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Abstract

Type 2 diabetes (T2D) is one of the major metabolic disorders in humans caused by hyper-

glycemia and insulin resistance syndrome. Although significant genetic effects on T2D path-

ogenesis are experimentally proved, the molecular mechanism of T2D in South Asian

Populations (SAPs) is still limited. Hence, the current research analyzed two Gene Expres-

sion Omnibus (GEO) and 17 Genome-Wide Association Studies (GWAS) datasets associ-

ated with T2D in SAP to identify DEGs (differentially expressed genes). The identified DEGs

were further analyzed to explore the molecular mechanism of T2D pathogenesis following a

series of bioinformatics approaches. Following PPI (Protein-Protein Interaction), 867 poten-

tial DEGs and nine hub genes were identified that might play significant roles in T2D patho-

genesis. Interestingly, CTNNB1 and RUNX2 hub genes were found to be unique for T2D

pathogenesis in SAPs. Then, the GO (Gene Ontology) showed the potential biological,

molecular, and cellular functions of the DEGs. The target genes also interacted with different

pathways of T2D pathogenesis. In fact, 118 genes (including HNF1A and TCF7L2 hub

genes) were directly associated with T2D pathogenesis. Indeed, eight key miRNAs among

2582 significantly interacted with the target genes. Even 64 genes were downregulated by

367 FDA-approved drugs. Interestingly, 11 genes showed a wide range (9–43) of drug spec-

ificity. Hence, the identified DEGs may guide to elucidate the molecular mechanism of T2D

pathogenesis in SAPs. Therefore, integrating the research findings of the potential roles of

DEGs and candidate drug-mediated downregulation of marker genes, future drugs or treat-

ments could be developed to treat T2D in SAPs.

Introduction

Type 2 diabetes (T2D) is a complex metabolic disorder that has sparked much research interest

globally. In 2021, 536.6 million people had diabetes, and 783.2 million are expected to have
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T2D by 2045 [1]. Indeed, diabetes cases are also expected to rise among Southeast Asian popu-

lations over the next two decades, from 90.2 million in 2021 to 151.5 million people by 2045

[1]. In 2019, 1.5 million people worldwide died only due to diabetes [2]. In South Asia, Bangla-

deshi, Pakistani, Nepali, Bhutanese, Maldivian, Sri Lankan, and Singaporean populations

showed a significant increase in T2D patients during the last three decades [3]. However,

Indian populations showed the highest prevalence of diabetes, followed by the Chinese popula-

tion. In 2025, a case of 69.9 million diabetes is anticipated in India, where the majority are still

undiagnosed clinically [4]. Certainly, more than 6.3 million Pakistani populations are suffering

from diabetes [5]. In the Singaporean population, one-third are at risk of diabetes during the

whole life span, and the number is anticipated to be increased by more than 1 million by 2050

[6]. Similarly, during the last three decades, the prevalence of T2D has significantly increased

in Nepali, Sri Lankan, Bhutanese, and Maldivian populations. Not surprisingly, T2D is increas-

ing alarmingly among other SAPs, especially in Bangladesh. Based on age, sex, and disease

complexities, the overall prevalence of T2D in the Bangladeshi population ranges from 2.21 to

35% [7], which is very closed to India and China. In 2021, 13.1 million Bangladeshi adults had

diabetes, and the cases are anticipated to be 22.3 million by 2045 [1].

T2D is the cumulative effect of genetic and environmental factors. Multiple susceptible

genetic signatures responsible for T2D have already been identified in various South Asian

countries using genome-wide association studies (GWAS) [8]. In South Asian population

(SAP), diverse genetic variation, population structure, and disease associations led to inconsis-

tent population-specific medical treatment. Hence, the construction of reference genome data-

bases for specific populations and GWAS among various populations are urgently needed [9].

Due to considerable intergroup cultural differences, SAP possesses a significant genetic

diversity [10]. Research on Asian human pathogenomics will guide physicians to suggest pre-

cise medication for the respective population [11,12]. Among SAPs, significant genetic diver-

sity was observed among different ethnicities in the Singaporean population (Chinese, Malay,

and Indian). Additionally, 14 potential loci were identified in various Asian and Oceanian

populations with solid relationships with complex traits and disorders [11]. Consequently,

research on human pathogenomics consequences the availability of data on human genetics

over a wide range of geographical distribution. [11,13].

Indeed, several genes have already been identified that are associated with T2D pathogene-

sis in SAP [4,5,14]. In Indian and Pakistani populations, TCF7L2, FTO, PPARG2, IRS1,

SLC30A8, CDKN2A, HHEX, CDKAL1, EXT2, ADIPOQ, IGF2BP2, WFS1, LOC387761,

CAPN10, CDKN2B, MTHFR, KCNJ11, SGCG, ADAM30, THADA, GCK, LOC646279, TCF-2/
HNF1B, NOTCH2, VEGFA, and HOMA-β genes were found to be associated with T2D patho-

genesis [3]. Among SAP, HNF4A, HMG20A, VPS26A, GRB14, AP3S2, and ST6GAL1loci

were found to be associated with T2D. Interestingly, Single Nucleotide Polymorphisms (SNPs)

at GRB14, HNF4A, and ST6GAL1 genes were also associated with pancreatic beta-cell func-

tion and insulin sensitivity, respectively [15].

