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Abstract

As for the problem that the traditional single depth prediction model has poor strain capacity

to the prediction results of time series data when predicting lake eutrophication, this study

takes the multi-factor water quality data affecting lake eutrophication as the main research

object. A deep reinforcement learning model is proposed, which can realize the mutual con-

version of water quality data prediction models at different times, select the optimal predic-

tion strategy of lake eutrophication at the current time according to its own continuous

learning, and improve the reinforcement learning algorithm. Firstly, the greedy factor, the

fixed parameter of Agent learning training in reinforcement learning, is introduced into an

arctangent function and the mean value reward factor is defined. On this basis, three Q esti-

mates are introduced, and the weight parameters are obtained by calculating the realistic

value of Q, taking the average value and the minimum value to update the final Q table, so

as to get an Improved MIMO-DD-3Q Learning model. The preliminary prediction results of

lake eutrophication are obtained, and the errors obtained are used as the secondary input to

continue updating the Q table to build the final Improved MIMO-DD-3Q Learning model, so

as to achieve the final prediction of water eutrophication. In this study, multi-factor water

quality data of Yongding River in Beijing were selected from 0:00 on July 26, 2021 to 0:00 on

September 5, 2021. Firstly, data smoothing and principal component analysis were carried

out to confirm that there was a certain correlation between all factors in the occurrence of

lake eutrophication. Then, the Improved MIMO-DD-3Q Learning prediction model was used

for experimental verification. The results show that the Improved MIMO-DD-3Q Learning

model has a good effect in the field of lake eutrophication prediction.

1 Introduction

Rivers and lakes are very important fresh water resources in China, and also one of the pre-

cious resources that people depend on for survival. Recently, with the rapid development of

our social economy and the improvement of human activities, lake eutrophication [1] has

become the primary problem of river and lake treatment in China. The occurrence of lake

eutrophication [2] is jointly affected by several indexes, such as physical and chemical indexes,
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biochemical indexes and nutrient salt indexes [3]. These include:KMNO4, COD,BOD5,TOC,

NH3-N, chroma, conductivity, TDS, turbidity, NO3-N, Chl-a [4] and fluoride. The increase or

decrease of these factors will have a certain impact on the eutrophication of lake [5], and then

affect the water ecological balance of the whole river and lake. In recent years, lake eutrophica-

tion in different degrees has occurred in many rivers and lakes in China, which has also caused

some harm. In the past decade, for example, there have been multiple bloom outbreaks in

Lake Wu [6], which led to the sudden drop of dissolved oxygen in the water and the death of a

large number of fish, resulting in serious lake eutrophication problems [7]. From 2016 to 2018,

Chaohu Lake was evaluated according to the TLI method, and some waters in Chaohu Lake

showed mild and moderate eutrophication, so it is a necessary research direction to predict

lake eutrophication [8].

At present, the prediction modeling methods [9] of lake eutrophication are mainly divided

into two categories: the mechanism-driven prediction modeling method [10] of lake eutrophi-

cation and the data-driven prediction modeling method [11]. The modeling methods of lake

eutrophication driven by mechanism can be divided into three categories: firstly, the single

nutrient load model which only considers the limiting factors is generated, and this kind of

model has a vague expression of lake eutrophication [12] and has great limitations. Secondly,

the multi-nutrient load model appeared, which was not suitable for rivers and lakes with a

large spatial geographic range and was affected by spatial geographic location and region.

Finally, it is a complex dynamic model [13] based on the combination of hydrodynamics [14]

and ecosystem changes, which reflects the growth law and characteristics of physical and

chemical indexes to reflect the eutrophication of lake [15]. However, this kind of model is

complicated to construct and difficult to accurately fit the actual situation. Therefore, it cannot

accurately predict the eutrophication of lake only based on the mechanism.

The data-driven modeling method for lake eutrophication prediction is to analyze and

mine a large number of historical monitoring data. It does not take into account the physical,

chemical and biological relationships among various indicators, nor does it require prior

knowledge, but only considers the internal laws hidden in the data information of the system.

Therefore, it is widely used in the prediction of lake eutrophication. However, most of the cur-

rent prediction methods for lake eutrophication use a single data-driven model for prediction,

such as machine learning, regression model grey theory model, etc. [16–18], but these models

all have problems such as low prediction accuracy or too long prediction time.

Water quality concentration data that produce lake eutrophication are characterized by

multiple indexes, temporal correlation, and strong data mutancy, so deep learning algorithms

that are good at data analysis are generally selected for the prediction of such data [19]. The

long and short term memory network can accurately capture the internal relationship between

the front and back elements in the time series data, and form short-term memory by forgetting

the front elements to guide the back elements, while retaining the guidelines to form long-

term memory [20, 21]. In the deep random forest, key variables are found and sorted through

the input data through the multi-grain scanning process, features are captured according to

the sliding window, and features are fully captured and processed data are recorded in the cas-

cade forest process [22, 23]. Transformer is a kind of neural network with self-attention mech-

anism, which can use time series data as the input of encoder in Transformer model and

predict future values in an autoregressive way in the decoder part [24, 25]. However, the data

of water quality concentration resulting in lake eutrophication are affected by climate, temper-

ature and other factors, and the data will produce abrupt values. Therefore, a time series

modeling method suitable for multi-factor prediction of lake eutrophication was adopted in

this study by combining multiple types of traditional single prediction models and applying

different prediction algorithms for different periods of data.
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Traditional Reinforcement Learning [26] Agent interact with the surrounding environment

in an unknown environment according to the "Exploration-Utilization" code of conduct, con-

duct observation and analysis through continuous exploration and discovery, and then con-

tinue to learn according to the rewards and punishments obtained, and finally obtain an

optimal decision-making process [27]. When traditional reinforcement learning deals with

specific learning tasks, the key lies in the establishment of the Agent own state space and action

space, as well as the way of interaction with the environment, so as to enable the Agent to find

the optimal strategy in the specific learning task. In the field of lake eutrophication prediction,

