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Abstract

The main goal of this paper is to introduce the evolution equations for a timelike Hasimoto

surface from its fundamental form coefficients in Minkowski 3-space E3
1
. By utilizing the

evolved quasi-curve (q-curve), we present and analyze three types of Hasimoto surfaces,

attributed to the quasi-tangent, quasi-normal, and quasi-binormal vectors of the curve.

Finally, we provide an illustrated example to strengthen our main results.

Introduction

A key topic that has previously been explored in many different domains is the phenomenon

of how to produce the evolution of curves or surfaces. Flows, and more specifically the inexten-

sible flows that might occur along a curve or surface, are what cause the time evolution of a

curve or surface. We will refer to curves evolution also as flows. If the arc length or the intrinsic

curvature of a surface is preserved throughout the flow of curve or surface, respectively, we

then say that the flow is inextensible [1–3]. Several scholars have researched geometric flow

issues on curves and surfaces in different spaces in recent years (see for instance [1, 4–6]). At

any point on a curve, there are many frames associated with it.

In this paper, we use the quasi-frame due to its importance and ease of application com-

pared to the other available frames. For example, the frame of Frenet is not described when the

curvature disappears. Aside from that, the Frenet framework’s biggest limitation is its undesir-

able tangent vector rotation has further information, [7, 8]. Bishop developed a new frame

along a space curve that is more application-friendly, [9]. However, it is well known that com-

puting Bishop frames is not simple task, as shown in [9, 10]. To address these issues, Coquillart

[11] implemented the quasi-normal vector of a space curve to create the 3D curve offset. At

each point on a curve, a quasi-normal vector is defined, and it lies in the plane perpendicular

to the curve’s tangent at that point. Compared to other frames such as Frenet and Bishop, the

quasi-frame has several advantages. For example, the quasi-frame may be described along a

line, and the creation of the quasi-frame is unaffected by whether the space curve has unit

speed or not. Furthermore, the quasi-frame is conveniently determined [12].

In this work, we are interested in studying a Hasimoto surface which classified as one of the

surfaces that can be described by integral equations. Such surfaces have a constant negative

Gaussian curvature, as well as constant mean curvature, minimal surfaces, and affine spheres.
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Hasimoto surfaces provide a geometric representation of curves, especially spacelike and time-

like curves, within Minkowski space. They offer an elegant way to visualize and study the

behavior of curves in this non-Euclidean space [2]. Researchers have used Hasimoto surfaces

to develop evolution equations that describe the change in shape and properties of these sur-

faces over time. These equations are instrumental in understanding the dynamics of curves in

Minkowski space [13]. Hasimoto surfaces are employed in differential geometry to investigate

the curvature and torsion properties of curves. They help in studying the relationship between

various geometric quantities associated with curves.

A Hasimoto surface is the surface traced out by a curve r as it propagates in E3
1

and evolves

over time according to the evolution equation

rt ¼ rs � rss; ð1Þ

in other word,

rt ¼ kp: ð2Þ

This is an evolution of the curve in its binormal direction with velocity equal to its curvature.

Eqs (1) and (2), known as the vortex filament flow or smoke ring equations, and it may be

thought of as a dynamical system on the space of curves in E3
1

[14]. These equations were stud-

ied by Hasimoto [2], where refer to r(s, t) as the position vector for a point on the curve, where

s is the arc length parameter, t is the time, κ and p are the curvature and the unit binormal vec-

tor of r, respectively.

The geometrical properties of solutions to the Eq (1) can be written as r = r(s, t). These

properties represent our main aim. We can despite the geometric categorization of r(s, t) as

follows:

(1). In the event that r = r(s, t) is a spacelike curve that includes a timelike normal vector field

for every t, then the motion that satisfies Eq (1) will produce a spacelike Hasimoto

surface.

(2). In the event that r = r(s, t) is a spacelike curve that includes a timelike binormal vector

field for every t, then the motion that satisfies Eq (1) will produce a timelike Hasimoto

surface.

(3). If r = r(s, t) is a timelike curve for every t, then the motion that creates a timelike Hasi-

moto surface is the motion that satisfies condition (1), see [14, 15].

Numerous spaces, including the Euclidean space [16], Minkowski space [17], Galilean

space [18], and pseudo-Galilean space [5], have been used to study the equations of motion of

curves and surfaces. Within the scope of our work, we investigate the evolution equations of

Hasimoto surface by employing the quasi-frame of spacelike curve with timelike binormal.

We begin by determining the equations of motion for the considered evolved curve via its

quasi-frame and the velocity vector of that curve.

