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Abstract

Background

According to the World Health Organization (WHO), dementia is the seventh leading reason

of death among all illnesses and one of the leading causes of disability among the world’s

elderly people. Day by day the number of Alzheimer’s patients is rising. Considering the

increasing rate and the dangers, Alzheimer’s disease should be diagnosed carefully.

Machine learning is a potential technique for Alzheimer’s diagnosis but general users do not

trust machine learning models due to the black-box nature. Even, some of those models do

not provide the best performance because of using only neuroimaging data.

Objective

To solve these issues, this paper proposes a novel explainable Alzheimer’s disease predic-

tion model using a multimodal dataset. This approach performs a data-level fusion using

clinical data, MRI segmentation data, and psychological data. However, currently, there is

very little understanding of multimodal five-class classification of Alzheimer’s disease.

Method

For predicting five class classifications, 9 most popular Machine Learning models are used.

These models are Random Forest (RF), Logistic Regression (LR), Decision Tree (DT),

Multi-Layer Perceptron (MLP), K-Nearest Neighbor (KNN), Gradient Boosting (GB), Adap-

tive Boosting (AdaB), Support Vector Machine (SVM), and Naive Bayes (NB). Among these

models RF has scored the highest value. Besides for explainability, SHapley Additive exPla-

nation (SHAP) is used in this research work.
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Results and conclusions

The performance evaluation demonstrates that the RF classifier has a 10-fold cross-valida-

tion accuracy of 98.81% for predicting Alzheimer’s disease, cognitively normal, non-Alzhei-

mer’s dementia, uncertain dementia, and others. In addition, the study utilized Explainable

Artificial Intelligence based on the SHAP model and analyzed the causes of prediction. To

the best of our knowledge, we are the first to present this multimodal (Clinical, Psychologi-

cal, and MRI segmentation data) five-class classification of Alzheimer’s disease using Open

Access Series of Imaging Studies (OASIS-3) dataset. Besides, a novel Alzheimer’s patient

management architecture is also proposed in this work.

Introduction

Alzheimer’s Disease (AD) is a chronic, progressive neurodegenerative disease that gradually

deteriorates memory and cognitive abilities, and it is the most common cause of dementia in

older people. In the world, there were more than 50 million AD sufferers in 2018 [1]. World-

wide, there will be 131 million persons with AD in 2050, and the socioeconomic cost will be

9.12 trillion dollars [2]. Forgetting recently acquired information, important dates or events,

difficulty in performing simple daily works, and repeatedly asking the same questions are all

classic early symptoms of AD. In the final stage, patients’ behavioral changes are also observed.

The disease strikes the majority of people in their mid-60s. Scientists agree that the root cause

of this neurological disease is a combination of genetics, long-term environmental conditions,

and lifestyle [3]. Though some medications are available, AD is not curable, and the damage it

causes is permanent. The most common cause of death in Alzheimer’s patients is aspiration

pneumonia [4].

Though machine learning (ML) is a very potent technique in AD diagnosis, patients nowa-

days are more likely to visit clinics and have their AD diagnosed. Even doctors are willing to

rely on clinical diagnosis rather than the ML model’s prediction. A study shows participants

(176 persons) were less likely to trust Artificial Intelligence (AI) or ML models for diagnosis

and treatment than doctors. Even when participants are informed that ML outperforms a

human doctor, their trust in ML does not grow [5]. The main reason behind this distrust is the

black-box nature of ML models. For these reasons, explaining the ML models’ decision or the

features responsible for this decision is the best way to gain the trust of the people. Explainable

AI is a tool that can annotate a model’s decisions as well as decision-making characteristics.

Furthermore, the use of only neuroimaging data for AD prediction is very common, and

achieving good accuracy is difficult in most cases. Even using single modal data for this type of

critical prediction is very risky as sometimes it can produce faulty predictions. To remove

these problems, our work proposes an explainable ML model using multimodal data.

The quality of life of AD patients can be improved if there is a constant helping hand with

them. But, due to modernization and capitalism, almost all family members are busy with

their work. Due to the lack of care and support, the condition of those patients may decrease

very rapidly. Besides, the scarcity of Alzheimer’s patient care centers is also a problem. A sen-

sor-based and IoT-enabled real-time monitoring and AD patient management system can

provide a cost-effective way of continuous monitoring, support for daily activity, early warning

of health deterioration, and emergency medical care [6, 7]. For this reason, this paper presents

an Alzheimer’s patient monitoring and management framework.
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To the best of our knowledge, we are the first to present this explainable multimodal

approach using clinical data, neuroimaging data, and psychological data, which are collected

from the Open Access Series of Imaging Studies (OASIS-3) dataset [8]. The main contribu-

tions of this research work are:

a. A five-class AD prediction approach using a multimodal dataset is proposed. To ensure

multimodality, data-level fusion using Alzheimer’s Disease Research Center (ADRC)

clinical data, brain Magnetic Resonance Imaging (MRI) segmentation data, and psycho-

logical assessments are performed.

b. The black box ML decisions are converted to an explainable one where general people

can understand the reasons behind any prediction.

c. A 24/7 AD patient monitoring and management system framework is also proposed.

The rest of this paper is organized as follows: some recently published similar works, the

methodology of the proposed work, the performance analysis, and the concluding remarks.

Related works

Our research work completely depends on multimodal AD prediction using explainable AI.

There are some relevant published research works in this field using MRI, PET, gene data,

medical history, neuropsychological battery, and cognitive scores data. For the explanation of

the model, Local Interpretable Model-agnostic Explanations (LIME) and Shapley Additive

explanations (SHAP) are powerful tools. Some relevant research works using above mentioned

dataset and tools are described below.

Multidirectional Perception-Generative Adversarial Networks (MP-GAN), a multidirec-

tional mapping method that Yu et al. [9] incorporated is capable of effectively capturing the

salient global features. Thus, the proposed model can clearly differentiate the subtle lesions via

MR image transformations between the source domain and the target domain by using the

class discriminative map from the generator. A single MP-GAN generator may also learn the

class-discriminative maps for several classes by combining the classification loss, cycle consis-

tency loss, adversarial loss, and L1 penalty. According to experimental findings on the available

Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, MP-GAN can precisely depict

numerous lesions that are impacted by the development of AD.

Lei et al. [10] created a deep learning and joint architecture to forecast clinical AD scores.

Particularly, to minimize dimensions and screen the features of brain regions associated with

AD, the feature selection method integrating group LASSO and correntropy is applied. To

investigate the internal connectivity between various brain regions and the temporal correla-

tion between longitudinal information, we investigate the multi-layer independently recurrent

neural network regression. The suggested joint deep learning network analyzes and forecasts

the clinical score by looking at the correlation between MRI and clinical score. Doctors can

perform an early diagnosis and prompt treatment of patient’s medical conditions using the

projected clinical score values.

To evaluate Mild Cognitive Impairment (MCI) and AD, Yu et al. [11] suggested a unique

tensorizing GAN using high-order pooling. The suggested model may make maximal use of

the second-order statistics of integrative MRI by including the high-order pooling technique

in the classifier. The first attempt to cope with categorization on MRI for AD diagnosis is the

suggested Tensor-train, High-order Pooling, and Semi-Supervised GAN (THS-GAN). Exten-

sive experimental findings on the ADNI data set show that the THS-GAN performs better
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when compared to current approaches. It also demonstrated how pooling and tensor training

might enhance the classification results.