Although different genes and loci have already been identified for T2D pathogenesis

among SAP, how these genes interact at transcript and protein levels in disease association, dif-

ferent metabolic pathways, biological systems, and drug interaction are still unknown that

needs to be elucidated. In addition, extensive genetic diversity among different SAP guides fur-

ther research on population-specific disease associations [8]. Bioinformatic research facilitates

analyzing variations in gene expression at the transcript level, which guides to identify of dif-

ferentially expressed genes (DEGs) and their functional role in T2D pathogenesis [16]. Thus,

the identification and functional prediction of DEGs, following their role in different meta-

bolic pathways associated with type T2D pathogenesis would be a significant advancement of

T2D research in SAP.
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Therefore, we have designed the research to identify and predict the functions of DEGs

associated with T2D pathogenesis in SAP using GWAS catalog data and gene expression

omnibus (GEO) data. These screened DEGs were utilized for further analyses following pro-

tein-protein interaction, gene ontology, pathway enrichment, miRNA target regulatory, dis-

ease association, and drug-gene interaction to elucidate the mechanisms of T2D pathogenesis

among SAPs.

Methods

Microarray data

The GEO is a publicly available functional genomic resource that comprises information from

chips, microarrays, and high-throughput gene expression investigations. Two microarray

datasets (GSE26168 and GSE78721) were obtained from the NCBI database called the GEO

database (https://www.ncbi.nlm.nih.gov/gds), and each GSE file was separated into control

and disease states. Both datasets were from the South Asian populations (Singaporean and

Indian). The dataset of the Singaporean population (GSE26168) is based on the GPL6883 plat-

form, and we have used eight controls and nine T2D-affected samples within 60 samples of the

dataset. While the dataset of the Indian population (GSE78721) is based on the GPL15207 plat-

form, and we have used 16 controls and 19 T2D-affected samples within 130 samples of the

dataset. The differentially expressed genes (DEGs) in T2D-affected populations were identified

using the GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r) database. GEO2R is a web-based

application that analyzes two or more GEO datasets to elucidate the DEGs under various

experimental conditions. The modified Benjamin and Hochberg’s false discovery rate and the

P-values were utilized to balance the identification of statistically significant DEGs with limita-

tions of false positives. DEGs in T2D were identified using the fold change value, |log FC|>

1.5 and adj. P 0.05 [17–21].

Genome-wide association study (GWAS)

The publicly available GWAS catalog database (https://www.ebi.ac.uk/gwas/) was used to

explore the DEGs associated with T2D in SAP. The database is used to analyze SNP-trait corre-

lations for observing DEGs and SNPs associated with different diseases. We have chosen 17

GWAS catalog datasets of T2D (GCST002352, GCST001213, GCST008833, GCST004894,

GCST001033, GCST001759, GCST001809, GCST005414, GCST010557, GCST010553,

GCST007515, GCST007516, GCST006867, GCST010272, GCST011337, GCST011329,

GCST011321) among SAPs where, overlapping genes were omitted [22].

Protein-protein interaction (PPI) network analysis and identification of

Hub genes

The PPI of the translated proteins of identified DEGs was constructed using the publicly avail-

able STRING database (https://string-db.org/). After inputting the ID of the identified DEGs

onto the STRING database, the species "Homo sapiens" was selected, and the high confidence

(0.900) interaction score was set to create the PPI interaction network. Subsequently, Cytos-

cape software was used to visualize the PPI networks [23–25]. Then, we have used MCODE

(Molecular Complex Detection) (http://apps.cytoscape.org/apps/mcode) and Cytohubba on

Cytoscape (http://apps.cytoscape.org/apps/cytohubba) plugins to determine the most critical

subnetwork modules. Cytohubba follows topological algorithms to visualize protein associa-

tions. MCODE gives clusters of sub-networks. We have set Node Score Cutoff = 0.2, Degree

Cutoff = 2, and K-Score = 2 during analysis in MCODE [26].
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Gene ontology (GO) enrichment analysis

The GO analysis was done using the ToppFun tool of ToppGene (https://toppgene.cchmc.org/

enrichment.jsp) to conduct the functional enrichment of DEGs. We have used the default set-

tings of the ToppGene suite portal with the p-value of 0.05 with corrected an FDR value. In the

default setting, Correction value = FDR, p-Value cutoff score = 0.05, Gene Limits 1< = n< =

2000 were maintained. Then, the top ten significant roles in cellular components, biological

processes, and molecular functions were presented [27].

Pathway enrichment analysis

The publicly available Web-Gestalt (WEB-based Gene SeT AnaLysis Toolkit) (http://www.

webgestalt.org/) database was used to analyze the KEGG pathways enrichment, setting the

FDR (false discovery rate) value of 0.05 as the cutoff value [28]. The pathway enrichment anal-

ysis was done following the Over Representation Analysis (ORA) method, which is one of the

three WebGestalt software methods. Homo sapiens was the reference genome during the

KEGG pathway enrichment analysis, where Gene Symbol ID was used as the gene ID [29].

Construction of DEGs-miRNA regulatory network

The publicly available miRNet (https://www.mirnet.ca/) database was used to predict the regu-

latory network of the identified DEGs-miRNAs associated with T2D. In the database, the

genes option was selected and gene IDs were inputted to identify DEGs-miRNA association

for T2D following the default setting of Homo sapiens species. The regulatory network of

DEGs-miRNA was developed and visualized using Cytoscape. The top 30 degrees of the node

was chosen to visualize the DEGs-miRNAs regulatory network [30].