Deep Reinforcement Learning [28] makes use of its powerful computing power and deep data

mining ability to observe the internal relationship between various factors. At the same time, it

relies on the learning decision-making ability of Reinforcement Learning and the nature of

considering long-term returns to optimize a single model so as to achieve better prediction

effect [29]. Therefore, it is an urgent problem to be solved in the field of lake eutrophication

prediction to build a deep reinforcement learning model [30, 31] that can contain multiple fac-

tors and clearly capture the temporal correlation between data.

Aiming at the problem that the above existing technologies are not accurate enough to deal

with abrupt change data in the field of lake eutrophication prediction, this study proposes a

prediction method of lake eutrophication based on the Improved MIMO-DD-3Q Learning

model, which solves the problem that the prediction results of a single depth prediction model

are biased when the multi-factor time series data fluctuates greatly. Meanwhile, the Reinforce-

ment Learning algorithm is improved. The problem that the training efficiency of Reinforce-

ment Learning Agent is slow and it is easy to fall into local optimal [32, 33] is solved. At the

same time, the error correction of prediction results [34, 35] is carried out to improve the pre-

diction accuracy of the model and provide a new way of thinking for the field of lake eutrophi-

cation prediction.

2 Improved MIMO-DD-3Q Learning

2.1 Construction deep Q Learning model

In traditional Q Learning, Agent learn and update according to the “Exploration-Utilization”

code of conduct. Excessive exploration will lead to the decrease of Agent learning efficiency

and slow updating of Q Learning strategy, while excessive utilization will lead to the Agent eas-

ily falling into local optimization, reducing the accuracy of Q Learning strategy, and greatly

increasing the training and learning time. Aiming at this problem, the original linear behavior

criterion of Agent is improved in this step. Firstly, a parameter of Q Learning, the greed factor

ε, is defined, and the arctangent function is introduced. The greedy factor parameter of the

Agent is changed according to a certain trend, the specific changes are as follows:

ε ¼ tan� 12u � 0:21p ð1Þ

Where, u represents the U-th training, and the curve of greed factor ε changing with the

number of iterations is shown in Fig 1.

Secondly, multiple deep learning prediction models are defined as state space sets of St,

reinforcement learning training, which can be expressed as follows:

St ¼ fS1; � � � ; SL; � � � ; SWg

Where, SL is the dynamic prediction model at time t, and W is the number of optional pre-

diction models at time t. The action space set At for prediction based on the prediction model

obtained from the current state is defined as reinforcement learning, which is expressed as
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follows:

At ¼ fA1; � � � ;AL; � � � ;AKg

Where, AL is the actions predicted by the L-th prediction model at time t, and K is the num-

ber of actions that may occur after the current state is selected and predicted at time t.
After the above definition of the state space and action space of reinforcement learning, the

agent can obtain the current prediction results of multiple indicators after single-step training.

In order to enable deep Q Learning to better solve the Markov decision process, this model

defines the reward factor of reinforcement learning as multi-index mean reward, which is

expressed as follows:

Rave ¼
1

s

Xs

1
RI ð2Þ

RI ¼ � jyt � ypj ð3Þ

Where, s is the number of prediction indicators, Rave is the average value of reward values

of multiple prediction indicators, RI is the reward factor of the I-th prediction indicator, yt is

the true value of this prediction indicator, and yp is the predicted value of this prediction

indicator.

2.2 Construction MIMO deep 3Q Learning model

At time t, the agent interacts with the environment. According to the actions made at the cur-

rent time, the average reward value Rave and the state S0 at time t+1 are obtained. Furthermore,

three estimated Q values are obtained according to the state S0 at time t+1, which are expressed

as follows:

QiðS
0;A0Þ; i ¼ 1; 2; 3 ð4Þ

Where, Qi(S0, A0) represents the i-th estimated value of Q function selected, A0 is the action

selected at time t+1, and S0 is the state at time t+1.

According to the three estimated Q values, the three real Q values at the previous moment

are updated. Then, the three real Q values at the current moment are calculated by calculating

the average value and minimum value. A constant is introduced to obtain the weight

Fig 1. Curve of greedy factor with the number of iterations after the introduction of arctangent function.

https://doi.org/10.1371/journal.pone.0294278.g001
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parameter with the obtained average value and minimum value, and finally the weighted Q

value is calculated to obtain the final Q Learning strategy. The calculation method is shown in

Fig 2.