Throughout this paper, we assume that the tangent to the curve r is spacelike and the binor-

mal is timelike, as in case (2). According to Hasimoto’s [2], the behavior of a thin vortex fila-

ment, thought of as a flowing space curve, could be translated to the nonlinear Schrodinger

equation. The flowing curve of the sine Gordon equation was analyzed by Rick Mukherjee and

Radha Balakrishnan [19]. In [5, 16], the authors investigated the motion of plane curves,

hypersurface motion, and the motion of space curves in various spaces. By using the funda-

mental existence and uniqueness hypothesis of space curves, the authors in [13] developed

Hasimoto surface via integration for Frenet-Serret equations.
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Here, let’s employ a different strategy using a different approach. The main concept of this

method is to construct the coefficients of the first and second fundamental forms of the Hasi-

moto surface, and then utilize the Gauss-Weingarten equations to determine their equations

of motion by means of Christoffel symbols of the second type.

The paper is organized as follows: In Section: “Geometric preliminaries”, we provide a brief

review of the geometry of curves, particularly spacelike curves related to our study of timelike

Hasimoto surfaces. Section: “Evolution of spacelike q-curve” explores the evolution equations

and various geometric properties of a timelike Hasimoto surface situated in Minkowski

3-space. To achieve this, we employ Gauss and Weingarten equations and explore changes

occurring in the evolved q-curve associated with the Hasimoto surface under consideration.

Additionally, we track the evolution of coefficients characterizing the surface’s first and second

fundamental forms, as well as the Gaussian and mean curvatures, which are discussed in Sec-

tion: “Geometry of Hasimoto surface”. To enhance our findings and provide a practical dem-

onstration, we include a computational example in Section: “Application”. This example not

only serves to illustrate our primary results but also features graphical representations for

clarity.

Geometric preliminaries of curves in E3
1

In this section, we give a brief review of the geometry of curves in the Minkowski space needed

in our study.

Minkowski space E3
1

is the real vector space E3 expanded by the Lorentzian inner product

ha; biE3
1
¼ a1b1 � a2b2 þ a3b3; ð3Þ

where a = (a1, a2, a3) and b = (b1, b2, b3) 2 E3
1
. The norm of b is jjbjj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hb; biE3

1

q
.

Also, the cross product of a and b is referred to as

a^E3
1
b ¼

e1 � e2 e3

a1 a2 a3

b1 b2 b3

�
�
�
�
�
�
�

�
�
�
�
�
�
�

¼< � a3b2 þ a2b3; � a3b1 þ a1b3; a1b2 � a2b1 > : ð4Þ

If rðsÞ : J � R! E3
1

is a regular curve described this way

rðsÞ ¼ ðyðsÞ; zðsÞ;wðsÞÞ; ð5Þ

where J is an open interval and y(s), z(s)andw(s) 2 C3. Such a curve is categorized as the

following

1. Spacelike curve if hr0ðsÞ; r0ðsÞiE3
1
> 0,

2. Timelike curve if hr0ðsÞ; r0ðsÞiE3
1
< 0,

3. Lightlike curve if hr0ðsÞ; r0ðsÞiE3
1
¼ 0, for all s 2 J. The arc length parameter of the regular

curve is defined as

lðsÞ ¼
Z

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr0ðsÞ; r0ðsÞiE3

1

q
dt; ð6Þ

where the curve is said to be parameterized by the arc length when
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr0ðtÞ; r0ðtÞiE3

1

q
¼ 1.
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The trihedron frame of the curve with tangent T(s), principal normal n(s) and binormal p

(s), takes the following structure:

TsðsÞ

nsðsÞ

psðsÞ

0

B
@

1

C
A ¼

0 kðsÞ 0

�pkðsÞ 0 tðsÞ

0 �TtðsÞ 0

0

B
@

1

C
A

TðsÞ

nðsÞ

pðsÞ

0

B
@

1

C
A; ð7Þ

where

hT;TiE3
1
¼ �T; hn;niE3

1
¼ �n; and hp;piE3

1
¼ � �T�n ¼ �p; ð8Þ

and

T�E3
1
n ¼ p; n�E3

1
p ¼ � �nT; and p�E3

1
T ¼ � �Tn: ð9Þ

The functions κ(s) and τ(s) are the curvatures of the curve, for more details see [20].