Disease association analysis

The Web-Gestalt database (http://www.webgestalt.org/) was used to analyze disease associa-

tions of the DEGs following the default setting of the Homo sapiens genome. Web-Gestalt data-

base uses Benjamini and Hochberg approach and a hypergeometric statistical test to

determining the false discovery rate. The top ten most significant disease associations were

presented [31].

Construction of candidate drug-gene interaction network

The interaction networks of candidate drug-gene were predicted using the publicly available

DGIdb database (Drug Gene Interaction Database) (DGIdb, v3.0.2, https://www.dgidb.org/).

The candidate drug-gene interaction pairs were obtained using known and FDA-approved

drugs. Following that, Cytoscape software was used to analyze and visualize the drug-gene

interaction network [32].

Results

Identification of differentially expressed genes (DEGs) from the

microarray GEO dataset

The GEO database was used to identify DEGs associated with T2D. Two South Asian GEO

datasets (GSE26168 and GSE78721) were analyzed. Here, we have found 221 DEGs in the

GSE26168 (GPL6883) dataset (The CDC42 gene showed both up and down-regulated),

including 95 upregulated genes and 127 downregulated genes. In the GSE78721 (GPL15207)

dataset, 28 DEGs were found, where 26 genes were upregulated and two were downregulated.
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In the Venn diagram, no overlapped gene was observed in these two datasets. Finally, 249

DEGs were detected in the selected GEO datasets (S1 Table).

Genome-wide association study (GWAS)

In 17 GWAS catalog datasets, 1378 DEGs were found to be associated with T2D in SAP. All

the DEGs found in the 17 GWAS catalog datasets are as follows: 76 DEGs in GCST002352

datasets, 7 DEGs in GCST001213 datasets, 24 DEGs in GCST008833 datasets, 111 DEGs in

GCST004894 datasets, 18 DEGs in GCST001033 datasets, 7 DEGs in GCST001759 datasets, 12

DEGs in GCST001809 datasets, 33 DEGs in GCST005414 datasets, 695 DEGs in GCST010557

datasets, 107 DEGs in GCST010553 datasets, 36 DEGs in GCST007515 datasets, 34 DEGs in

GCST007516 datasets, 174 DEGs in GCST006867 datasets, 15 DEGs in GCST010272 datasets,

12 DEGs in GCST011337 datasets, 14 DEGs in GCST011329 datasets and 3 DEGs in

GCST011321 datasets. After omitting overlapped genes, 843 unique genes were found to be

associated with T2D pathogenesis in SAP (S2 Table).

Construction of PPI network and Hub genes identification

As mentioned above, 249 and 843 DEGs from the GEO microarray and GWAS catalog data-

sets were associated with T2D pathogenesis in SAP respectively, that totaled 1092 DEGs. Then,

overlapped genes were counted once, and therefore, 1085 unique genes were detected. Follow-

ing that, the STRING database was used to construct PPI among 1085 proteins, and only 867

proteins with a confidence score of 0.9 were observed and presented in the PPI network (Fig

1A). Further, nine genes (HNF1A, CTNNB1, PSMC2, PSMA3, RUNX2, TCF7L2, TLE1,

PSMD6, and CTBP1) were identified as hub genes following MCODE analysis (Fig 1B).

Gene ontology enrichment analysis

Gene ontology (GO) is a framework to classify how gene plays a role in molecular functions,

biological processes, and cellular components. GO analysis of all 867 potential genes was per-

formed using the ToppGene database. The top 10 significant molecular activities, biological

processes, and cellular components were selected (Fig 2). Changes in biological processes were

significantly enriched due to positive regulation of RNA metabolic processes, macromolecule

biosynthetic processes, transcription, nucleic acid-templated transcription, DNA- and RNA-

templated biosynthetic processes, cellular secretion, peptide hormone secretion, regulation of

cell differentiation, and homeostasis of the cell (S3 Table). The cellular component analysis of

DEGs revealed that these genes play a significant role in the vesicle lumen, granule lumen,

transcription regulator complex, secretory granule lumen, sarcolemma, cytoplasmic vesicle

lumen, secretory vesicle, chromatin, secretory granule, and synapse (S3 Table). Furthermore,

based on the molecular functional analysis, the candidate genes significantly contributed to

transcription factor binding, peptide hormone binding, DNA-binding transcription factor

binding, kinase binding, DNA-binding transcription activator activity, kinase activity, protein

kinase activity, protein kinase binding, DNA-binding transcription activator activity, protein

homodimerization activity, and RNA polymerase II-specific activity (S3 Table).

KEGG pathway enrichment analysis

The analysis of KEGG pathway enrichment based on the highest enrichment ratio and an FDR

of< 0.05 revealed that DEGs regulate several metabolic pathways (S1 Fig). In the analysis, the

most enriched pathways were maturity-onset diabetes of the young (MODY), EGFR tyrosine

kinase inhibitor resistance, pancreatic cancer, insulin secretion, small cell lung cancer, prostate
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cancer, transcriptional misregulation in cancer, HIF-1 (Hypoxia-inducible factor 1) signaling

pathway, the PI3K-Akt (Phosphoinositide 3-kinases-protein kinase B) signaling pathway, and

human papillomavirus infection (Table 1).