Using MRI images and gene data sets, Kamal et al. [12] used SpinalNet and Convolutional

Neural Network (CNN) to classify AD from MRI images. The researchers then used microar-

ray gene expression data to classify diseases using K-Nearest Neighbor (KNN), Support Vector

Classification (SVC), and XG boost classification techniques. Instead of using gene and image

data solely, the authors had combined these two approaches and explained the results using

the LIME method. For MRI image classification, the accuracy rate of CNN is 97.6%, and for

the gene expensive data, SVC outperforms other approaches.

El-Sappagh et al. [13] proposed a two-layered explainable ML model for AD classification.

It was a multimodal approach where data from 11 modalities (genetics, medical history, MRI,

Positron Emission Tomography (PET), neuropsychological battery, cognitive scores, etc.)

were integrated. Random Forest (RF) classifier was used here in the first layer for multiclass

classification, and the results were explained using the SHAP framework. In the second layer,

binary classification took place, where probable MCI to AD classification took place. For the

first layer, the achieved cross-validation F1-score was 93.94%, and accuracy was 93.95% (multi-

class classifier). For the second layer, accuracy and F1-score were 87.08% and 87.09%, respec-

tively. The accuracy and the F1 score of the model could be increased if the authors try to use

the deep learning technique. Besides, this model obtained satisfactory performance from an

academic point of view not from real-life.

Lee et al. [14] proposed a multimodal Recurrent Neural Network (RNN) model to predict

AD from the MCI stage. In this approach, the authors had integrated subjects’ longitudinal

Cerebrospinal Spinal Fluid (CSF) and the cognitional performance biomarkers along with

cross-sectional neuroimaging data and demographic data. Here, all data were collected from

the ADNI website. The proposed model was divided into two layers. Layer one consists of four

Gated Recurrent Units (GRUs) where each contains one modality of data. From the 1st layer,

a fixed-sized feature vector was produced. Then, the vectors were concatenated to the input

for the final layer. The final layer presents the ultimate prediction. From MCI to AD predic-

tion, the proposed model achieved 76% accuracy and 0.83 AUC using data from a single

modality, whereas 81% accuracy and 0.86 AUC value had been achieved using multimodal

data. The parameter optimization for the second training stage did not affect the parameters in

every GRU for feature extraction, so each GRU could not learn from the final classification

based on the collective features, which is a limitation of this model. A possible solution to this

problem is to link GRUs to logistic regressions with in second step. Furthermore, the structure

of this model should be designed in such a way that individual GRU components can extract

integrative features.

Zhang et al. [15] proposed a multimodal multi-task learning method for predicting multiple

features from multimodal data. This method was divided into two parts. First, a multi-task fea-

ture selection that selects a common subset of relevant features for multiple variables from

each modality. Second, a multi-modal support vector machine that fuses the previously

selected features from all modalities to predict multiple variables. Here, all data were collected

from the ADNI website. The accuracy of the proposed model was 83.2%±1.5% (MCI vs HC)

and 93.3%±2.2% (AD vs HC). One drawback of this method was that it was based on multi-

modal data, such as MRI, PET, and CSF, and thus necessitates each subject to had the corre-

sponding modality data, limiting the number of participants that could be studied. For

example, the ADNI database contains approximately 800 participants, but only about 200 of

them have all baseline MRI, PET, and CSF data.

Baglat et al. [16] used ML techniques such as Logistic Regression (LR), Decision Tree (DT),

Random Forest (RF), Support Vector Machine (SVM), and AdaBoost to improve the early
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diagnosis and classification of Alzheimer’s disease in the OASIS MRI dataset, with the RF clas-

sifier outperforming the others. The RF classifier’s accuracy, recall, and area under coverage

values are 86.8%, 80%, and 0.872, respectively. Ali et al. [17] employed an ensemble learning-

based modified RF to detect AD. Using the OASIS-2 dataset, the suggested approach attained

an accuracy of 96.43%. Kavitha et al. [18] proposed RF classifier to predict AD and achieved

86.92% accuracy using MRI OASIS dataset.

Amrutesh et al. [19] employed two separate datasets for the detection of AD: the longitudi-

nal dataset, which contains text values, and the OASIS dataset, which contains MRI pictures.

The OASIS Longitudinal dataset was used to train on 14 ML algorithms, including the RF

Algorithm, which has a maximum accuracy of 92.1385% and a baseline accuracy of 47.1910%.

Buvari et al. [20] proposed a CNN and Neural Network (NN) (dense) based AD prediction

multimodal model where MRI and Numerical Freesurfer MRI segmentation data were used.

Dataset was collected from the OASIS-3 website. The accuracy of numerical, image and hybrid

approaches was 73.593%, 71.429%, and 74.891%. The performance of these research works

was not excellent. Also, these models were black-box in nature.

From all these research works it is clearly understandable that the use of multimodal data

can be a good way to towards better model’s performance. SHAP would be a powerful tool to

interpret the decision-making features of a model.

Proposed alzheimer’s prediction model

Dataset acquisition and preparation

The Open Access Series of Imaging Studies (OASIS)-3 [8] aims to make neuroimaging datasets

freely accessible to the scientific community. The OASIS-3 dataset includes longitudinal neu-

roimaging, cognitive, clinical, and biomarker data for normal aging and AD. This dataset con-

tains the data of people from 42 to 95 years old.

Here, all participants data were provided with an identifier, and all dates were deleted and

standardized to reflect the days since their enrollment. Many of the Magnetic Resonance (MR)

sessions were accompanied by volumetric segmentation files generated by Freesurfer. For this

research work, we have used the ADRC clinical data, psychological data, and Freesurfer volu-

metric MRI segmentation data. Table 1 shows the total number of data in each modality along

with number of features.

ADRC clinical data. ADRC clinical data [8] consists of the longitudinal data of unique

1098 participants. The ADRC clinical data consists of the longitudinal data of unique 1098 par-

ticipants. Number of CN, AD, Other dementia/Non AD, Uncertain, and Others are 4476,

1058, 142, 505, and 43, respectively.

There are various features of cognitively normal, AD dementia, uncertain dementia, and

some non-AD dementia. For non-AD dementia label, Vascular Dementia, Dementia with

Lewy Bodies Disease (DLBD), PD, and Frontotemporal dementia are considered. The impor-

tant features of this dataset were Mini-Mental State Exam (MMSE), age, Judgment, memory,

APOE (apolipoprotein E gene), Personal care, height, weight, Orient (recent and long-term

Table 1. Description of multimodal dataset.

Data Modality Unique Participants Longitudinal Data Number of Features

Clinical Data 1098 6224 13

MRI segmentation Data 1053 2047 10

Psychological Assessment data 810 3342 17

https://doi.org/10.1371/journal.pone.0294253.t001
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memory testing), Clinical Dementia Rating (CDR), and Sumbox (clinical dementia rating

scale). The ADRC administered a battery of neuropsychological tests to participants aged 65

and up every year. The Mini-Mental State Examination (MMSE) is a test that assesses general

cognitive function, with scores ranging from 0 (severe impairment) to 30 (no impairment).