We denote by {Tq, nq, Pq, kq} for the quasi-frame, and rq parameterized by arc length s and

Tq ¼
r0q

jjr0qjj
; nq ¼

Tq^E3
1
kq

jjTq^E3
1
kqjj

; pq ¼ Tq^E3
1
nq; ð10Þ

where Tq, nq, pq and kq represent the quasi-tangent, quasi-normal, quasi-binormal and the

quasi-projection vectors, respectively [21]. The quasi-projection vector is sometimes selected

with varying values like kq = (0, 1, 0) (spacelike) or kq = (1, 0, 0) (spacelike) and in this sense,

both quasi-tangent Tq and quasi-projection kq are orthogonal. Also, it can be kq = (0, 0, 1)

(timelike). In our calculations, the quasi-projection vector will be chosen to be spacelike with

value kq = (0, 1, 0) or timelike with value kq = (0, 0, 1), which gives the same value according to

[22, 23].

In the case of rq is spacelike curve, it has quasi-frame in the following form

@

@s

TqðsÞ

nqðsÞ

pqðsÞ

0

B
B
@

1

C
C
A ¼

0 t1ðsÞ � t2ðsÞ

� t1ðsÞ 0 t3ðsÞ

� t2ðsÞ t3ðsÞ 0

0

B
@

1

C
A

TqðsÞ

nqðsÞ

pqðsÞ

0

B
B
@

1

C
C
A: ð11Þ

The variation frame of rq with respect to time can be written as

@

@t

Tq

nq

pq

0

B
B
@

1

C
C
A ¼

0 s �

� s 0 y

� y 0

0

B
@

1

C
A

Tq

nq

pq

0

B
B
@

1

C
C
A; ð12Þ

where σ, ϕ and θ are the velocities. For further information, we refer to [12, 14, 15, 20–24].

Specifically, we define the quasi-curvatures as

t1 ¼ hT
0

q;nqiE3
1
; t2 ¼ hT

0

q;pqiE3
1
; t3 ¼ hn

0
q;pqiE3

1
: ð13Þ

The relationship between quasi-frame and Frenet frame can be expressed as follows

T

n

p

0

B
@

1

C
A ¼

1 0 0

0 coshðzÞ sinhðzÞ

0 � sinhðzÞ � coshðzÞ

0

B
@

1

C
A

Tq

nq

pq

0

B
B
@

1

C
C
A; ð14Þ
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where z is the angle between n and nq. By means of z, the quasi-curvatures are read as

t1 ¼ kcosðzÞ; t2 ¼ � ksinðzÞ; t3 ¼ dz þ thn0q;pqiE3
1
: ð15Þ

We denote a q-frame for the frame {Tq, nq, pq} when it is used for a q-spacelike curve. Also,

the spacelike curve rq in this paper will described as a spacelike q-curve that is accompanied by

a timelike q-binormal.

Evolution of a spacelike q-curve with timelike q-binormal

Our main finding in this phase of inquiry will be presented through the following theorems.

Theorem 1 For a given spacelike q-curve rq with timelike q-binormal in the Minkowski space
E3

1
, the evolution equations of rq via its q-frame can be described as

� ss � �t3 � yt2 ¼ t1t;

� �s � st3 þ t1y ¼ t2t;

� ys � st2 � �t1 ¼ t3t;

8
><

>:
ð16Þ

where σ, ϕ and θ are the velocities of the curve rq.
Proof. We can write the q-frame of rq given in (11) in a simple form

@Jq

@s
¼ Lq Jq; ð17Þ

where

Jq ¼

Tq

nq

pq

0

B
@

1

C
A; Lq ¼

0 t1ðsÞ � t2ðsÞ

� t1ðsÞ 0 t3ðsÞ

� t2ðsÞ t3ðsÞ 0

0

B
@

1

C
A:

Also, Eq (12) can be arranged as follows:

@Jq

@t
¼ Sq Jq; ð18Þ

where

Sq ¼

0 sðs; tÞ �ðs; tÞ

� sðs; tÞ 0 yðs; tÞ

�ðs; tÞ yðs; tÞ 0

0

B
@

1

C
A:

By applying the compatibility conditions Jq st = Jq ts and making some calculations, one can get

0 � ss � �t3 � yt2 � t1t � �s � st3 þ t1y � t2t

ss þ �t3 þ yt2 þ t1t 0 � ys � st2 � �t1 þ t3t

� �s � st3 þ t1y � t2t � ys � st2 � �t1 þ t3t 0

0

B
@

1

C
A ¼ 03�3; ð19Þ

it leads to the required result.

Now, we will utilize the velocity vector of the q-curve under study to derive its evolution

equations in another form.