Construction of DEGs-miRNAs regulatory network

The regulatory networks found that 825 DEGs were interrelated with 2582 miRNAs. Indeed,

several miRNAs regulate the expression of a single gene (Fig 3). As observed, CCND1 was tar-

geted by 396 miRNAs (ex, hsa-mir-15a-5p), CCND2 was targeted by 365 miRNAs (ex, hsa-

mir-15a-5p), IGF1R was targeted by 359 miRNAs (ex, hsa-mir-16-5p), FOXK1 was targeted by

357 miRNAs (ex, hsa-mir-15a-5p), NFIC was targeted by 355 miRNAs (ex, hsa-mir-15a-5p),

KMT2D was targeted by 336 miRNAs (ex, hsa-mir-15a-5p), SLC7A5 was targeted by 331 miR-

NAs (ex, hsa-mir-15a-5p), SON was targeted by 321 miRNAs (ex, hsa-mir-16-5p), SETD5 was

targeted by 270 miRNAs (ex, hsa-mir-16-5p), and ALDOA was targeted by 267 miRNAs (ex,

hsa-mir-24-3p) (S4 Table).

Fig 1. Protein-protein interaction network (a) obtained from the STRING database for (867) genes (interaction score> 0.9). The identified hub genes and

their interactions (b). Circles represent genes, and lines represent interactions among proteins of differentially expressed genes.

https://doi.org/10.1371/journal.pone.0294399.g001

PLOS ONE Differentially expressed genes in South Asian populations associated with type 2 diabetes

PLOS ONE | https://doi.org/10.1371/journal.pone.0294399 December 14, 2023 6 / 19

https://doi.org/10.1371/journal.pone.0294399.g001
https://doi.org/10.1371/journal.pone.0294399


Disease association analysis

The disease association analysis was performed to identify the diseases associated with identi-

fied DEGs. The results revealed that gestational diabetes, T2D, obesity, hyperglycemia, endo-

crine system diseases, endocrine disorder NOS (Not Otherwise Specified), endocrine

disturbance NOS, and nutritional and metabolic diseases are associated with identified DEGs

(Fig 4). Among 867 genes, only 118 genes were significantly associated with T2D pathogenesis

(Table 2). Two (HNF1A and TCF7L2), of 118 genes were identified in the hub genes network

(Fig 2B), indicating these two genes have a significant role in T2D pathogenesis and its associ-

ated disorders.

Fig 2. The gene ontology enrichment analysis of differentially expressed genes. The orange color represents the biological processes; the green color

represents the cellular components and the blue color represents the molecular functions of candidate genes.

https://doi.org/10.1371/journal.pone.0294399.g002

Table 1. KEGG pathway analysis.

Pathway ID Pathway Name Ratio of enrichment P-Value FDR

hsa04950 Maturity onset diabetes of the young 6.8208 0.000002932 0.00047792

hsa01521 EGFR tyrosine kinase inhibitor resistance 3.9908 0.000001601 0.00047792

hsa05212 Pancreatic cancer 3.4155 0.000086209 0.0039929

hsa04911 Insulin secretion 3.2455 0.000082768 0.0039929

hsa05222 Small cell lung cancer 3.2127 0.000052321 0.0034113

hsa05215 Prostate cancer 3.0471 0.000097986 0.0039929

hsa04066 HIF-1 signaling pathway 2.9557 0.00013958 0.005056

hsa05202 Transcriptional mis-regulation in cancer 2.3307 0.00017009 0.0055449

hsa05165 Human papillomavirus infection 2.0925 0.000017175 0.0018664

hsa04151 PI3K/AKT signaling pathway 2.0039 0.000043913 0.0034113

https://doi.org/10.1371/journal.pone.0294399.t001
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Construction of the drug-gene network

Research on drug-gene interaction networks is crucial for drug discovery and development.

Here, the networks of candidate drug-gene were built based on the interactions and effects of

the medications. The candidate drug-gene interactions were constructed using 867 DEGs

obtained from the PPI network, that may guide to explore the mechanism for treating T2D

(Fig 5). In drug-gene networks, 64 genes were interacted with 367 drugs of T2D. Among the

64 genes, 11 genes (ABCC8, ACE, ACHE, ADRB1, ADRB3, BRAF, HTT, INSR, KCNJ11,

PDE3A, and PPARG) were downregulated by 10, 21, 23, 43, 18, 9, 23, 34, 13, 15, and 9 drugs,

respectively, that are FDA-approved (S5 Table).

Discussion

Comprehensive analysis of the microarray dataset guides expression patterns of DEGs and

their integrative biological functions under different conditions in living organisms [31]. To

Fig 3. Target gene–miRNA (microRNA) regulatory network between target genes and miRNAs. The blue color diamond nodes represent the key miRNAs;

Target genes are red colored.

https://doi.org/10.1371/journal.pone.0294399.g003
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identify and characterize DEGs, the raw data should be analyzed after omitting poor-quality

measurements, simplifying comparisons, fixing measured intensities, and proper screening

[33–35]. Following that, normalization is usually done to identify significant biological associa-

tions of the expression data. Analysis of gene expression under different conditions guides

how the gene plays a role in different biological functions [36].

Here, we have screened 1085 DEGs from microarray (GEO) and GWAS catalog datasets

after removing overlapped genes. Microarray dataset analysis revealed that 249 genes were asso-

ciated with T2D pathogenesis, where 121 were upregulated and 128 downregulated (S1 Table).