Clinical assessment protocols were completed by participants in accordance with the

National Alzheimer Coordinating Center Uniform Data Set (UDS). UDS assessments included

a medical history, a physical examination, and a neurological evaluation. Every three years,

participants aged 64 or younger underwent clinical and cognitive assessments. Participants

aged 65 and up had annual clinical and cognitive evaluations. The Clinical Dementia Rating

(CDR) Scale was used to assess dementia status for the UDS, with CDR 0 indicating normal

cognitive function, CDR 0.5 for very mild impairment, CDR 1 for mild impairment, and CDR

2 for moderate dementia; once a participant reached CDR 2, they were no longer eligible for

in-person assessments. Age at entry, height, weight, and CDR evaluations are all included in

the OASIS datatype “ADRC Clinical Data” (UDS form B1 and B4 variables). Clinicians com-

pleted a diagnostic impression intake and interview as part of the assessment, which resulted

in a coded dementia diagnosis that was recorded in the OASIS datatype “ADRC Clinical

Data”. “Cognitively normal,” “AD dementia,” “vascular dementia,” and contributing factors

such as vitamin deficiency, alcoholism, and mood disorders are all diagnoses for this variable.

The diagnostic determination for variables dx1-dx5 is distinct from UDS assessments, but

diagnostic conclusions may overlap.

The Clinical Dementia Rating (CDR) is a global rating device that was developed in 1982

for a prospective study of patients with mild “senile dementia of AD type” (SDAT). Later, new

and revised CDR scoring rules were introduced by Berg, 1988 and Morris, 1993. CDR is deter-

mined by testing six different cognitive and behavioral domains, including memory, Orienta-

tion, Judgment and problem solving, community affairs, home and hobby performance, and

personal care. The CDR is a scale of 0–3 that includes no dementia (CDR = 0), questionable

dementia (CDR = 0.5), MCI (CDR = 1), moderate cognitive impairment (CDR = 2), and

severe cognitive impairment (CDR = 3). CDR itself is an outcome or target label for AD pre-

diction. To make an unbiased dataset, we are removing this feature from the dataset.

Psychological assessment data. The psychological assessment dataset [8] contains various

popular psychological tests such as Boston naming test, Trailmaking A (Trail A), Trailmaking

B (Trail B), animals, vegetables, digit symbol, digit span, logical memory, Wechsler Adult

Intelligence Scale (WAIS), and so on. Digit Span tests participants’ attention and working

memory by having them repeat a series of digits forward and backward. The number of trials

correctly repeated forward and backward, as well as the longest length the participant can

repeat back, were used to determine the participant’s score. The Category Fluency Test, which

requires participants to name as many words belonging to a category, such as animal and vege-

table, and the Boston Naming Test, which requires participants to name drawings of common

objects, were used to assess semantic memory and language. The WAIS-R Digit Symbol test

and the Trail Making Test Part A were used to assess psychomotor speed. The number of digit

symbol pairs completed in 90 seconds is used to score the WAIS-R Digit Symbol test. The

Trail Making Test Part B was used to assess executive function. Participants in the Trail Mak-

ing Test were asked to connect a series of numbers (1-26) for part A and a series of alternating

numbers and letters (1-A-2-B) for part B to create a trail. Total time to complete in seconds,

with a maximum of 150s for Trails A and 300s for Trails B, number of commission errors, and

number of correct lines are all outcome measures. The Wechsler Memory Scale-Logical Revi-

sed’s Memory—Story A measures episodic memory. Participants are asked to recall as many

details as possible from a short story containing 25 bits of information after the examiner
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reads it aloud and again after a 30-minute delay, with scores ranging from 0 (no recall) to 25

(complete recall).

MRI segmentation data. Freesurfer is an open-source software suite that can process and

analyze MRI images of the human brain. This Freesurfer dataset [8] gives us the value of volu-

metric data of different parts of the human brain such as the intracranial, total cortex, left and

right hemisphere cortex, subcortical gray, total gray, supratentorial, left and right hemisphere

cortical white matter, and cortical white matter.

Using either FreeSurfer v5.0 or v5.1, T1-weighted pictures were processed. This processing

includes motion correction and averaging of volumetric T1 weighted images, removal of non-

brain tissue using a hybrid surface/watershed deformation procedure, automated Talairach

transformation, segmentation of the subcortical white white matter and deep gray matter volu-

metric structures (including the hippocampus, caudate, putamen, amygdala, and ventricles)

intensity normalization, tessellation of the gray matter white matter boundary, and automated

topology correction. Following the completion of the cortical models, a number of deformable

procedures were performed for further data processing and analysis, including surface infla-

tion, registration to a spherical atlas based on individual cortical folding patterns to match cor-

tical geometry across subjects, parcellation of the cerebral cortex into units with respect to

gyral and sulcal structure, and creation of a variety of surface based data, including maps of

curvature and sulcal depth. In segmentation and deformation procedures, this method uses

both intensity and continuity information from the entire three-dimensional MR volume to

produce representations of cortical thickness, calculated as the closest distance from the white/

gray boundary to the CSF/gray boundary at each vertex on the tessellated surface.

In segmentation and deformation procedures, this method uses both intensity and continu-

ity information from the entire three-dimensional MR volume to produce representations of

cortical thickness, calculated as the closest distance from the white/gay boundary to the CSF/

gray boundary at each vertex on the tessellated surface. Because the maps are generated using

spatial intensity gradients across tissue classes, they are not solely dependent on absolute signal

intensity. The maps generated are not limited to the voxel resolution of the original data and

can detect submillimeter differences between groups. Cortical thickness measurement proce-

dures have been validated against histological analysis and manual measurements. The test-

retest reliability of Freesurfer morphometric procedures has been demonstrated across scanner

manufacturers and field strengths.

Multimodal dataset pre-processing

This research work consists of AD prediction using multimodal data. Here, data-level fusion is

performed for creating multimodal data. For making it multimodal, we have integrated three

different domain datasets which are the clinical data, the MRI segmentation data, or more pre-

cisely, brain MRI segmentation data, and the psychological assessment data. The data fusion

process begins with the integration of three individual datasets. This integration has taken

place in the OASIS website. This website provides the facility to join different domain data of

each patient based on subject ID and session.

The number of instances in each modality. After creating the joined dataset, Psychologi-

cal and Clinical assessments contain 3342 instances of the same participants. But the MRI seg-

mentation dataset contains 3220 instances. So, in the MRI segmentation dataset the number of

missing instances are (3342-3220) = 122. The number of unique participants: 810 (Psychologi-

cal and Clinical) and 799 (MRI segmentation).

Labels in multimodal dataset. In the joined dataset, there are total 34 types of labels. All

34 types of labels can be categorized into 5 major types. Those 5 types are: CN, AD, non-AD,
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uncertain dementia, and others. In Table 2, all 34 types of labels and their 5 major labels are

clearly stated along with number of instances in each label.

Missing data imputation using KNN

Missing data imputation using K-Nearest Neighbors is used here to fill up the missing values.

The training set’s N nearest neighbors are used to compute the mean value for each sample’s

missing values. Two samples are close if the features that neither is missing are close. Table 3

shows the root mean dange value (RMSE) of imputed dataset using different number of neigh-

bors. For 2 neighbors the RMSE value is lower than others. So, the joined or fused dataset is

imputed with 2 neighbors.