Theorem 2 Let rq be a spacelike q-curve which has q-frame {Tq, nq, pq} with timelike q-binor-
mal in Minkowski space E3

1
. Then, the evolution equations of rq in terms of its q-velocity vector
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are

@

@t

Tqðs; tÞ

nqðs; tÞ

pqðs; tÞ

0

B
B
@

1

C
C
A ¼

0
aqt1þb

q
sþg

qt3
c

� aqt2þg
q
sþb

qt3
c

� aqt1 � b
q
s � g

qt3
c 0 yðs; tÞ

� aqt2þg
q
sþb

qt3
c yðs; tÞ 0

0

B
B
B
@

1

C
C
C
A

Tqðs; tÞ

nqðs; tÞ

pqðs; tÞ

0

B
B
@

1

C
C
A; ð20Þ

where y ¼ 1

t1
ð� t2t þ ð

aqt2þg
q
sþb

qt3
c Þs þ t3ð

aqt2þg
q
s � b

qt3
c ÞÞ.

Proof. We can write the flow of rq as

@rq

@t
¼ aqTq þ b

q
nq þ g

qpq; ð21Þ

where αq, βq and γq are the q-velocities.

By differentiating Eq (21) with respect to s, one can obtain

rqts ¼ ðaqs � b
q
t1 � g

qt2ÞTq þ ða
qt1 þ b

q
s þ g

qt3Þnq þ ð� a
qt2 þ b

q
t3 þ g

q
s Þpq: ð22Þ

Since

rqs ¼ jjr
q
s jjTq ¼ cTq; ð23Þ

then, by differentiating Eq (23) with respect to t and using (12), we get

rqst ¼ jjrqs jjTqt ¼ cðsnq þ �pqÞt: ð24Þ

Comparing the coefficients of q-tangent, normal, and binormal on both sides of Eqs (22)

and (24), we have

s ¼
aqt1þb

q
sþg

qt3
c

� ¼
� aqt2þg

q
sþb

qt3
c

y ¼ 1

t1
ðt2t þ ð

aqt2þg
q
sþb

qt3
c Þs þ t3ð

� aqt2þg
q
sþb

qt3
c ÞÞ:

8
>>>>><

>>>>>:

ð25Þ

Inserting the last equation in (12), the proof is completed.

Geometry of Hasimoto surface and evolution of time

In this section, we interest with the evolution of a timelike Hasimoto surface generated by

spacelike q-curve, so we give the following definition.

Definition 1 A surface in the Minkowski 3-space E3
1
, is classified as spacelike or timelike

based on whether the induced metric at the surface is a positive or negative definite Riemannian
metric, respectively. Alternatively, it can be said that the normal vector on a spacelike surface is a
timelike vector, while the normal vector on a timelike surface is a spacelike vector [24].

Now, in light of the definition of Hasimoto surface, we will present and study the evolution

of three types of Hasimoto surfaces by using the coefficients of their first and second funda-

mental forms. Also, we calculate the Gaussian and mean curvatures for these surfaces.

Let

Mq : Hq
¼ Hq

ðs; tÞ; ð26Þ
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be the position vector of a generic point on timelike Hasimoto surface Mq in E3
1
, the vector

Nq ¼
Hq

s �H
q
t

jjHq
s �H

q
t jj
; ð27Þ

determines the unit normal vector to Mq at the given point.

The first and second fundamental forms on Mq with their quantities are respectively,

expressed by

I ¼ hdHq
; dHq

i ¼ Eds2 þ 2 Fdsdt þ Gdt2; ð28Þ

where, E ¼ hHq
s ;H

q
s i; F ¼ hH

q
s ;H

q
t i ¼ hH

q
t ;H

q
s i, G ¼ hH

q
t ;H

q
t i, and

II ¼ hdHq
;Nqi ¼ eds2 þ 2fdsdt þ gdt2; ð29Þ

noting that e ¼ hHq
ss;N

qi; f ¼ hHq
st;N

qi ¼ hHq
ts;N

qi and g ¼ hHq
tt;N

qi.

The Gauss-Weingarten equations corresponding to the surface Mq give the rate of change

of ðHq
s ;H

q
t ;N

qÞ and take the following forms [13]

@

@s

Hq
s

Hq
t

Nq

0

B
B
B
@

1

C
C
C
A
¼

G1

11
G2

11
e

G1

21
G2

21
f

Ff � Ge
D

Fe� Ef
D

0

0

B
B
B
@

1

C
C
C
A

Hq
s

Hq
t

Nq

0

B
B
B
@

1

C
C
C
A
; ð30Þ

@

@t

Hq
s

Hq
t

Nq

0

B
B
B
@

1

C
C
C
A
¼

G1

12
G2

12
F

G1

22
G2

22
G

Fg� Gf
D

Fe� Eg
D

0

0

B
B
B
@

1

C
C
C
A

Hq
s

Hq
t

Nq

0

B
B
B
@

1

C
C
C
A
: ð31Þ

where Δ = EG − F2 and Gk
ij; i, j, k = 1, 2 are the quantities which are called Christoffel symbols

of the second kind, for further details see [24, 25]. Here, the parameters Gk
ij are