More specifically, PTGS2 and IL1B genes were upregulated in children with diabetes [37]. A

number of 29 genes were upregulated, and two were downregulated in patients having acute

hyperinsulinemia in skeletal muscle [38]. In addition, 109 upregulated and six downregulated

genes were observed in T2D [22]. Interestingly, 301 upregulated and 680 downregulated genes

between T2D and the control population were also observed [39]. More specifically, the ABRA

gene is upregulated when skeletal muscle is insulin-resistant [40]. Here, we have also identified

843 unique genes from 17 GWAS catalog datasets that are associated with T2D pathogenesis in

South Asian populations (S2 Table). Accordingly, 233 unique genes from the GWAS catalog

data were found to be associated with T2D [22]. Hence, DEGs play critical roles in T2D patho-

genesis, which may be pivotal in treating diabetes by investigating their regulatory functions

[39,41]. This current study is the first comprehensive analysis of the GEO and GWAS catalog

datasets among the SAPs and identifies potential DEGs related to T2D.

In the PPI network, we have identified 867 candidate genes that are significantly associated

with T2D pathogenesis. In addition, we have found nine hub genes among the 867 candidate

genes for T2D pathogenesis. Among the nine hub genes, two genes (CTNNB1, RUNX2) were

only found in the South Asian population. However, the remaining seven hub genes (HNF1A,

PSMC2, PSMA3, TCF7L2, TLE1, PSMD6, CTBP1) were observed in the South Asian popula-

tion in addition to other major populations (American, African, East Asian, and European).

Further, the integrated results of module selection (Fig 1) and disease association analysis

(Fig 4) of 867 DEGs identified HNF1A and TCF7L2 genes play a crucial role in T2D pathogen-

esis and its related diseases. The pathway analysis showed that HNF1A and TCF7L2 genes

were responsible for maturity-onset diabetes of the young (MODY) and human papillomavi-

rus infection and prostate cancer pathways, respectively. Indeed, TCF7L2 [42,43] and HNF1A

genes play a significant role in T2D pathogenesis [44]. Meta-analysis in a multi-ancestry

Fig 4. Disease association analysis of differentially expressed genes for type 2 diabetes. The associations are based on FDR values and enrichment ratios.

https://doi.org/10.1371/journal.pone.0294399.g004
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Table 2. Disease association analysis.

Disease Statistics Genes

Diabetes, Gestational C = 86; O = 32; E = 4.33; R = 7.39;

raw. P = 0.000e+0; adj. P = 0.000e

+0

ABCC8, ADRB3, CDC123, CDKAL1, FTO, GCK,

GCKR, GIP, HHEX, HLA-DQB1, HNF1A, HNF1B,

HNF4A, IGF1R, IGF2BP2, INSR, ITLN1, JAZF1,

KCNJ11, KCNQ1, LEPR, MTNR1B, NEGR1,

NUCB2, PPARG, SHBG, SLC30A8, TCF7L2,

THADA, TMEM18, TSPAN8, WFS1

Diabetes mellitus type

2 and obesity

C = 161; O = 47; E = 8.11; R = 5.80;

raw. P = 0.000e+0; adj. P = 0.000e

+0

ADRB3, ARNTL, BDNF, C2CD4B, CDC123,

CDKAL1, CRY2, FAIM2, FFAR2, FTO, GCK,

GCKR, GIP, GIPR, GLP1R, HHEX, HNF1A,

HNF1B, IGF2BP2, INSR, IRX3, ITLN1, JAZF1,

KCNJ11, LEPR, LPL, MC4R, MTNR1B, NEGR1,

NEUROG3, NOTCH2, PCSK1, PNPLA3, PPARG,

SEC16B, SGIP1, SLC16A11, SLC2A2, SLC30A8,

SPX, SREBF1, TCF7L2, THADA, TMEM18,

TSPAN8, WFS1, ZNF654

Hyperglycemia C = 141; O = 36; E = 7.10; R = 5.07;

raw. P = 2.220e-16; adj. P = 6.671e-

14

ABCC8, ADRB3, C2CD4B, CDKAL1, DGAT2,

DGKB, FTO, GCK, GCKR, GIP, GIPR, GLP1R,

HHEX, HNF1A, HNF1B, HNF4A, IGF1R, IGF2BP2,

INSR, JAZF1, KCNJ11, LEPR, MTNR1B,

NEUROG3, NOTCH2, PCSK1, PPARG, PROX1,

SHBG, SLC2A2, SLC30A8, SREBF1, TCF7L2,

THADA, TSPAN8, WFS1

Diabetes Mellitus,

Type 2

C = 298; O = 71; E = 15.01;

R = 4.73; raw. P = 0.000e+0; adj.

P = 0.000e+0

ABCC8, ACE, ADCY5, ADRB3, AP3S2, APOE,

ARAP1, ARL15, C2CD4B, CDC123, CDKAL1,

CRY2, DGKB, FADS2, FAIM2, FTO, GCK, GCKR,

GIP, GIPR, GLIS3, GLP1R, GRB14, HHEX,

HMG20A, HNF1A, HNF1B, HNF4A, HP, IGF2BP2,

INSR, IRX3, ITLN1, JAZF1, KCNJ11, KCNK16,

KCNQ1, KIF11, KLF14, LEPR, LPL, MC4R,

MTNR1B, NEGR1, NEUROG3, NOTCH2, NUCB2,

PAX4, PCSK1, PEPD, PNPLA3, PPARG, PROX1,

PTPRD, SEC16B, SHBG, SLC16A11, SLC22A2,

SLC2A2, SLC30A8, SREBF1, TCF7L2, TFAP2B,

THADA, TMEM154, TMEM18, TSPAN8, UBE2E2,

VEGFA, VPS26A, WFS1

Diabetes Mellitus C = 372; O = 72; E = 18.73;

R = 3.84; raw. P = 0.000e+0; adj.