Statistical analysis of multimodal dataset

The joined dataset or the multimodal dataset contains total 39 features. The value of mean,

median, mode, and standard deviation of these 39 features are stated in Table 4. It is clear that

the mean, median, and mode of these features are very close to each other except TrailA,

TrailB, WAIS, and weight. As, these feature values are real medical data, small fluctuation

from the expected result is acceptable. Even, Pearson correlation has verified that those fea-

tures are necessary for creating the model. These are the reasons behind considering TrailA,

TrailB, WAIS, and weight.

Table 2. Five major labels, their corresponding labels, and number of instances.

Major Labels Labels Instances

CN CN 2248

AD AD Dementia, AD dem w/depresss- not contribut, AD dem distrubed social- with,

AD dem visuospatial- with, AD dem Language dysf after, AD dem w/PDI after AD

dem not contrib, AD dem distrubed social- prior, AD dem w/PDI after AD dem

contribut, AD dem w/oth (list B) contribut, AD dem w/depresss- contribut, AD

dem Language dysf prior, AD dem Language dysf prior, AD dem w/oth (list B) not

contrib, AD dem w/CVD contribut, AD dem cannot be primary, AD dem Language

dysf with, AD dem w/CVD not contrib, AD dem w/oth unusual feat/subs demt, AD

dem w/depresss contribut, AD dem distrubed social- after, AD dem visuospatial-

after, AD dem w/oth unusual features/demt, and AD dem w/depresss not contribut

669

Non AD Non AD dem- Other primary, Vascular Demt- primary, Incipient Non-AD dem,

Frontotemporal demt. prim, DLBD- primary, Incipient demt PTP, Dementia/PD-

primary, DLBD- secondary, and Vascular Demt- secondary.

106

Uncertain

Dementia

Unc: ques. Impairment, Unc: impair reversible, uncertain possible Non AD

dementia, and uncertain dementia

287

Others Dot, NULL, and 0.5 in memory 26

https://doi.org/10.1371/journal.pone.0294253.t002

Table 3. RMSE value after data imputation using KNN.

Neighbors Number RMSE

2 Neighbors 0.806

3 Neighbors 0.834

5 Neighbors 0.904

https://doi.org/10.1371/journal.pone.0294253.t003
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Feature selection

Though there are 39 features in the multimodal dataset, all these features will not provide same

importance to the prediction. To identify the important features, feature selection operation is

performed on both individual dataset and multimodal dataset. For feature selection, the Pear-

son’s Correlation is used.

Table 4. Statistical analysis of features.

Feature Mean Median Mode Standard Deviation

Logimem 12.25059844 13 13 5.223761346

Digif 8.278874925 8 8 2.094828747

DigiFlen 6.599640934 7 6 1.132351508

Digib 6.199281867 6 6 2.256834687

DigiBlen 4.593357271 4 4 1.306170562

Animals 18.58737283 18 19 6.269373387

Veg 12.88569719 13 12 4.960047458

Traila 40.54697786 33 30 25.57298611

Trailarr 0.153650509 0 0 0.561471563

Trailali 23.87881508 24 24 1.202049764

Trailb 113.0486236 87 300 70.2038606

Trailbrr 0.975613405 0.5 0 2.167214157

TrailBli 23.26675643 24 24 2.978427029

WAIS 49.63749252 52 56 15.29008428

Memunits 11.03291442 12 0 5.826871113

Memtime 15.56687612 15 15 2.771669834

Boston 26.47112507 28 29 4.163700076

IntraCranialVol 1517451.388 1507929.049 1742071.545 183611.7777

lhCortexVol 200197.4593 198379.2069 201312.873 22125.86646

RhCortexVol 201808.1667 199844.7681 202468.9269 22045.56617

CortexVol 201808.1667 199844.7681 202468.9269 22045.56617

SubCortGrayVol 59903.21691 50681 54157 32393.84118

TotalGrayVol 543784.6603 539253.7999 539253.7999 54699.24728

SupraTentorialVol 913624.1604 906140.917 937093.5954 102152.8498

LhCorticalWhiteMatterVol 209097.0537 207586.004 195554.8444 30037.42343

RhCorticalWhiteMatterVol 210485.3262 209180.1004 195338.9511 30144.01554

CorticalWhiteMatterVol 419582.3799 417355.1436 390893.7955 60011.12634

Mmse 27.72770796 29 30 3.318152566

Age At Entry 70.965498 70.21218 66.83641 6.809005959

Commun 0.176615799 0 0 0.415457687

homehobb 0.203171753 0 0 0.461881072

Judgment 0.234290844 0 0 0.447073115

Memory 0.256582885 0 0 0.463565073

Orient 0.192998205 0 0 0.435056211

Perscare 0.092010772 0 0 0.34507961

Apoe 32.26870138 33 33 4.57917215

Sumbox 1.151331538 0 0 2.342166218

Height 65.75523639 66 64 3.72698478

Weight 168.1741472 165 160 36.2197191

https://doi.org/10.1371/journal.pone.0294253.t004

PLOS ONE Explainable AI-based Alzheimer’s prediction and management using multimodal data

PLOS ONE | https://doi.org/10.1371/journal.pone.0294253 November 16, 2023 9 / 26

https://doi.org/10.1371/journal.pone.0294253.t004
https://doi.org/10.1371/journal.pone.0294253


Pearson’s correlation presented in Fig 1 is used to determine whether or not two quantita-

tive variables have a linear connection. As it is based on the method of covariance, it is known

as the best approach of quantifying the relationship between variables. It indicates the size of

the correlation as well as the direction of a linear relationship. Besides, cross-validated Recur-

sive Feature Elimination (RFE) and Boruta feature selection technique is also used initially for

selecting important features. But it is found that these two approaches has its own drawbacks.

RFE is computationally expensive and after running the RFE each time the number of selected

features for ML models keep changing. So, for this research RFE was not a suitable feature

selection technique. Besides, Boruta was not providing high accuracy score. Depending on

these drawbacks, Pearson’s correlation is preferred in this research work.

Table 5 shows various features of three individual datasets which are not important (will be

removed) based on different threshold levels. Here, threshold values are resembling the degree

of similarity between two features. This values range between -1.0 and 1.0. 1.0 means

completely correlated -1.0 means no correlation. In feature selection, there is no need to work

on two features which are strongly correlated. One feature between these two should be

selected to reduce the computation complexity and to minimize the errors. The best perform-

ing threshold value is 0.9 for Clinical dataset. For MRI dataset, the best value is received on 0.9

and 0.95 threshold. For Psychological dataset, the best performance is received on 0.75, 0.8,

0.85, and 0.9 threshold. Non influential features are also selected for multimodal dataset which

are mentioned in the Table 6. After removing CortexVol, CorticalWhiteMatterVol, TotalGray-

Vol, RhCortexVol, and RhCorticalWhiteMatterVol the best performing model is found. for

these features, the threshold value was 0.95.

Model implementation

It is already mentioned that this medical dataset doesn’t contain the same number of data for

each five classes. For creating a balanced dataset, Synthetic Minority Oversampling Technique

(SMOTE) oversampling is used here. One of the most popular oversampling techniques to

address the imbalance issue is SMOTE. By creating minority class samples at random and

duplicating them, it seeks to adjust the distribution of classes. SMOTE creates new minority

instances by combining minority instances that already exist. After oversampling each five

classes contains 2248 instances.