G1

11
¼ 1

2 D
ðGEs � 2FFs þ FEtÞ;

G1

12
¼ G1

21
¼ 1

2 D
ðGEt � FGsÞ;

G1

22
¼ 1

2 D
ð� FGt þ 2GFt � GGsÞ;

G2

11
¼ 1

2 D
ð� FEs þ 2EFs � EFtÞ;

G2

12
¼ G2

21
¼ 1

2 D
ðEGs � FEtÞ;

G2

22
¼ 1

2 D
ðEGt � 2FFt þ FGsÞ:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð32Þ

For more informations, please refer to [13, 25].

The Gaussian and mean curvatures Kq, Hq are given by

Kq ¼ �Nq
DetðhÞ
DetðDÞ

Hq ¼
�Nq

2

eG� 2fFþgE
ðEG� F2Þ

¼
1

2
�Nq trðh∗DÞ;

8
><

>:
ð33Þ

where h = eg − f2, and h* denotes the inverse matrix of h and, �Nq = hNq, Nqi [24–26].
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Differentiating (26) with regard to s and t and using Eqs (11), (12) and (14) yields

Hq
s ¼ cT ¼ cTq;

Hq
t ¼ kp ¼ kð� sinhðzÞnq � coshðzÞpqÞ:

(

ð34Þ

More differentiating gives

Hq
ss ¼ cðt1nq � t2pqÞ;

Hq
tt ¼ kðs sinhðzÞ � � coshðzÞÞTq � ðyk coshðzÞ þ kt sinhðzÞÞnq

� ðyk sinhðzÞ þ kt coshðzÞÞpq

Hq
st ¼ H

q
ts ¼ cðsnq þ �pqÞ:

8
>>>><

>>>>:

ð35Þ

Furthermore, the first and second fundamental forms with their coefficients are

I ¼ � c2k2; ð36Þ

E ¼ c2; F ¼ 0; and G ¼ � k2; ð37Þ

II ¼ � cktðt1 coshðzÞ þ t2 sinhðzÞÞ � c2ð� coshðzÞ � s sinhðzÞÞ2 ð38Þ

e ¼ � cðt1 coshðzÞ þ t2 sinhðzÞÞ; f ¼ cð� coshðzÞ � s sinhðzÞÞ; and g ¼ kt; ð39Þ

Also, the Christoffel symbols are

G1

22
¼
kkt

c2
; G2

12
¼ G2

21
¼
kt

k
; G2

22
¼
kt

k
; ð40Þ

as well as the others are determined for being zero.

In the light of this and using Gauss-Weingarten equations, the evolution of the first funda-

mental form coefficients are read

@E
@t ¼ � 2 e gq þ 2 aqs � 2G1

11
aq;

@F
@t ¼ � 2 f gq þ bq

s � G
1

12
b
q
þ a

q
t � G

1

12
aq;

@G
@t ¼ � 2 g gq þ 2b

q
t � 2G2

22
b
q
:

8
>><

>>:

ð41Þ

According to the previous data, Eq (41) can be reformulated as

@E
@t ¼ � 2cðt1 coshðzÞ þ t2 sinhðzÞÞgq þ 2aqs ;

@F
@t ¼ � 2cð� coshðzÞ � s sinhðzÞÞgq þ aqt þ b

q
s �

kt

k
aq;

@G
@t ¼ � 2ks g

q þ a
q
t þ 2 b

q
s �

ks
k
b
q� �
:

8
>>><

>>>:

ð42Þ
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Similarly, the coefficients of the second fundamental form are expressed in the evolution

form as

@e
@t ¼

1

1þG2
11
aq
½gqss � ðG

1

11
gqs þ G

2

11
g
q
t Þ � e ðE∗ eþ F∗ gÞ gq þ 2 e ðaqs � G

1

11
aqs � G

2

11
OtÞ

þ aq esð1 � G
1

11
Þ � f ðE∗ f þ F∗ gÞ gq þ 2 f bq

s ð1 � G
1

11
Þ � G2

11
b
q
t Þ

þ b
q
ðfs � G

1

11
fs � G

2

11
ftÞ�;