The estimated Q value is obtained and the Q value of the previous time is updated in the fol-

lowing way:

QiðS;AÞ  Q∗ðS;AÞ þ a½Rave þ gmaxA0QiðS
0;A0Þ � Q∗ðS;AÞ� ð5Þ

Qave S;Að Þ ¼
1

3

X

i¼1;2;3
QiðS;AÞ ð6Þ

QminðS;AÞ ¼ min
i¼1;2;3

QiðS;AÞ ð7Þ

lðS;AÞ ¼
jQaveðS;AÞ � QminðS;AÞj

cþ jQaveðS;AÞ � QminðS;AÞj
ð8Þ

Q∗ðS;AÞ ¼ lðS;AÞQaveðS;AÞ þ ð1 � lðS;AÞÞQminðS;AÞ ð9Þ

In the formula, α is the learning rate of the Agent in Q Learning, γ is the decay coefficient

of the Agent learning in Q Learning, c is A constant, Qave(S,A) represents the average value of

the three Q values in the current state, Qmin(S,A) represents the minimum value of the three Q

values in the current state, λ(S,A) represents the weight parameter in the current state, Q*(S,A)

represents the final Q Learning strategy in the current state. In Formula (5), maxA0Qi(S0,A0)
said choice of the i-th Q estimate, i = 1,2,3.

2.3 Construction MIMO-DD-3Q Learning model

The preliminary prediction results are obtained by Improving MIMO-DD-3Q Learning

model. After obtaining error values according to the obtained results, multiple groups of error

data are used as the second input of the Deep Q Learning model. Then, Improving

MIMO-DD-3Q Learning model is constructed through the improved deep 3Q learning train-

ing, which can improve the accuracy of the model. To get a final prediction. Improving

MIMO-DD-3Q Learning model, as shown in Fig 3.

The specific steps to Improving MIMO-DD-3Q Learning model are as follows:

1. Set the training frequency threshold of the model, Dual 3Q Learning initial state model set

M, control learning rate α, balance future reward decay factor γ. In the embodiment of the

Fig 2. Flow chart of updating Q table after the introduction of weight parameters.

https://doi.org/10.1371/journal.pone.0294278.g002
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invention, the state model set M = {LSTM network, Deep-RF network, Transformer net-

work}. Obtain the water quality time sequence data input after filtering in Step 1, and set

the sample time sequence length as Nt.

2. Initialize Q*(S,A), define probability parameter σ2(0,1), and start learning. When σ>ε,

select action At randomly with the probability of σ. Otherwise, select action At = argmaxQ0

according to Q table, where Q0’ represents the Q value of each predicted action, and select

the action with the largest Q value to execute.

3. Carry out the first retraining learning, in the single step time, execute: update the reward

value Rave by Formula (2); Q*(S,A) is updated by Formula (9); The prediction error is

obtained according to the preliminary prediction results of the prediction model.

4. After u times of training, the optimal strategy Q*(S,A) is obtained after completing the pre-

diction processing of the sample timing series, and the prediction model set, preliminary

prediction result set and prediction error set are also obtained.

5. The parameters of the Improving MIMO-DD-3Q Learning model were initialized, and the

prediction error set was input into the model for the second training learning. The process

of execution in a single time step was described in Step 3.

6. After the second training reaches the threshold, the optimal strategy is obtained, and the

prediction model set and the corrected error set are output. In a single time step, the cor-

rected error is compensated to the preliminary prediction result to obtain the predicted

index values within the time step.

The Improving MIMO-DD-3Q Learning model parameters stored in the two-training

learning will be used to predict water eutrophication. Improving MIMO-DD-3Q Learning

model can improve the prediction accuracy of eutrophication data. In order to find the opti-

mal Q learning strategy on the single step prediction, LSTM network, Deep-RF network and

Transformer network are used in this step as the state data set for Improving MIMO-DD-3Q

Learning model, and each training of Improving MIMO-DD-3Q Learning model is a complete

time series prediction.

For MIMO-DD-3Q Learning, the depth model to be predicted at the current moment is

selected according to the Q learning strategy in a single step time, and the reward Rave after the

Fig 3. Structure diagram of Improved MIMO-DD-3Q Learning model.

https://doi.org/10.1371/journal.pone.0294278.g003
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end of the action and the state of the next moment are obtained. At the same time, the prelimi-

nary prediction results of the moment, the selected prediction model set at the moment and

the error set of the moment are obtained. After the completion of the MIMO-DD-3Q Learn-

ing, the model parameters are initialized and the input data is replaced with error sets to obtain

a new Q learning strategy. The above operations are repeated in other processes, so as to jointly

constitute the prediction process of Improving MIMO-DD-3Q Learning prediction model for

lake eutrophication and obtain the final prediction result.

When the updated Improving MIMO-DD-3Q Learning model is used for real-time lake eutro-

phication prediction, the water quality time series data currently collected including the eutrophi-

cation prediction index are filtered and input into the model. The preliminary prediction result

set and prediction error set are obtained through the first prediction, and the corrected error set is

obtained through the second prediction. The error is compensated to the preliminary prediction

results of corresponding time steps, and the final output of each prediction index value represent-

ing lake eutrophication. The complete prediction process is shown in Fig 4.