As RF is the best-performing model, the implementation details of RF is mentioned here.

The decision tree classifier serves as the base estimator in this case. Every estimator learns

from a unique bootstrap sample taken from the training set. All features are used by estimators

for training and prediction. There are 100 trees in the forest. Gini is a metric used to assess the

quality of a split. A minimum of two samples are required to split an internal node. Nodes are

enlarged until all leaves have fewer than two samples. A leaf node requires a minimum of one

sample to be present. When determining the optimal split, the square root function is

employed to calculate the number of attributes to examine. The maximum depth of the tree is

20 and the minimum one node can be present as a leaf. The Best-first algorithm is used to

grow the tree. Best nodes are characterized by their relative impurity reduction. When con-

structing trees, bootstrap samples are used. Because the random state is preserved at 42, the

model receives the same test and train sets on each execution. Weight one is meant to be

assigned to all classes.

The training, testing, and 10-fold cross-validation accuracy are presented in the result sec-

tion. 80% data is kept as a training set and the rest is kept as a testing set. For the stratified k-

fold cross-validation procedure, the input dataset is split into k groups of samples with equal

sizes. These samples are known as folds. The prediction function uses k-1 folds for each
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learning or training set, while the remaining folds are used as a testing set. To make sure that

each fold of the dataset contains the same number of observations with a certain label, strati-

fied K-fold cross-validation is performed. Stratified Cross-validation with 10 folds is employed

in this study. The dataset is then divided into ten folds. The first fold is saved for testing the

model on the first iteration, while the remaining folds are used to train the model. The second

Fig 1. Pearson’s correlation heatmap of 39 features.

https://doi.org/10.1371/journal.pone.0294253.g001
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fold is used to test the model on the second iteration, while the remaining folds are utilized to

train the model. Until no fold is left or reserved for the test fold, this process will be repeated.

In each iteration, the testing result will be saved. After the 10 iterations, all the results are aver-

aged to find the model’s final result.

Table 5. Features selection on individual dataset.

Dataset Threshold Features will be removed

Clinical 0.7 Commun, Homehobb, Judgment, Memory, Orient, Perscare, and Sumbox

0.75 Homehobb, Judgment, Memory, Orient, and Sumbox

0.8 Homehobb, Judgment, Memory, Orient, and Sumbox

0.85 Homehobb, Memory, Orient, and Sumbox

0.9 Sumbox

0.95 -

MRI

Segmentation

0.7 CortexVol, CorticalWhiteMatterVol, SupraTentorialVol, TotalGrayVol, LhCorticalWhiteMatterVol, RhCortexVol, and

RhCorticalWhiteMatterVol

0.75 CortexVol, CorticalWhiteMatterVol, SupraTentorialVol, TotalGrayVol, LhCorticalWhiteMatterVol, RhCortexVol, and

RhCorticalWhiteMatterVol

0.8 CortexVol, CorticalWhiteMatterVol, SupraTentorialVol, TotalGrayVol, LhCorticalWhiteMatterVol, RhCortexVol, and

RhCorticalWhiteMatterVol

0.85 CortexVol, CorticalWhiteMatterVol, SupraTentorialVol, TotalGrayVol, LhCorticalWhiteMatterVol, RhCortexVol, and

RhCorticalWhiteMatterVol

0.9 CortexVol, CorticalWhiteMatterVol, TotalGrayVol, RhCortexVol, and RhCorticalWhiteMatterVol

0.95 CortexVol, CorticalWhiteMatterVol, TotalGrayVol, RhCortexVol, and RhCorticalWhiteMatterVol

Psychological 0.7 DigiBlen, DigiFlen, Memunits, TrailB, and WAIS

0.75 DigiBlen, DigiFlen, and Memunits

0.8 DigiBlen, DigiFlen, and Memunits

0.85 DigiBlen, DigiFlen, and Memunits

0.9 DigiBlen, DigiFlen, and Memunits

0.95 -

https://doi.org/10.1371/journal.pone.0294253.t005

Table 6. Features selection on multimodal dataset.

Threshold Features will be removed

0.7 CortexVol, CorticalWhiteMatterVol, DigiBlen, DigiFlen, Memunits, SupraTentorialVol, TRAILB,

TotalGrayVol, WAIS, Commun, Homehobb, Judgment, LhCorticalWhiteMatterVol, Memory, Orient,

Perscare, RhCortexVol, RhCorticalWhiteMatterVol, and Sumbox

0.75 CortexVol, CorticalWhiteMatterVol, DigiBlen, DigiFlen, Memunits, SupraTentorialVol,

TotalGrayVol, Homehobb, Judgment, LhCorticalWhiteMatterVol, Memory, Orient, RhCortexVol,

RhCorticalWhiteMatterVol, and Sumbox

0.8 CortexVol, CorticalWhiteMatterVol, DigiBlen, DigiFlen, Memunits, SupraTentorialVol,

TotalGrayVol, Homehobb, Judgment, LhCorticalWhiteMatterVol, Memory, Orient, RhCortexVol,

RhCorticalWhiteMatterVol, and Sumbox

0.85 CortexVol, CorticalWhiteMatterVol, DigiBlen, DigiFlen, Memunits, SupraTentorialVol,

TotalGrayVol, Homehobb, LhCorticalWhiteMatterVol, Memory, Orient, RhCortexVol,

RhCorticalWhiteMatterVol, and Sumbox

0.9 CortexVol, CorticalWhiteMatterVol, DigiBlen, DigiFlen, Memunits, TotalGrayVol, RhCortexVol,

RhCorticalWhiteMatterVol, and Sumbox

0.95 CortexVol, CorticalWhiteMatterVol, TotalGrayVol, RhCortexVol, and RhCorticalWhiteMatterVol

https://doi.org/10.1371/journal.pone.0294253.t006
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Explainable AI model

Explainable AI is a collection of tools and frameworks designed to assist one to understand

and interpret the predictions made by the ML models. It allows one to debug and improve

model performance and assist to understand the behaviors of the model. SHAP is a game-the-

oretic technique that may be used to explain the output of any machine learning model. It ties

optimal credit allocation to local explanations by employing game theory’s traditional Shapley

values and their related extensions.

A feature value’s Shapley value is its influence to the payout, weighted and totaled across all

conceivable feature value combinations:

�jðvalÞ ¼
X

S�f1;...;pgnfjg

jSj!ðp � jSj � 1Þ!

p!
val S [ fjgð Þ � valðSÞð Þ ð1Þ

where p is the quantity of features, x is the vector of feature values for the instance that needs

to be explained, and S is a subset of the features used in the model. The prediction for feature

values in set S that are prioritized above features not in set S is known as val (S):

valxðSÞ ¼
Z

f̂ ðx1; . . . ; xpÞdPx=2S � EXðf̂ ðXÞÞ ð2Þ

One must execute numerous integrations for each missing feature S. Here’s an example:

testing the prediction for the coalition S comprising of feature values x1 and x3 using the

machine learning model with four features x1, x2, x3, and x4:

valxðSÞ ¼ valxðf1; 3gÞ ¼
Z

R

Z

R
f̂ ðx1;X2; x3;X4ÞdPX2X4

� EXðf̂ ðXÞÞ ð3Þ

This is analogous to the linear model’s feature contributions. The Shapley value is the sole

attribution technique that meets the qualities Efficiency, Symmetry, Dummy, and Additivity,

all of which can be used to define a fair compensation. So, the Shapley value of a variable (or

multiple variables) for a specific individual is its contribution to the difference between the

value predicted by the model and the mean of all individual predictions. To accomplish this:

Step 1: Determining Shapley values for a certain individual. Simulate various value combi-

nations for the input variables.