P = 0.000e+0

ABCC8, ACE, ADCY5, ADRB3, AP3S2, APOE,

ARAP1, ARL15, C2CD4B, CDC123, CDKAL1,

CRY2, DGKB, EPO, FADS2, FTO, GCK, GCKR,

GIP, GIPR, GLIS3, GLP1R, GRB14, GREM1, HHEX,

HLA-DQB1, HLA-DRB1, HNF1A, HNF1B, HNF4A,

HP, IGF2BP2, INSR, IRX3, ITLN1, JAZF1, KCNJ11,

KCNK16, KCNQ1, KL, KLF14, LEPR, LPL, MC4R,

MTNR1B, NEGR1, NEUROG3, NOTCH2, NUCB2,

OLR1, PAX4, PCSK1, PNPLA3, PPARG, PROX1,

PTPRD, RASGRP1, SHBG, SLC16A11, SLC22A2,

SLC2A2, SLC30A8, SREBF1, TCF7L2, THADA,

TMEM154, TMEM18, TSPAN8, UBE2E2, VEGFA,

VPS26A, WFS1

Obesity C = 369; O = 63; E = 18.58;

R = 3.39; raw. P = 0.000e+0; adj.

P = 0.000e+0

ACE, ADRB1, ADRB3, APOC1, APOE, ARNTL,

BBIP1, BBS10, BDNF, C5orf67, CDC123, CDKAL1,

CENPW, CRY2, DGAT2, EBF1, FADS2, FAIM2,

FFAR2, FTO, GCK, GCKR, GIP, GIPR, GLP1R,

GRB14, HHEX, HP, IGF2BP2, INSR, IRX3, ITLN1,

JAZF1, KCNJ11, LEPR, LPIN2, LPL, MAP2K5,

MC4R, MGAT1, MSRA, MTNR1B, NEGR1,

NRXN3, NUCB2, PCSK1, PNPLA3, POC5, PPARG,

SEC16B, SHBG, SLC16A11, SLC30A8, SLC39A8,

SPX, SREBF1, TCF7L2, TFAP2B, THADA, TM6SF2,

TMEM18, TRIM66, TSPAN8

(Continued)
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Table 2. (Continued)

Disease Statistics Genes

Endocrine System

Diseases

C = 457; O = 71; E = 23.01;

R = 3.09; raw. P = 0.000e+0; adj.

P = 0.000e+0

ABCC8, ACE, ACVR1C, ADCY5, ADRB3, AKT2,

ARAP1, BRAF, C2CD4B, CASR, CDC123, CDKAL1,

CDKN1B, CDKN2C, DGKB, FTO, GATA6, GCK,

GCKR, GIP, GIPR, GLIS3, GLP1R, HHEX,

HLA-DQB1, HLA-DRB1, HMGA2, HNF1A,

HNF1B, HNF4A, HP, IGF1R, IGF2BP2, INSR,

ITLN1, JAZF1, KCNJ11, KCNK16, KCNQ1, KL,

KLF14, KRT19, LEPR, LPL, MC4R, MTNR1B,

NEGR1, NEUROG3, NOTCH2, NUCB2, PAX4,

PCSK1, PIM3, PPARG, PROX1, PTEN, RREB1,

SHBG, SLC16A11, SLC2A2, SLC30A8, TCF7L2, TG,

TGFBR3, THADA, TMEM18, TSPAN8, VEGFA,

WFS1, WT1, ZFAT

Endocrine disorder

NOS

C = 457; O = 71; E = 23.01;

R = 3.09; raw. P = 0.000e+0; adj.

P = 0.000e+0

ABCC8, ACE, ACVR1C, ADCY5, ADRB3, AKT2,

ARAP1, BRAF, C2CD4B, CASR, CDC123, CDKAL1,

CDKN1B, CDKN2C, DGKB, FTO, GATA6, GCK,

GCKR, GIP, GIPR, GLIS3, GLP1R, HHEX,

HLA-DQB1, HLA-DRB1, HMGA2, HNF1A,

HNF1B, HNF4A, HP, GF1R, IGF2BP2, INSR,

ITLN1, JAZF1, KCNJ11, KCNK16, KCNQ1, KL,

KLF14, KRT19, LEPR, LPL, MC4R, MTNR1B,

NEGR1, NEUROG3, NOTCH2, NUCB2, PAX4,

PCSK1, PIM3, PPARG, PROX1, PTEN, RREB1,

SHBG, SLC16A11, SLC2A2, SLC30A8, TCF7L2, TG,

TGFBR3, THADA, TMEM18, TSPAN8, VEGFA,

WFS1, WT1, ZFAT

Endocrine disturbance

NOS

C = 457; O = 71; E = 23.01;

R = 3.09; raw. P = 0.000e+0; adj.

P = 0.000e+0

ABCC8, ACE, ACVR1C, ADCY5, ADRB3, AKT2,

ARAP1, BRAF, C2CD4B, CASR, CDC123, CDKAL1,

CDKN1B, CDKN2C, DGKB, FTO, GATA6, GCK,

GCKR, GIP, GIPR, GLIS3, GLP1R, HHEX,

HLA-DQB1, HLA-DRB1, HMGA2, HNF1A,

HNF1B, HNF4A, HP, IGF1R, IGF2BP2, INSR,

ITLN1, JAZF1, KCNJ11, KCNK16, KCNQ1, KL,

KLF14, KRT19, LEPR, LPL, MC4R, MTNR1B,

NEGR1, NEUROG3, NOTCH2, NUCB2, PAX4,

PCSK1, PIM3, PPARG, PROX1, PTEN, RREB1,

SHBG, SLC16A11, SLC2A2, SLC30A8, TCF7L2, TG,

TGFBR3, THADA, TMEM18, TSPAN8, VEGFA,

WFS1, WT1, ZFAT

Nutritional and

Metabolic Diseases

C = 709; O = 89; E = 35.71;

R = 2.49; raw. P = 6.661e-16; adj.

