use of strobemers seems more beneficial compared to using spaced seeds if

we want to perform consensus k-mer generation. However, with an optimized error correction

tool at your disposal, the best option still seems to be to correct the reads and use a standard k-

mer counting method.

Conclusion

In this paper, we proposed SAKE, a strobemer-assisted method for k-mer extraction. The aim

of SAKE is to enable the extraction of long k-mers from read sets with error rates where the

exact k-mer counting method fails. SAKE was also designed to outperform LoMeX [8] which

is a k-mer extraction program that can find k-mers in the presence of substitution errors. Fur-

thermore, SAKE was intended to also work in the presence of insertion and deletion errors.

Our experiments with data containing insertions and deletions show that SAKE performs well

against LoMeX. SAKE can also give a better balance between precision and recall compared to

DSK [18], a program for exact k-mer counting. In fact, DSK becomes unreliable/unusable

more quickly compared to SAKE as the k-mer length increases.

Only when reads are corrected before giving them to DSK, can it find k-mers with higher

precision and recall. This is not too surprising, since the error correction part of SAKE is not

as thorough as that of a dedicated read correction tool. While correcting full reads before

doing exact k-mer counting can give better results than SAKE, it can be time consuming.

However, at the moment, the performance of SAKE is not optimized. Thus, correcting the

reads with an optimized error correction tool before counting the k-mers in the standard way

is still the better option. However, we believe that instead of correcting full reads, the k-mer

correcting approach of SAKE could be a more lightweight option. Our intuition is that with a

more optimized implementation, SAKEk-mer extraction can be a more efficient alternative to

correcting the reads and counting k-mers afterward.
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