@f
@t ¼

1

1� bqð1� G2
22
Þ
½g

q
st � ðG

1

12
gqs þ G

2

12
g
q
t Þ � e ðG∗ f þ F∗ eþ aqt � G1

12
aqs � G

2

12
a
q
t Þ

þ f ðaqs � G
1

11
aqs � G

2

11
a
q
t Þ þ a

q ðetð1 � G
2

12
Þ � G1

21
esÞ � f ðF∗ f þ G∗ gÞgq

þ b
q
t ð1 � G

2

22
Þ � G1

21
b
q
s Þ þ g ðbq

s ð1 � G
1

11
Þ � G2

11
b
q
t Þ � b

q
G2

22
fs�;

@g
@t ¼

1

1� G2
12
bq
½g

q
tt � ðG

1

22
gqs þ G

2

22
g
q
t Þ � f ðF∗ eþ G∗ f Þ gq

þ 2 F ð� G1

12
aqs � ð1 � G

2

12
Þ a

q
t Þ þ a

q ðfsð1 � G
1

12
Þ � G2

12
ftÞ

� 2 g½ðF∗ f þ G∗ gÞ aq � G1

12
b
q
s þ ð1 � G

2

12
Þ b

q
t �

þ b
qgsð1 � G

1

12
Þ�;

ð43Þ

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

where e*, f* and g* refer to the inverse of e, f and g respectively.

In another word, we have

@e
@t ¼ g

q
ss � ðt1 coshðzÞ þ t2 sinhðzÞÞ

2
gq � 2 c ðt1 coshðzÞ þ t2 sinhðzÞÞ aqs

� c aq ðt1 coshðzÞ þ t2 sinhðzÞÞs � ð� coshðzÞ � s sinhðzÞÞ2 gq

þ 2 cð� coshðzÞ � s sinhðzÞÞ bq
s þ c bq

ð� coshðzÞ � s sinhðzÞÞs;

@f
@t ¼

1

1� gq 1�
kt
kð Þ
½g

q
st �

kt
k
g
q
t � ðt1 coshðzÞ þ t2 sinhðzÞÞ ð� coshðzÞ � s sinhðzÞÞ gq

� ðt1 coshðzÞ þ t2 sinhðzÞÞ 1 �
kt
k

� �
a
q
t þ cð� coshðzÞ � s sinhðzÞÞ aqs

� c aq ðt1 coshðzÞ þ t2 sinhðzÞÞs �
kt
k
et

� �
þ 1

c ð� coshðzÞ � s sinhðzÞÞkt g
q

þ c ð� coshðzÞ � s sinhðzÞÞ bq
t 1 �

kt
k

� �
�

k kt
a2 b

q
s

� �
þ kt b

q
s

� cbq kt
k
ð� coshðzÞ � s sinhðzÞÞs

� �
�;

@g
@t ¼

1

1�
kt
k

½g
q
tt �

kt
k
g
q
t þ ððt1 coshðzÞ þ t2 sinhðzÞÞ

2
gq

þ 2 c ððt1 coshðzÞ þ t2 sinhðzÞÞÞ 1 �
kt
k

� �
a
q
t þ a

q ðcððt1 coshðzÞ þ t2 sinhðzÞÞÞs

�
kt
k
ftÞ � 2 kt �

kt
a2

� �
aq þ b

q
t 1 �

kt
k

� �� �
þ b

q
ðktÞs�:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð44Þ
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Using Eq (33), the Gaussian and mean curvatures of Mq and their evolutions are respec-

tively, given by

Kq ¼
� cksðt1 sinhðzÞ� t2 coshðzÞÞ� c2ð� coshðzÞ� s sinhðzÞÞ2

� c2k2 ;

Hq ¼
c2ktþck2ðt1 sinhðzÞ� t2 coshðzÞÞ

� c2k2 ;

8
<

:
ð45Þ

@Kq

@t ¼
@

@t
eg� f 2

EG� F2

� �
;

@Hq

@t ¼
@

@t
Ge� 2fFþEg
2ðEG� F2Þ

� �
:

8
>><

>>:

ð46Þ

0.1 Evolution of timelike Hasimoto surface attributed to the tangent of its

q-curve

Now, we consider three types of Hasimoto surfaces generated by q-frame vectors of their

spacelike q-curve rq to study their geometric behavior and evolutions. For this, we present the

following theorems.

Theorem 3 Let Mq : Hq ¼ Hqðs; tÞ be a timelike Hasimoto surface attributed to the q-tangent
of a spacelike q-curve that has a timelike q-binormal. The surface Mq is an elliptic surface.