Step 2: Measure the difference between the expected value and the average of the predic-

tions for each combination. As a result, the Shapley value of a variable corresponds to the

mean of the value contributions based on the various combinations. Tree SHAP is a fast and

accurate approach for estimating SHAP values for tree models and ensembles of trees under a

variety of feature dependence assumptions. All of the decision-making features and their per-

centages are examined and viewed in this research work using the SHAP Tree Explainer.

Through this technique, a doctor or a patient can easily understand the reason for the model’s

decision, as well as the decision-making features and percentage.

Proposed AD prediction model architecture

As previously stated, we have performed data-level fusion on three different data domains

which are clinical data, MRI segmentation data, and psychological assessment data. So, after

completing the data-level fusion, the most popular shallow machine learning models RF, LR,

Decision Tree (DT), Multi Layer Perceptron (MLP), KNN, Gradient Boosting (GB), Adaptive

Boosting (AdaB), SVM, and Naive Bayes (NB) are trained and tested. It is discovered that RF
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is the best performing algorithm for five class prediction. Fig 2 shows the architecture of the

classification model.

Proposed Alzheimer’s patient management framework

To provide constant observation and care to the AD positive patients, this paper proposes a

framework of a GPS-based wearable sensor band that can perform management and complete

monitoring. To eliminate data processing delays and provide instant responses, mist, fog, and

cloud layer based patient monitoring architecture is proposed here. The system itself will

choose the mist, fog, or cloud layer depending on the amount of required data processing

resources. This proposed patient management architecture is depicted in detail in the Fig 3.

This entire management process can be broken down into five layers, as shown below.

Perception layer. The perception layer is the lower most layer, which is capable of captur-

ing the AD patient’s raw data using wearable sensor band. To make this band, one will need an

optical heart rate sensor, non-invasive blood glucose monitoring sensor, gyroscope, blood

pressure monitoring sensor, temperature sensor, flex sensor, and GPS tracker [21].

Fig 2. Architecture of the proposed AD prediction model.

https://doi.org/10.1371/journal.pone.0294253.g002

Fig 3. Alzheimer’s patient management framework.

https://doi.org/10.1371/journal.pone.0294253.g003
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a. Optical heart rate sensor: An optical heart rate sensor measures pulse waves, which are

variations in the volume of a blood vessel caused by the heart pumping blood. A green

LED and a set of optical sensors can detect pulse waves by measuring blood volume

changes. This sensor monitors the heart condition of Alzheimer’s patients [22].

b. Non-invasive blood glucose monitoring sensor: The non-invasive blood glucose moni-

toring sensor uses photo thermal detection technique. A quantum cascade laser will emit

laser and the glucose cell in blood will absorb the laser. Due to this absorption, the blood

temperature will increase and this increment of temperature will detect the glucose level

in blood.

c. Gyroscope: A gyroscope sensor measures and records the Orientation as well as the

angular velocity of a person [23]. The MPU-6050 devices combine a 3-axis gyroscope and

a 3-axis accelerometer on the same silicon die, together with an onboard Digital Motion

Processor. The function of a gyroscope sensor is influenced by the core principle of

momentum conservation. It works by preserving angular momentum. In a gyroscope

sensor, a spinning wheel or rotor wheel is mounted on a pivot [24]. The pivot permits the

rotor to rotate on a single axis, which is referred to as a gimbal.

d. Blood pressure monitoring sensor: Blood pressure sensors are pressed against the skin to

calculate the pressure pulse wave and evaluate blood pressure [25].

e. Temperature sensor: Temperature sensors are used in medicine to evaluate patients’

body temperatures. The working principle of temperature sensor is the voltage across the

terminals of the diode [26]. The temperature rises as the voltage rises, resulting in a volt-

age drop between both the base transistor terminals and emitter of a diode [27].

f. Accelerometer: An accelerometer sensor is a tool that measures the acceleration of any

body or object in its instantaneous rest frame. [28].

g. GPS tracker: A Global Positioning System (GPS) tracker is essential for AD patients with

dementia [29]. If an Alzheimer’s patient goes missing, this GPS tracker will assist to locate

him [30].

h. Mini speaker: A mini speaker will assist in providing hourly reminders to the Alzhei-

mer’s patient. This mini speaker will work in tandem with the LCD to benefit Alzheimer’s

patients.

i. LCD: The wearable band should include a Liquid Crystal Display (LCD) to display

hourly reminders. For example, medication reminders and daily activity reminders [31].

Mist layer. The framework now includes a mist layer for processing time-critical data of

patients. Mist computing works on the network’s edge with the help of actuator and sensor

controllers and exists actively within the network fabric. This layer is in charge of basic sensor

pre-processing such as filtering, fusion, and data aggregation. This layer will also include a

comparator and decision-making process. The necessary requirements for processing sensor

data are estimated after they have been pre-processed. A comparator will determine whether

the required resources are equal or more than to the mist resources. If it is equal or less than,

data are processed further in this layer; otherwise, data are passed to the fog layer [32]. The

output of the mist layer is routed to a rule-based system, which determines the necessary activ-

ity, such as informing family members and announcing emergency medication.
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Fog layer. The fog layer proceeds application services and computing resources closer to

the edge, resulting in lower response latency. The fog layer works on those sensor data that the

mist layer does not process. It also receives processed data from the mist layer for further cal-

culation. The output of the fog layer is also routed to a rule-based system, which determines

the required activity, such as hourly reminders.

Cloud layer. The mist, fog, and the application layer can interact with the cloud layer.

Physical data from AD patients are processed in the mist and fog layers before being sent to

the cloud layer for long-term storage and advanced analytics. This cloud layer is linked to a

rule-based system as well.

Application layer. The final layer is the application layer, which displays critical informa-

tion to the patient, family members, caregivers, doctors, and hospital administration. The fol-

lowing are some application layer features.

a. Emergency medication announcement: In critical events, the patient will receive a medi-

cation announcement. Assume the mist layer works on heart rate data from the sensor

and determines the patient is in an emergency situation. The mist layer will then immedi-

ately pass these data to fog layer for more verification and the fog layer announces the

required information about medicine to the patient.

b. Hourly reminder to patients: This model will provide Alzheimer’s patients with hourly

reminders (e.g., reminders for taking medicines, reminders for daily activity). The hourly

reminder is sent to the patients’ wearable band via cloud Memory.

c. Notification to doctors and caregivers: If a patient’s condition worsens, caregivers and

doctors will be notified. Assume that the critical patient’s body sensor data requires some

additional processing. In that case, the data is sent to the fog layer, and an alert is sent to

the doctor and caregiver in the event of an emergency.

d. Notification to family members: Patients’ family members will receive health updates. If

the patient is in a critical condition, the mist layer will notify the patient’s family member.

e. Emergency hospital facility: As previously stated, processed mist and fog data will be sent

to the cloud layer for advance processing and long-term storage. Assume the patient is in

a critical condition. In that case, the cloud will use GPS to compute the nearest hospital

information and offer emergency ambulance service as well as emergency care in the hos-

pital. Doctors and caregivers can access each patient’s long-term medical records from

the cloud database.