3 Experimental verification

3.1 Data set

Taking 12 eutrophication prediction indexes of a river including KMNO4, COD,BOD5,TOC,

NH3-N, chroma, conductivity,TDS, turbidity, NO3-N, Chl-a and fluoride as examples, the

method proposed in this study was used to predict eutrophication of water bodies. The data

obtained were screened and processed. The selection time span is from 0 o ’clock on July 26, 2021

to 0 o ’clock on September 5, 2021, during which the sample sampling interval is once every hour,

and the time length is 1008 groups of data with 12 data features. In the overall experiment, the

first 900 groups of data were selected as the training set of the model, and the first 90 groups of the

remaining data were selected as the test set of the model. Specific data are shown in Table 1:

3.2 RAF and PCA

3.2.1 Recursive average filtering. The water quality data of the area to be studied were

collected and the concentration values of various factors were measured. The embodiment of

this study included 12 factors such as KMNO4, COD,BOD5,TOC, NH3-N, chroma, conductiv-

ity,TDS, turbidity, NO3-N, Chl-a and fluoride. The prediction index values of the water to be

studied were measured at different time points to obtain the water quality time series data.

Fig 4. Lake eutrophication prediction flow chart with improving MIMO-DD-3Q Learning.

https://doi.org/10.1371/journal.pone.0294278.g004
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Each measurement sample contains the concentration values of these factors measured at a

point in time.

Lake eutrophication is a phenomenon produced by the joint action of many factors, and

the multi-factor data will be affected by certain noise during measurement, and the noise of

the data is similar to the Gaussian noise distribution. Since there is noise in the data itself,

which affects the prediction effect of the prediction model, the data is smoothed first and pro-

cessed by means of recursive average. Two sets of sequences a and b are constructed first,

which are shown as follows:

a ¼ ð1=l; 1=l; � � � ; 1=lÞ ð10Þ

b ¼ ðN1;N2; � � � ;NnÞ ð11Þ

Where, l represents the length of sequence a. The larger the value of l is, the smoother the

data will be. n is the number of samples, and Nn is the n-th sample.

Convolving the two sets of sequences a and b gives the smoothed sequence b0, which is

expressed as follows:

b0 ¼ N1∗
1

l
; N1;þN2ð Þ∗

1

l
; � � � ; N1;þN2 þ � � � þ Nlð Þ∗

1

l
; N2;þN3 þ � � � þ Nlþ1

� �
∗

1

l
; � � � ;

�

Nn� l;þNn� lþ1 þ � � � þ Nn

� �
∗

1

l
� ð12Þ

The smoothed data sample is obtained, and the data comparison before and after de-nois-

ing for some factors is shown in Figs 5 and 6.

Table 1. Experimental data set.

attribute numerical value content

Node

characteristic

12 KMNO4, COD,BOD5,TOC, NH3-N, chroma, conductivity,TDS,

turbidity, NO3-N, Chl-a,fluoride

Time length From July 26 to

September 5

days×24num /day = 1008 Time node

Data partition (900,90) The first 900 training sets,The last 90 test sets

https://doi.org/10.1371/journal.pone.0294278.t001

Fig 5. Comparison before and after the removal of Chl-a data noise.

https://doi.org/10.1371/journal.pone.0294278.g005

PLOS ONE Improved MIMO-DD-3Q learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0294278 November 14, 2023 8 / 17

https://doi.org/10.1371/journal.pone.0294278.t001
https://doi.org/10.1371/journal.pone.0294278.g005
https://doi.org/10.1371/journal.pone.0294278


3.2.2 Principal component analysis. For data with multiple indexes and multidimen-

sional dimensions, principal component analysis can not only reduce and simplify the data,

but also judge the effective correlation between various indexes. After the smooth data is

obtained by the above method, the initial data matrix is first established with the data samples

and the selected prediction indicators of water eutrophication, and the initial data matrix B is

defined. There are s horizontal prediction indicators of water eutrophication and v longitudi-

nal data samples. The matrix is shown as follows:

B ¼

x11 x12 � � � x1s

x21 x22 � � � x2s

� � � � � � � � � � � �

xv1 xv2 � � � xvs

0

B
B
B
B
B
@

1

C
C
C
C
C
A

ð13Þ

The data matrix B get matrix �B standardizing, matrix �B elements in �xjk computation for-

mula is as follows:

�xjk ¼
xjk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPv

j¼1
xjk2

q ð14Þ

Inspection by KMO and Bartlett again about the suitability of the data matrix �B principal

component analysis, the KMO value is greater than 0.5 to meet the criteria of principal compo-

nent analysis. If yes, the principal component will be extracted next, and the final number of

principal components will be determined by the size of eigenvalue close to one and the total

contribution rate of eigenvalue is greater than 85%. According to the standardization of matrix

�B calculation s a predictor of characteristic value, characteristic value contribution rate compu-

tation formula is as follows:

ek ¼
lkPs
k¼1
lk

ð15Þ

Fig 6. Comparison of fluoride data before and after noise removal.

https://doi.org/10.1371/journal.pone.0294278.g006
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Ep ¼
Xp

k¼1
ek ð16Þ

Where ek is the variance interpretation rate of the k eigenvalue λk, and Ep is the sum of the

variance interpretation rates of p eigenvalues. The number of principal components can be

determined according to the obtained results. The component matrix table is obtained by

SPSS (Social Science Statistical Software Package). The more approximate the absolute value of

the load coefficient of each index in different principal components is 1, the higher the expla-

nation rate of the index to the principal component is. Through all the above processes, the

principal component calculation formula is finally determined as follows:

Fi ¼ mi1X1 þmi2X2þ; � � � ;misXs; i ¼ 1; 2; � � � ; p ð17Þ

In the formula, Fi represents the i principal component, and there are s prediction indexes

of water eutrophication in total. Xk is the k prediction index, and a total of p principal compo-

nents are determined. mik is the load coefficient value of the k prediction index in the ith prin-

cipal component.