Proof. Here, we can write Eq (26) as

Mq : Hqðs; tÞ ¼ Tqðs; tÞ: ð47Þ

After differentiating (47) with respect to s and t and using Eq (27), we get

Nq ¼ ð1; 0; 0Þ: ð48Þ

According to this, the first fundamental form coefficients are

E ¼ hHq
s ;H

q
s i ¼ t

2
1
� t2

2
;

F ¼ hHq
t ;H

q
s i ¼ hH

q
s ;H

q
t i ¼ t1sþ t2�;

G ¼ hHq
t ;H

q
t i ¼ s

2 � �
2
;

8
><

>:
ð49Þ

which lead to

I ¼ EG � F2 ¼ ðt2
1
� t2

2
Þðs2 � �

2
Þ � ðst1 þ �t2Þ

2
: ð50Þ

Also, the second fundamental form and its coefficients are, respectively

II ¼ eg � f 2 ¼ ð� t2
1
þ t2

2
Þð� s2 þ �

2
Þ � ðst1 þ �t2Þ

2
; ð51Þ

and

e ¼ hHq
ss;N

qi ¼ � t2
1
þ t2

2
;

f ¼ hHq
st;N

qi ¼ hHq
ts;N

qi ¼ � ðt1sþ t2�Þ;

g ¼ hHq
tt;N

qi ¼ � s2 þ �
2
:

8
><

>:
ð52Þ

Besides, the Gaussian and mean curvatures are read

Kq ¼ 1

Hq ¼ � 1:

(

ð53Þ
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Since the surface Mq has constant values for its Gaussian and mean curvatures and the mean

curvature is less than zero, then it is an elliptic surface.

0.2 Evolution of timelike Hasimoto surface attributed to the normal of its

q-curve

Theorem 4 Assume that Mq : Hq ¼ Hqðs; tÞ be a timelike Hasimoto surface generated by the q-
normal of spacelike q- curve that has a timelike q- binormal. The surface Mq is developable iff the
following

ð� t2
1
þ t2

3
Þð� s2 þ y

2
Þ � ð� t1sþ t3yÞ

2
¼ 0;

is satisfied.

Proof. Write Eq (26) in the form

Mq : Hq
ðs; tÞ ¼ nqðs; tÞ: ð54Þ

If we differentiate (54) with respect to s and t, we obtain

Nq ¼ ð0; 1; 0Þ: ð55Þ

We can get the first and second fundamental forms as follows

I ¼ ðt2
1
� t2

3
Þðs2 � y

2
Þ � ðst1 � yt3Þ

2
; ð56Þ

where

E ¼ t2
1
� t2

3
; F ¼ t1s � t3y; G ¼ s2 � y

2
; ð57Þ

and

II ¼ ð� t2
1
þ t2

3
Þð� s2 þ y

2
Þ � ð� t1sþ t3yÞ

2
; ð58Þ

with notting that

e ¼ � t2
1
þ t2

3
; f ¼ � t1sþ t3y; g ¼ � s2 þ y�: ð59Þ

Also, from (33), we can obtain

Kq ¼
� t2

1
þt2

3ð Þ � s2þy2ð Þ� � t1sþt3yð Þ2

t2
1
� t2

3ð Þ s2 � y2ð Þ� st1 � yt3ð Þ2
;

Hq ¼
t2
1
� t2

3ð Þ � 2s2þy�þy2ð Þ� 2 t1s� t3yð Þ

2 t2
1
� t2

3ð Þ s2� y2ð Þ� st1 � yt3ð Þ2ð Þ
:

8
>><

>>:

ð60Þ

As a result, the surface Mq is developable when

ð� t2
1
þ t2

3
Þð� s2 þ y

2
Þ � ð� t1sþ t3yÞ

2
¼ 0

Hence, the proof is completed.

0.3 Evolution of timelike Hasimoto surface attributed to the binormal to its

q-curve

Theorem 5 Consider Mq : Hq
¼ Hq

ðs; tÞ be a timelike Hasimoto surface of a spacelike q-curve
has a timelike q-binormal. The surface Mq is a hyperbolic surface.
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Proof. According to this case, Eq (26) can be put in the form

Mq : Hq
ðs; tÞ ¼ pqðs; tÞ: ð61Þ

After differentiating this equation with respect to s and t, we get the surface normal and have

the following

I ¼ ðt2
2
þ t2

3
Þð�

2
þ y

2
Þ � ð� �t2 þ yt3Þ

2
; ð62Þ

where

E ¼ t2
2
þ t2

3
; F ¼ � t2�þ t3y; G ¼ �2

þ y
2
: ð63Þ

Also, we obtain

II ¼ ð� t1t2 þ t3sÞð�s � ytÞ � ðt1�þ ysÞ
2
; ð64Þ

with

e ¼ t2
2
þ t2

3
; f ¼ � � t2 þ y t3; g ¼ �2

þ y
2
: ð65Þ

After using Eq (33), the Gaussian and mean curvatures are

Kq ¼ � 1 Hq ¼ � 1 ð66Þ

From this, the evolved surface Mq is classified as a hyperbolic surface.