P = 1.801e-13

ABCC8, ACE, ADCY5, ADRB3, ALAS2, ANKH,

APOC1, APOE, ARAP1, ARL15, BTD, C2CD4B,

C5orf67, CALCR, CASR, CDC123, CDKAL1,

DGAT2, DGKB, FADS2, FAIM2, FTO, FXYD2,

GALNT3, GCDH, GCK, GCKR, GIP, GIPR, GLIS3,

GLP1R, GRB14, GRN, HHEX, HLA-DQB1,

HLA-DRB1, HMBS, HNF1A, HNF1B, HNF4A, HP,

IGF2BP2, INSR, IRX3, ITLN1, JAZF1, KCNJ11,

KCNK16, KCNQ1, KL, KLF14, LEPR, LPIN2, LPL,

MC4R, MMAA, MTNR1B, NDUFAF6, NEGR1,

NEUROG3, NOTCH2, NPC2, NUCB2, OLR1,

PAX4, PCSK1, PGM1, PKLR, PNPLA3, PPARG,

PYGM, SEC16B, SHBG, SLC16A11, SLC2A2,

SLC30A8, SLC34A1, SLC4A1, SLX4, SPX, SREBF1,

TCF7L2, TFAP2B, TFRC, THADA, TMEM106B,

TMEM18, TSPAN8, WFS1

The statistic column lists: C- the number of reference genes in the category; O- the number of genes in the gene set

and in the category; E- the expected number in the category; R- the ratio of enrichment; raw P- p-value from

hypergeometric test; adj. P- p-value adjusted by the multiple test adjustment.

https://doi.org/10.1371/journal.pone.0294399.t002
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among 1.4 million participants revealed that TCF7L2 (rs35011184-G) and HNF1A

(rs56348580-G) increased the risk of T2D pathogenesis [45]. Saxena et al. (2013) indicated that

TCF7L2 (rs7903146-T) increases the risk of T2D in the SAP [46]. Our previous study also

found that 22 candidate genes significantly contribute to T2D pathogenesis among Asian pop-

ulations [47].

The results of GO analysis demonstrated that most biological processes were linked to regu-

lating RNA and DNA-based metabolic and biosynthetic processes. Furthermore, most cellular

components were found to be linked with granule and vesicle lumen activities. The result is

consistent with our previous research except for differences in population group [47]. By bind-

ing with homologous DNA and RNA, lncRNAs control gene expression and are linked to vari-

ous human diseases, including diabetes [48]. Hence, the crucial roles of the analyzed DEGs in

Fig 5. Drug-gene interaction network. Red dot indicates the genes and blue dot indicates drugs known to inhibit the expression of target genes.

https://doi.org/10.1371/journal.pone.0294399.g005
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different biological systems guide how DEGs play a role in T2D pathogenesis modulating cel-

lular, molecular and biological processes in SAP.

DEGs are observed in the secretory-granule lumen, vesicle lumen, and platelet alpha gran-

ule lumen tissues in T2D [49]. Insulin is secreted in the vesicles called insulin secretory gran-

ules (ISGs) that are affected by T2D, consequences of dysfunctional ISG production, and

restricted insulin secretion [50]. In our analysis, most molecular functions of the identified

DEGs were linked to transcription factors and kinase-binding activities (S3 Table).

MODY is a genetic heritable diabetes characterized by beta-cell dysfunction, non-insulin-

dependent diabetes (NIDD), and autosomal dominant inheritance at a young age [51]. It is

also known as non-ketotic diabetes, caused due to malfunctioning of pancreatic beta-cell, and

lack of pancreatic autoantibodies [52]. The epidermal growth factor receptor (EGFR), a tyro-

sine kinase receptor having a transmembrane domain, is the critical component of cell signal-

ing pathways. The EGFR receptor plays a vital role in the MAPK (Mitogen-activated protein

kinase) pathway, the PI3K/AKT (Phosphatidylinositol-3-kinase/Protein kinase B) pathway,

and the JAK (Janus kinase) pathway, which stimulates cell proliferation, mitosis, and inhibi-

tion of apoptosis [53]. The heterodimeric transcription factor HIF-1 is the critical mediator

that controls the expression of numerous genes involved in cell cycle regulation, cellular

metabolism, angiogenesis, and block of apoptosis [54]. In addition, the PI3K/AKT pathway

regulates many cellular functions, like cell survival, cancer progression, proliferation, neurosci-

ence, and metabolism [55]. In the study, the pathway enrichment analysis showed that the

identified DEGs associated with T2D significantly interacted with the MODY, EGFR,

PI3K-AKT, and HIF-1 signaling pathways and, therefore, might play a significant regulatory

network in the progression of T2D pathogenesis (Table 1 and S1 Fig).

miRNA plays a regulatory role in disease progression through epigenetic modification, his-

tone modification, and DNA methylation. miRNAs are also associated with the diagnosis and

response for the treatment of diseases [56]. miRNAs are commonly found in all human/mam-

mal cells that are involved in cell development [57] by regulating around 30 percent of the

genes that code proteins [58]. miRNAs critically regulate post-transcriptional gene expression