According to the principal component analysis, it can be proved that all factors are related

in the prediction of water eutrophication, but the correlation is strong or weak. The prediction

index with high interpretation rate among p principal components can be selected according

to the actual situation. In this study, 12 predictors were selected for embodiments.

The initial data matrix was constructed according to the data sample and the eutrophication

prediction index of water body. After standardization processing, KMO value and Bartlett

value were obtained to prove that the data sample was suitable for principal component analy-

sis. The results are shown in Table 2:

The eigenvalue and contribution rate of eigenvalue were calculated to determine the num-

ber of final principal components. The results are shown in Table 3:

It can be determined from Table 3 that the number of principal components is 5. According

to the obtained factor loading coefficient, the ratio coefficients of different indicators in each

principal component were analyzed, and the importance of the index was determined accord-

ing to the common degree (common variance factor), as shown in Table 4 below.

3.3 Model evaluation index

MAE, RMSE, MAPE were used to predict the model results.

Define the predicted value as: Q̂ ¼ fq̂1; q̂2; � � � ; q̂ng, The true value is: Q = {q1, q2,� � �,qn}.

MAE(Mean Absolute Error) is calculated as follows:

MAE ¼
1

n

Xn

i¼1

jq̂i � qij

Table 2. Principal component analysis table.

KMO 0.812

Bartlett sphericity test Approximate chi-square 151021.87

df 66

P 0.000***

Note

***,**, * represent the significance level of 1%, 5% and 10% respectively.

https://doi.org/10.1371/journal.pone.0294278.t002
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RMSE(Root Mean Square Error) is calculated as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðq̂i � qiÞ
2

s

MAPE(Mean Absolute Percentage Error) is calculated as follows:

MAPE ¼
1

n

Xn

i¼1

j
q̂i � qi
qi
j � 100%

4 Result and discussion

4.1 Performance comparison of MIMO-DD-3Q Learning

Firstly, the nonlinear greed factor is introduced to increase the "Exploration" process of Agent

in the early stage of Q Learning, so as to quickly update the Q table. With the gradual increase

of the number of iterations, the curve of the greed factor gradually becomes flat and gradually

approaches a certain value. At this time, the Agent can realize the "Utilization" process in Q

learning to the maximum extent. The training times of introducing nonlinear greed factor and

Table 3. Interpretation of data population variance.

Composition λk VIR (%) SVIR (%)

1 5.337 44.478 44.478

2 1.626 13.547 58.025

3 1.339 11.156 69.181

4 1.238 10.315 79.496

5 0.886 6.281 85.777

6 0.656 5.466 91.243

7 0.575 4.796 96.039

8 0.277 2.306 98.345

9 0.136 1.133 99.478

10 0.059 0.489 99.967

11 0.003 0.021 99.988

12 0.001 0.012 100

https://doi.org/10.1371/journal.pone.0294278.t003

Table 4. Factor load coefficient table.

PC I PC II PC III PC IV PC V CD

KMNO4 -0.285 -0.479 0.235 0.596 -0.385 0.87

COD -0.07 0.018 0.786 -0.165 0.381 0.795

BOD5 0.854 0.396 -0.032 -0.146 0.1 0.918

TOC 0.972 0.147 0.109 0.012 -0.049 0.981

NH3-N 0.211 -0.134 0.182 0.73 0.466 0.846

Chroma 0.97 0.114 0.121 0.038 -0.053 0.972

Conductivity -0.488 0.737 0.006 0.288 -0.097 0.874

TDS -0.405 0.782 0.039 0.333 -0.088 0.896

Turbidity 0.967 0.113 0.151 0.049 -0.093 0.982

NO3-N 0.267 -0.078 -0.705 0.226 0.379 0.769

Chl-a 0.708 -0.048 -0.249 0.164 -0.143 0.613

Fluoride 0.827 -0.094 0.151 0.16 -0.194 0.779

https://doi.org/10.1371/journal.pone.0294278.t004
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fixed greed factor were selected to compare with the updating convergence time of Q table, as

shown in Table 5 below:

First, the Agent selects the action according to the Q table or selects the action randomly

through the probability of greed factor ε. The reward value obtained after prediction and the

three estimated Q values at the next moment to obtain the three actual Q values at the

moment, and then obtains the weight parameter of the final Q value by calculating the average

value and the minimum value, and finally updates the final Q value. Q obtained by different

iterations of timing data and partially connected moments adopted in this paper is shown in

Table 6 below:

4.2 Comparison of prediction results of lake eutrophication

First of all, LSTM network, Deep-RF network and Transformer network are selected as the

prediction model for Agent action selection, namely the initial state set. Then, the improved

parameters are initialized and Q table is initialized, so that Agent can start to learn according

to the given "Exploration-Utilization" rule. Then update the Q value of the current moment

according to the obtained reward factor and the estimated value of the next moment. With the

gradual increase of the number of iterations, the optimal learning strategy is obtained. The

selection action is carried out according to the current optimal strategy, and the prediction

result of the One-Dual 3Q Learning is obtained. Make the Agent learn again and find the opti-

mal learning strategy, so as to get the final prediction result. Take August 1 from 00:00 to 12:00

as an example. The prediction model selected by the model is shown in Table 7 below:

The lake eutrophication index is taken as the input of model selection action prediction,

and the reward factor is calculated according to the obtained results, so as to update the model

parameters, make it find the optimal strategy, and then obtain the final prediction result

Table 5. Update convergence time of some training times.