Performance analysis

Performance analysis using the individual dataset

Table 7 depicts the individual dataset performance for various models. For Clinical, MRI seg-

mentation, and Psychological datasets 0.9 threshold have provided the highest accuracy. It is

observed that the RF model provides best accuracy than others for all three datasets. All these

results are obtained for five class classification.

Performance analysis using the multimodal dataset

From the Table 8 it is clear that for five class prediction, RF is the best performing model if we

use the multimodal dataset when the feature selection threshold is 0.95. This means if the cor-

relation value of feature is over 0.95 then that feature is not considered. Here, the used features
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are: Logimem, Digif, DigiFlen, Digib, DigiBlen, Animals, Veg, Traila, Trailarr, Trailali, Trailb,

Trailbrr, TrailBli, WAIS, Memunits, Memtime, Boston, IntraCranialVol, lhCortexVol, Sub-

CortGrayVol, SupraTentorialVol, LhCorticalWhiteMatterVol, Mmse, Age At Entry, Com-

mun, Homehobb, Judgment, Memory, Orient, Perscare, Apoe, Height, Weight, and Sumbox.

The training, testing, and stratified 10 fold cross validation accuracy is mentioned in Table 8.

The 10 fold cross validation accuracy score of multimodal data is higher than the individual

dataset. Here, the cross validation accuracy is used because it helps to avoid over-fitting of a

model. From the confusion matrix shown in Fig 4 of the RF classifier we can calculate the pre-

cision, recall, and F1-score of this model. The training, testing, cross validation accuracy, pre-

cision, recall, F1-score, and area under coverage (AUC) values of the RF model are 100%,

98.84%, 98.81%, 98.94%, 98.79%, 98.75%, and 99.97%, respectively.

Performance comparison with recent works

Table 9 shows the accuracy comparison between various recent similar works. It is observed

that RF is used by El-Sappagh et al. [13]. But their dataset is different than ours. However, for

doing a model to model comparison, this work is compared with ours. It is observed that the

model of El-Sappagh et al. had achieved 93.95% and 87.08% accuracy in first and second layer,

respectively. Whereas, our method achieved 98.81% accuracy. Using Modified RF model, Ali

et al. [17] achieved 96.43% accuracy on OASIS-2 dataset. Amrutesh et al. [19] used the text

data from OASIS dataset and got 92.13% accuracy on RF. Training and testing the RF model

on MRI OASIS data Baglat et al. [16] and Kavitha et al. [18] achieved 86.8% and 86.92% accu-

racy. The version of OASIS dataset was not mentioned in their work. The accuracy of Buvari

et al. [20] was 74.891% while using the MRI and segmentation dataset from OASIS-3. So, it is

Table 7. 10 fold cross-validation accuracy of various ML models using individual datasets.

Dataset Features RF DT LR KNN MLP GB AdaB SVM XGB NB

Clinical Mmse, AgeatEntry, Commun, Homehobb, Judgment,

Memory, Orient, Perscare, Apoe, Height, and Weight

98% 95.02% 48.6% 88.8% 70.15% 48.39% 48.39% 45.05% 89.02% 62.4%

MRI IntraCranial- Vol, lhCortexVol, SubCortGrayVol,

SupraTentorialVol, and LhCorticalWhiteMatterVol

88.85% 85.38% 32.78% 82.03% 21.62% 71.89% 44.21% 24.47% 67.22% 26.64%

Psychological Logimem, DigiF, DigiB, Animals, Veg, TrailA, TrailArr,

TrailAli, TrailB, TrailBrr, TrailBli, WAIS, Memtime, and

Boston

94.21% 81.4% 43.01% 85.49% 54.6% 82.15% 55.9% 26.65% 77.17% 36.13%

https://doi.org/10.1371/journal.pone.0294253.t007

Table 8. Performance analysis on multimodal dataset.

Features Performance Metrics RF DT LR KNN MLP GB AdaB SVM NB

Sumbox, Memory, Judgment, Orient,

Memunits,

Training Accuracy 100% 100% 30.52% 89.13% 25.82% 97.69% 54.61% 29.47% 40.28%

Logimem, SubCortGrayVol, Homehobb,

Commun,

Testing Accuracy 98.84% 94.217% 31.58% 82.206% 25.35% 96.307% 54.4% 29.53% 40.48%

MMSE, TrailBrr, DigiF, TrailAli,

IntraCranialVol, Veg, TrailB, DigiB, DigiFlen,

Stratified 10-fold Cross

Validation Accuracy

98.81% 94.92% 31.28% 83.825% 25.79% 95.65% 55.57% 25% 40.24%

TrailBli, TrailArr, AgeatEntry, Precision 98.94% 94.51% 30.56% 82.35% 46.63% 96.32% 52.2% 24.06% 41.7%

Perscare, SupraTentorialVol, Animals, Recall 98.79% 94.41% 31.81% 82.15% 32% 96.24% 54.61% 21.88% 40.58%

LhCortical-WhiteMatterVol, LhCortexVol,

Apoe,

F1-score 98.75% 99.06% 28.70% 81.92% 29% 96.23% 47.49% 12.22% 40.47%

DigiBlen, Height, Boston, Memtime, Weight,

TrailA, and WAIS

AOU 99.97% 96.5% 63% 95.8% 53.4% 99.7% 79% 58.3% 75.41%

https://doi.org/10.1371/journal.pone.0294253.t008
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clear that our approach is providing better performance than others with a 10-fold cross-vali-

dation accuracy of 98.81%.

Explain ability of the model

Fig 5 shows the five-class RF classification model’s mean SHAP value of all 35 features. In this

RF classification model, the top 15 influential features are Memory, Sumbox, Judgment,

Homehobb, Orient, IntraCranialVol, Commun, Mmse, Perscare, Memunits, SupraTentorial-

Vol, Apoe, LhCortexVol, Veg, and Logimem. As it is a multimodal dataset, among the top 15

influential features Sumbox, Memory, Judgment, Homehobb, Orient, Commun, Mmse, Pers-

care, and Apoe, come from the Clinical dataset. Features named Memunits, Logimem, and

Veg came from the Psychological dataset. IntraCranialVol, SupraTentorialVol, and LhCortex-

Vol belonged to the MRI segmentation dataset. It is also shown in Fig 5 that, for AD predic-

tion, Homehobb is the most dominant feature. Other prominent features for AD prediction

Fig 4. Confusion matrix of the multimodal data using RF classifier.

https://doi.org/10.1371/journal.pone.0294253.g004

Table 9. Accuracy comparison between various recent similar works.

Author Dataset Model Accuracy

El-Sappagh et al. [13] Multi-modal data from ADNI RF 93.95% and 87.08%

Ali et al. [17] OASIS-2 Modified RF 96.43%

Amrutesh et al. [19] Text values from OASIS RF 92.13%

Baglat et al. [16] MRI data from OASIS RF 86.8%

Kavitha et al. [18] MRI data from OASIS RF 86.92%

Buvari et al. [20] MRI and segmentation data from OASIS-3 CNN and NN 74.891%

Our Method Multi-modal data from OASIS-3 RF 98.81%

https://doi.org/10.1371/journal.pone.0294253.t009
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are Orient, Judgment, Sumbox, Memory, Memunits, Commun, MMSE, IntraCranialVol, etc.