Application

In this section, we provide an example that illustrates the evolution of Hasimoto surface of the

timelike type to show the theoretical findings of this paper.

Let Mq : Hq
¼ Hq

ðs; tÞ be a timelike Hasimoto surface given with a parametric representa-

tion

Hqðs; tÞ ¼ ðs � 2 tanhðsÞ; � 2 sechðsÞ sinhðtÞ; � 2sechðsÞcoshðtÞÞ;

and consider

rqðsÞ ¼ ðs � 2 tanhðsÞ; 0; � 2 sechðsÞÞ;

be its spacelike q-curve, then κ and τ are given by

k ¼ 2 sechðsÞ; t ¼ 0: ð67Þ

The q-frame Tq, nq, pq are calculated as

Tq ¼ ð1 � 2 sech2ðsÞ; 0; 2 sechðsÞ tanhðsÞÞ;

nq ¼ ð� 2 coshðzÞ sechðsÞtanhðsÞ; � sinhðzÞ; 2 coshðzÞð1 � 2 sech2ðsÞÞÞ;

pq ¼ ð2 sinhðzÞ sechðsÞ tanh ðsÞ; coshðzÞ; 2 sinhðzÞð� 1þ 2 sech2ðsÞÞÞ:

8
>><

>>:

ð68Þ

Also, the curvatures of the q-curve are given by

t1 ¼ � 2 sechðsÞcoshðzÞ; t2 ¼ 2 sechðsÞsinhðzÞ; t3 ¼ 0: ð69Þ

The coefficients of the first fundamental form are

E ¼ 1; F ¼ 0; G ¼ � 4 sech2ðsÞ;
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Fig 1. The spacelike q-curve rq and timelike Hasimoto surfaceHq
. (a) q-curve rq, (b) Hasimoto surfaceHq

.

https://doi.org/10.1371/journal.pone.0294310.g001
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which lead to

D ¼ � 4 sech2ðsÞ:

Besides, the surface normal is

Nq ¼ ð2 sechðsÞ tanh ðsÞ; ð� 1þ 2 sechðsÞ2ÞsinhðtÞ; ð� 1þ 2 sechðsÞ2ÞcoshðtÞÞ; ð70Þ

and the coefficients of the second fundamental form are

e ¼ 2 sechðsÞ; f ¼ 0; g ¼ sech3ðsÞðcoshð2sÞ � 3Þ;

where

h ¼ 2 sech4ðsÞðcoshð2sÞ � 3Þ:

From which, we have the Gaussian and mean curvatures as follows

Kq ¼ 1

2
ð3 � coshð2sÞÞ sech2ðsÞ;

Hq ¼ 1

8
ð11 � coshð2sÞÞ sechðsÞÞ:

8
<

:
ð71Þ

The evolved curve and its timelike Hasimoto surface are shown respectively, in Fig 1a and 1b.

Finally, we show the evolution of three surfaces with respect to the q-frame vectors in Figs

2–4.

Conclusion

The evolution equations and some geometric properties for a timelike Hasimoto surface in

Minkowski 3-space have been introduced. For this purpose, Gauss and Weingarten equations

Fig 2. The evolution of an elliptic surface with respect to q-curve’s tangent.

https://doi.org/10.1371/journal.pone.0294310.g002
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as well as the evolution of the evolved q-curve associated to the considered Hasimoto surface

have been used. In addition, the evolution for the coefficients of the first and second funda-

mental forms and the Gaussian and mean curvatures for the surface have been determined.

Moreover, three types of the evolved surface have been presented and analyzed. As a

Fig 3. The evolution of a developable surface with respect to q-curve’s normal.

https://doi.org/10.1371/journal.pone.0294310.g003

Fig 4. The evolution of a hyperbolic surface with respect to q-curve’s binormal.

https://doi.org/10.1371/journal.pone.0294310.g004
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consequence, it is noted that some values of the Gaussian and mean curvatures for these sur-

faces are constants whereas the others depending on the velocities of the evolved q-curve.

Finally, a computational example to illustrate our main results has been given and plotted.

In future work, we plan to investigate the harmonic evolute surfaces of the Hasimoto sur-

face in different spaces, including Galilean and pseudo-Galilean spaces. We aim to enhance

the results presented in this paper by incorporating techniques and findings from related stud-

ies [27–37]. Additionally, we intend to explore novel methods to discover further results and

theorems concerning the singularity and symmetry properties of this topic, which will be pre-

sented in our upcoming papers. This endeavor underscores the significance and potential

future developments of these surfaces.
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