Training times Fixe ε ct (s) Improved ε ct (s)

50 11.70 9.77

100 23.71 19.51

150 34.60 28.87

250 58.08 48.15

400 91.83 76.31

700 160.15 133.65

1000 228.09 191.62

1400 320.44 266.47

1750 397.67 334.31

2000 475.77 383.54

2500 571.89 491.14

3000 683.61 581.46

https://doi.org/10.1371/journal.pone.0294278.t005

Table 6. Q table of 3Q Learning with the introduction of weight parameters (part).

Times t t+1 t+2 t+3 t+4 t+5

50 -0.069595936 -0.06929062 -0.069868088 -0.069431648 -0.06913566 -0.0691436

100 -0.08068446 -0.080387518 -0.080960999 -0.080534673 -0.09145635 -0.0724022

150 -0.080675865 -0.08040529 -0.080998318 -0.080598831 -0.08033650 -0.0803181

200 -0.084300081 -0.084036831 -0.084631882 -0.097565076 -0.07511443 -0.0846655

https://doi.org/10.1371/journal.pone.0294278.t006
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through the optimal strategy. Compare the predicted value of lake eutrophication with the true

value curves of LSTM, Deep-RF, Transformer, 3Q Learning model and DD-3Q learning

model, and the results are shown in Fig 7. The predicted value and true value curves of each

model from time node 21 to time node 40 are shown in Fig 8. The evaluation indicators of

each model are shown in Table 8 below:

As shown in Fig 8, target represents the target curve, which is represented by DD-3Q Learn-

ing in this research method. As can be seen from the figure, Compared with the prediction

Table 7. Results of 3Q Learning selection model in different time periods.

Time 3Q Learning prediction model DD-3Q Learning prediction model

0:00~1:00 Deep-RF Deep-RF

1:00~2:00 LSTM LSTM

2:00~3:00 LSTM Deep-RF

3:00~4:00 Deep-RF Deep-RF

4:00~5:00 Transformer LSTM

5:00~6:00 Deep-RF Deep-RF

6:00~7:00 Transformer Deep-RF

7:00~8:00 LSTM Deep-RF

8:00~9:00 Deep-RF LSTM

9:00~10:00 Deep-RF Transformer

10:00~11:00 Transformer Transformer

11:00~12:00 Deep-RF Deep-RF

https://doi.org/10.1371/journal.pone.0294278.t007

Fig 7. Curves of true and predicted values of five models of Chl-a concentration and fluoride concentration.

https://doi.org/10.1371/journal.pone.0294278.g007

Fig 8. Curve of Chl-a concentration and fluoride concentration at time nodes 21–40.

https://doi.org/10.1371/journal.pone.0294278.g008
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curves of LSTM model, Deep-RF model, Transformer model and 3Q Learning model, the pre-

diction curves of Chl-a concentration prediction and fluoride concentration prediction based

on this research method are closer to the real target curves of Chl-a concentration prediction

and fluoride concentration concentration. It can be seen from the evaluation indicators in

Table 8. The error between the predicted value and the real value is the smallest and the accu-

racy is the highest.

4.3 Discussion

The purpose of this experiment is that Improving MIMO-DD-3Q Learning model proposed

in this study is significantly better than LSTM, Deep-RF, Transformer and One Dual 3Q

Learning models in predicting lake eutrophication. Meanwhile, the efficiency of Q learning

training is improved by improving Q Learning algorithm. Taking the prediction results of

Chl-a concentration index and fluoride index as an example, based on the test results and the

curves of the predicted and true values of each model after local amplification, the results of

the three error results of each model in Fig 8 and Table 8 can be obtained. Firstly, it can be

observed that only using LSTM model for water eutrophication prediction results in the largest

error; secondly, only using Transformer model for lake eutrophication prediction results

slightly decrease compared with LSTM model; however, Transformer model has greater errors

in some data mutation moments. In the single prediction model, the prediction error of Deep-

RF model is smaller than the previous two models. In the prediction of lake eutrophication of

the One Dual 3Q Learning model, the error is significantly decreased compared with the previ-

ous three models. Finally, the prediction error of Improving MIMO-DD-3Q Learning model

proposed in this study is the lowest and has an obvious downward trend.

5 Conclusion

This paper takes multi-factor water quality data that may cause lake eutrophication as the

research object, analyzes the influence of each index on the water eutrophication phenome-

non, improves the existing reinforcement learning algorithm, and proposes a lake eutrophica-

tion prediction method based on Improving MIMO-DD-3Q Learning model. The following

conclusions are obtained through the example verification of the water quality monitoring

data of Yongding River in Beijing.

1. For the prediction of lake eutrophication, it is necessary and difficult to accurately predict

the data with strong volatility. The traditional single depth prediction model has advantages

and disadvantages in predicting the steep and gentle areas of data, and the introduction of

Q Learning can combine the advantages of multiple prediction models. At the same time,

by taking advantage of the precise decision-making power of reinforcement learning and

considering long-term returns, the unified modeling of multi-factor correlation and multi-

model combination of lake eutrophication is realized.

Table 8. Model evaluation indicators.