[59]. miRNAs are also involved in glucose homeostasis and regulate the expression of genes

involved in diabetes-relevant pathways like the insulin signaling pathway [60–62]. Some miR-

NAs also control the secretion and synthesis of insulin to balance blood glucose levels in

human [63]. miR-362-3p, miR-15a-5p, miR-150-5p, and miR-877-3p showed significant con-

tributions in T2D pathogenesis [64]. Transcripts of hsa-miR-16-5p, hsa-miR-17-5p, hsa-miR-

19a-3p, and hsa-miR-20a-5p miRNAs were upregulated in patients having insulin resistance

and abnormal pregnancies. Gene-miRNAs regulatory network analysis revealed that these

miRNAs significantly regulate MAPK signaling, insulin signaling, TGF-β signaling, and

mTOR signaling pathways consequences the progression of T2D [65]. Increased expression of

has-miR-24-3p plays a crucial role in the pathophysiology and progresses of proliferative dia-

betic retinopathy [66]. Increased expression of has-miR-15a-5p stimulates β cells and pro-

motes insulin production [62]. Overexpression of has-miR-27a-3p in L6 cells decreased

glucose consumption and glucose uptake and reduced the expression of GLUT4, MAPK 14,

and PI3K regulatory subunit [67]. miRNA hsa-let-7a-5p was shown to be significantly associ-

ated with diabetic retinopathy (DR) in T2D. Overexpression of hsa-let-7a-5p resulted in rapid

pathogenesis of DR [68]. In our study, we have identified hsa-mir-16-5p, hsa-mir-17-5p, hsa-

mir-24-3p, hsa-mir-27a-3p, hsa-let-7a-5p, hsa-mir-19a-3p, hsa-mir-15a-5p, and hsa-mir-20a-

5p that are significantly interacted with the identified DEGs associated with T2D (S4 Table).

Therefore, the interacted miRNAs may cause progression of T2D pathogenies regulating

MAPK signaling, insulin signaling, TGF-β signaling, mTOR signaling pathways, and diabetic

retinopathy signaling pathways.
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Furthermore, 367 FDA-approved drugs for T2D significantly downregulated the candidate

genes in drug-gene association analysis (S5 Table). D-phenylalanine derivative nateglinide is

an amino acid that stimulates insulin secretion by regulating pancreatic β-cells. It also controls

hyperglycemia and improves glycemic control in T2D [69]. The another drug carvedilol helps

to improve endothelial functions in T2D [70]. Interestingly, the T2D drug diclofenac sodium

plays a significant role in glycemic control [71], and dipyridamole significantly reduces pro-

teinuria in T2D nephropathy [72]. In addition, repaglinide is an efficient anti-diabetic drug

[73]. In our study, nateglinide significantly downregulated the expression of ABCC8, and

KCNJ11 genes (S5 Table). In addition, repaglinide significantly downregulated the expression

of ABCC8, and KCNJ11 genes, carvedilol downregulated ADRB1, and ADRB3 genes (S5

Table). Indeed, diclofenac and dipyridamole significantly downregulated expression of

PPARG, and PDE3A genes respectively (S5 Table). The case may same for other drugs. There-

fore, in addition to above mentioned drugs, other drugs found in the gene-drug interaction

network could be used to downregulate the expression of candidate DEGs for treating T2D.

Since different drugs interacted with specific genes, the precise drug might be recommended

to specific T2D patients after observing genetic mutations, and expression levels of candidate

genes for curing T2D, even controlling of progression of prediabetes to T2D [74].

Conclusions

Since genetic signatures play vital roles in T2D pathogenesis, a series of bioinformatic systems

were applied to analyze 2 GEO and 17 GWAS catalogue datasets from SAPs to explore the

DEGs associated with the diseases. Following critical PPI analysis, 867 DEGs were found to be

associated with T2D pathogenesis. Indeed, nine hub genes were also identified for the patho-

genesis. Among these, CTNNB1, and RUNX2 could be the markers for T2D pathogenesis in

SAPs as only found in that populations. In GO analysis, most of the identified DEGs showed

significant contributions in molecular activities, biological processes, and cellular components

of T2D. Following KEGG pathway analysis, MODY, EGFR tyrosine kinase inhibitor resis-

tance, insulin secretion, HIF-1, and PI3K-Akt signaling pathways were found to be signifi-

cantly enriched by the DEGs. Two genes (HNF1A and TCF7L2) among 118 identified genes

that significantly contributed to T2D, were found in both hub genes and disease association.

Even, 825 DEGs were also interrelated with 2582 miRNAs. Not surprisingly, several miRNAs

regulate the expression of a single gene or vice versa (ex, hsa-mir-15a-5p, hsa-mir-16-5p, hsa-

mir-24-3p). Among the 64 genes that interacted with 367 drugs of T2D, ABCC8, ACE, ACHE,

ADRB1, ADRB3, BRAF, HTT, INSR, KCNJ11, PDE3A, and PPARG genes were downregu-

lated by wide range of (9–43) FDA approved drugs for T2D. Indeed, different FDA-approved

drugs significantly downregulated the expression of target genes. Therefore, the findings of the

research might guide to explore the mechanism of how the DEGs progress T2D pathogenesis

by interacting different biological functions, pathways, and miRNAs. Considering the above-

mentioned findings, precise medication could be recommended after diagnosing the molecu-

lar mechanism of T2D pathogenesis and observing the expression levels of marker genes in

T2D patients among SAPs.
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