MAE RMSE MAPE

LSTM 4.97*10−2 5.27*10−2 0.051%

Deep-RF 3.87*10−2 3.37*10–2 0.039%

Transformer 4.30*10−2 4.63*10–2 0.046%

3Q Learning 2.90*10−2 2.39*10−2 0.036%

DD-3Q Learning 1.24*10−2 1.52*10−2 0.024%

https://doi.org/10.1371/journal.pone.0294278.t008
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2. Aiming at the problems of slow training efficiency of Q Learning model and easy to fall into

local optimization, the Q Learning algorithm is improved, and the greedy factor algorithm

with arctangent function is proposed, so that the Agent can fully explore the environment

in the early stage. Three Q estimates are introduced to update the Q table, and the final

Improving MIMO-DD-3Q Learning model is constructed. To improve the training effi-

ciency of the model and reduce the possibility of the model falling into the local optimal as

far as possible.

Author Contributions

Investigation: Huiyan Zhang.

Resources: Zhiyao Zhao.

Supervision: Li Wang, Xiaoyi Wang, Jiping Xu, Jiabin Yu, Qian Sun, Yuting Bai, Xuebo Jin.

Validation: Qianhui Tang.

Writing – original draft: Chaoran Ning.

References
1. Rose Gregersen,Howarth Jamie D,Atalah Javier,Pearman John K,Waters SeanLi Xun, et al. Paleo-dia-

tom records reveal ecological change not detected using traditional measures of lake eutrophication.[J].

The Science of the total environment,2023. https://doi.org/10.1016/j.scitotenv.2023.161414

2. Wen ShuaiLong,Lu YueHan,Luo ChunYan,An ShiLin,Dai JiaRu,Liu ZhengWen, et al. Adsorption of

humic acids to lake sediments: Compositional fractionation, inhibitory effect of phosphate, and implica-

tions for lake eutrophication[J]. Journal of Hazardous Materials,2022, 433. https://doi.org/10.1016/j.

jhazmat.2022.128791

3. Liu Yi,Chen Jining,Mol Arthur P. J. Evaluation of Phosphorus Flows in the Dianchi Watershed, South-

west of China[J]. Population and Environment,2004, 25(6).

4. Yamamoto Ren,Harada Masayoshi,Hiramatsu Kazuaki,Tabata Toshinori. Three-layered Feedforward

artificial neural network with dropout for short-term prediction of class-differentiated Chl-a based on

weekly water-quality observations in a eutrophic agricultural reservoir[J]. Paddy and Water Environ-

ment,2021(prepublish).

5. Schallenberg Marc. The application of stressor–response relationships in the management of lake

eutrophication[J]. Inland Waters,2020.

6. Bruns Nicholas E., Heffernan James B., Ross Matthew R. V., Doyle Martin. A simple metric for predict-

ing the timing of river phytoplankton blooms[J]. Ecosphere,2022, 13(12).

7. Hailu Sheferaw Ayele,Minaleshewa Atlabachew. Review of characterization, factors, impacts, and solu-

tions of Lake eutrophication: lesson for lake Tana, Ethiopia[J]. Environmental Science and Pollution

Research,2021, 28(12).

8. Biswajit Bhagowati, Bishal Talukdar, Narzary Binanda Khungur Ahamad Kamal Uddin. Prediction of

lake eutrophication using ANN and ANFIS by artificial simulation of lake ecosystem[J]. Modeling Earth

Systems and Environment,2022, 8(4).

9. Lian Ming Zhao,Bo Zeng. Prediction Modeling Method of Interval Grey Number Based on Different

Type Whitenization Weight Functions[J]. Applied Mechanics and Materials,2013, 2700(411–414).

10. Mingyang Wang,Enzhi Wang,Xiaoli Liu,Congcong Wang. Topological graph representation of strati-

graphic properties of spatial-geological characteristics and compression modulus prediction by mecha-

nism-driven learning[J]. Computers and Geotechnics,2023, 153.

11. van der Schoot L S,van den Reek J M P A. Data-driven prediction of biologic treatment responses in

psoriasis: steps towards precision medicine.[J]. The British journal of dermatology,2021, 185(4).

12. Derevenskaya O.Y.,Unkovskaya E.N.,Mingazova N.M. Zooplankton under the Conditions of Lake

Eutrophication and Acidification[J]. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye

Nauki,2019, 161(4).

PLOS ONE Improved MIMO-DD-3Q learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0294278 November 14, 2023 15 / 17

https://doi.org/10.1016/j.scitotenv.2023.161414
https://doi.org/10.1016/j.jhazmat.2022.128791
https://doi.org/10.1016/j.jhazmat.2022.128791
https://doi.org/10.1371/journal.pone.0294278


13. Jingwen Yan, Donghao Jin, Xin Liu, Chaoqun Zhang, Heyang Wang. A coupled combustion and hydro-

dynamic model for the prediction of waterwall tube overheating of supercritical boiler[J]. Fuel,2023, 334

(P1).

14. Mardani Neda,Suara Kabir,Fairweather Helen,Brown Richard,Adrian McCallum,Roy C. Sidle. Improv-

ing the Accuracy of Hydrodynamic Model Predictions Using Lagrangian Calibration[J]. Water,2020, 12

(2).

15. Huang Jiacong,Gao Junfeng,Zhang Yinjun. Eutrophication Prediction Using a Markov Chain Model:

Application to Lakes in the Yangtze River Basin, China[J]. Environmental Modeling & Assess-

ment,2016, 21(2).

16. Zufei Li,Shuo Ding,Qi Zhong,Jugao Fang,Junwei Huang,Zhigang Huang, et al. A machine learning

model for three years survival state prediction of HPSCC patients via multi parameters.[J]. The Journal

of laryngology and otology,2023.

17. Yanzhong Wang,Kai Zhang,Xiaopeng Ma,Piyang Liu,Haochen Wang,Xin Guo, et al. A physics-guided

autoregressive model for saturation sequence prediction[J]. Geoenergy Science and Engineering,2023,

221.

18. Huiming Duan,Xinyu Pang. A novel grey prediction model with system structure based on energy back-

ground: A case study of Chinese electricity[J]. Journal of Cleaner Production,2023, 390.

19. Zhang Ming yan Du Xu, Hung Jui Long Li Hao, Liu Meng fan Tang Hengtao. Analyzing and Interpreting

Students Self-regulated Learning Patterns Combining Time-series Feature Extraction, Segmentation,

and Clustering[J]. Journal of Educational Computing Research,2022, 60(5).

20. Xue Zuo,Rui Zhu,Yuankai Zhou. Online tracking and prediction of slip ring degradation using chaos the-

ory based on LSTM neural network[J]. Measurement Science and Technology,2023, 34(5).

21. Yang Cao,Yunsheng Qian,Jiawei Zhang,Yanan Wang,Yizheng Lang. An LSTM-based adaptive predic-

tion control model for the wire diameter control of high-precision optical fiber drawing machines[J]. Opti-

cal Fiber Technology,2023,77.

22. Diyuan Li, Zida Liu, Armaghani Danial Jahed Xiao Peng, Jian Zhou. Novel Ensemble Tree Solution for

Rock burst Prediction Using Deep Forest[J]. Mathematics,2022, 10(5).

23. Chang Yang. Gas Concentration Prediction Method Based on Denoising Deep Forest[J]. Journal of

Physics: Conference Series,2022, 2303(1).

24. Wu Xin, Li Jian, Huang Qi. Big Data-Based Transformer Substation Fault Prediction Method[J]. Journal

of Electronic Science and Technology,2021, 19(02):173–185.

25. Yong Zhou,Yizhuo Li,Dengjia Wang,Yanfeng Liu. A multi-step ahead global solar radiation prediction

method using an attention-based transformer model with an interpretable mechanism[J]. International

Journal of Hydrogen Energy,2023, 48(40).

26. Matthew Overlin,Steven Iannucci,Bradly Wilkins,Alexander McBain,Jason Provancher. Reinforcement

learned adversarial agent (ReLAA) for active fault detection and prediction in space habitats.[J]. NPJ

microgravity,2023, 9(1).

27. Qingang Zhang,Mahbod Muhammad Haiqal Bin,Chng ChinBoon,Lee PohSeng,Chui CheeKong.

Residual Physics and Post-Posed Shielding for Safe Deep Reinforcement Learning Method.[J]. IEEE

transactions on cybernetics,2022,PP.

28. Zhuang Wang,Yi Ai,Qinghai Zuo,Shaowu Zhou,Hui Li. A Policy-Reuse Algorithm Based on Destination

Position Prediction for Aircraft Guidance Using Deep Reinforcement Learning[J]. Aerospace,2022, 9

(11).

29. DU Yong Ping JIN Xing Nan, HAN Hong Gui, WANG Lu Lin. Reusable electronic products value predic-

tion based on reinforcement learning[J]. Science China(Technological Sciences),2022, 65(07):1578–

1586.

30. Balamurugan Nagaiah Mohanan Adimoolam Malaiyalathan, Alsharif Mohammed H., Uthansakul Peer-

apong. A Novel Method for Improved Network Traffic Prediction Using Enhanced Deep Reinforcement

Learning Algorithm[J]. Sensors,2022, 22(13).

31. Wei Jin, Qiming Fu, Jianping Chen, Yunzhe Wang, Lanhui Liu, You Lu, et al. A novel building energy

consumption prediction method using deep reinforcement learning with consideration of fluctuation

points[J]. Journal of Building Engineering,2023, 63(PA).

32. Xie Ya. Study on Multi-Agent Q Learning Based on Prediction[J]. International Review on Computers

and Software IRECOS,2013, 8(4).

33. Alexander Kensert,Gilles Collaerts,Kyriakos Efthymiadis,Gert Desmet,Deirdre Cabooter. Deep Q-

learning for the selection of optimal isocratic scouting runs in liquid chromatography[J]. Journal of Chro-

matography A,2021, 1638(prepublish).

34. Sellamuthu Kandasamy,Vishnu Kumar Kaliappan. Q-Learning-Based Pesticide Contamination Predic-

tion in Vegetables and Fruits[J]. COMPUTER SYSTEMS SCIENCE AND ENGINEERING,2023, 45(1).

PLOS ONE Improved MIMO-DD-3Q learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0294278 November 14, 2023 16 / 17

https://doi.org/10.1371/journal.pone.0294278


35. Hong Yang,Yuanxun Cheng,Guohui Li. A new traffic flow prediction model based on cosine similarity

variational mode decomposition, extreme learning machine and iterative error compensation strategy

[J]. Engineering Applications of Artificial Intelligence,2022, 115.

PLOS ONE Improved MIMO-DD-3Q learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0294278 November 14, 2023 17 / 17

https://doi.org/10.1371/journal.pone.0294278