Similarly, features for other classes can also be calculated.

Table 10 presents the top 5 Features and their influence value on five classes using the RF

classifier. For Memory, mean(SHAP) is about 12.33% on AD (Class 1), 42.47% on CN (Class

0), 21.92% on Uncertain (Class 3), 6.85% on Non-AD (Class 2), and 16.44% on Others (Class

4). It means Memory has more influence on predicting CN rather than the rest of the classes.

For Memory, the second, third, fourth, and fifth influenced classes are Uncertain, Others, AD,

and Non-AD classes, respectively. The Memory is the most influential feature among all 35

features. Similarly for Sumbox, mean(SHAP) is about 14.5% on AD (Class 1), 30.43% on CN

(Class 0), 24.64% on Uncertain (Class 3), 11.6% on Non-AD (Class 2), and 18.84% on Others

(Class 4). It means Sumbox has more influence on predicting CN rather than the rest of the

classes. For Sumbox, the second, third, fourth, and fifth influenced classes are Uncertain, Oth-

ers, AD, and Non-AD classes, respectively. Also, Sumbox is the second most influential feature

among all 35 features. The importance and influence of other features can also be described in

a similar manner.

Class specific features. Each dot in Fig 6 indicates how a specific feature for a given

instance affects a specific class. Here, it is shaded based on how much each feature contributes

to the overall influence of the model. Red denotes a high feature value, purple is a mid-range

value, and blue is a low feature value. According to how it affects the model for that particular

class, each feature is listed. A feature has a positive impact on the model for that class if its tail

extends farther to the right from the neutral position (0.0). The negative impact on the model

is represented by feature values from 0.0 to the left. To ensure simplicity here in Table 6 only

positively impactful features are mentioned. By knowing positively impactful features, one can

Fig 5. Features and their influence in each class (SHAP summary bar chart).

https://doi.org/10.1371/journal.pone.0294253.g005

Table 10. Top 5 features and their percentage of each class for the RF classifier model.

Features AD CN Uncertain Non-AD Others

Memory 12.33% 42.47% 21.92% 6.85% 16.44%

Sumbox 14.5% 30.43% 24.64% 11.6% 18.84%

Judgement 21% 16% 20% 18% 24%

Homehobb 28.57% 10.39% 24.67% 23.37% 12.99%

Orient 29.85% 15% 28.9% 16.42% 12%

https://doi.org/10.1371/journal.pone.0294253.t010
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automatically identify negatively impactful features. Besides, Table 11 also shows the reasons

behind the classification of each class. Understanding the specific function of each feature both

by itself and in conjunction with other characteristics is therefore crucial for comprehending

the class.

Fig 6. Features and their influence for Five classes (SHAP dot plot).

https://doi.org/10.1371/journal.pone.0294253.g006

Table 11. Name of the features which are positively influencing the RF model for each class.

Class High Low Identify

CN MMSE and DigiFlen Memory, Sumbox, Judgment, Orient,

Homehobb, TrailBrr, and Weight

Tail of TrailBrr in the negative side is larger than

the positive side

AD Homehobb, Judgement, Sumbox, Orient, Memory,

AgeatEntry, Commun, Veg, Animals, TrailBli,

DigiFlen, and WAIS

Memunits, MMSE, Logimem,

IntraCranialVol, SupraTentorialVol,

Perscare, LhCortexVol, SubCortGrayVol,

TrailA, and TrailB

High value on the positive side: Veg, Animal,

TrailBli, DigiF, WAIS. Low value on the positive

side: Memunits, MMSE, Logimem, Boston, and

TrailA. Low value of Apoe in the negative side.

Besides, Homehobb and Judgment are common for

AD and Non-AD. So, if the Homehobb is the best

influencing feature then the class will be AD.

Non-AD Judgment, Homehobb, Sumbox, Orient, Perscare,

Memory, Commun, Memunit, MMSE, TrailA,

TrailB, LhCortexVol, SubCortGrayVol, Memtime,

TrailBrr, TrailAli, and TrailArr

Veg, Apoe, and WAIS Judgment, Perscare, Memory, and Orient are

common for AD and Non-AD. So, if the Judgment

value is very much positively influenced then it will

be Non-AD Class. The long tail of the lower value

of Apoe in the positive side will increase the risk of

Non-AD.

Uncertain IntraCranialVol, DigiB, and DigiBlen Sumbox, Homehobb, and Judgment Features such as Sumbox and Memory have very

high feature values in the neutral position (0.0). On

the positive side of the axis, Memory magnitude is

in mid-level (purple colored).

Others MMSE, DigiB, DigiBlen, and Apoe TrailBrr and IntraCranialVol DigiB, and DigiBlen are common for Uncertain and

Others. If the value of DigiB and DogibLen are in

Mid-level (purple) then it is Others. Otherwise, they

will be on a High level. IntraCranialVol is common

for Others and CN. If IntraCranialVol is positively

influenced then it is the Others class.

https://doi.org/10.1371/journal.pone.0294253.t011
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For CN the feature values of Memory, Sumbox, Judgment, Orient, Homehobb, and Pers-

care are low and for these features, the model is positively influenced. Besides, MMSE and

DigiFlen values are high on the positive side. Using these characteristics CN class can be classi-

fied easily. Homehobb, Judgement, Sumbox, Orient, Memory, AgeatEntry, Commun, Veg,

Animals, TrailBli, DigiFlen, and WAIS are the key influenced features for prediction AD and

feature value of these are High and the model is a positive influence for these features. Very

highly positive feature values of Memory and Orient are the key identifying factors for AD. So,

to uniquely identify AD following a combination of features are important. High value on the

positive side: Veg, Animal, TrailBli, DigiF, WAIS. Low value on the positive side: Memunits,

MMSE, Logimem, Boston, and TrailA. The low value of Apoe in the negative side.

In order to identify the Non-AD class, the following combination is appropriate. The high

value of Judgment, Homehobb, Sumbox, Orient, Perscare, Memory, Commun, Memunit,

MMSE, TrailA, TrailB, LhCortexVol, SubCortGrayVol, Memtime, TrailBrr, TrailAli, and Trai-

lArr will influence the model in a positive way. The low values of Veg, Apoe, AgeatEntry, and

WAIS are also influential for Non-AD prediction. Here, some features are common for AD

and Non-AD prediction e.g., Sumbox, Memory, Homehobb, Judgement, and Orient. If the

best influential feature is Judgement then the class will be Non-AD. To uniquely identify Non-

AD following combination of features are important. High value on the positive side: Memu-

nit, LhCortexVol, MMSE, TrailB. A low value on the positive side: Apoe, Veg, and WAIS. The

Low value of Apoe on the positive side will increase the risk of Non-AD.

The class Uncertain can be very easily identified if the very high magnitude of Sumbox and

Memory is in the neutral position (0.0). Besides the magnitude value of Memory in the positive

axis is purple in color which means this magnitude is at Mid level. The class Others can be

identified if the TrailBrr has a low magnitude on both positive sides. Whereas TrailBrr has a

larger tail on the negative side for the CN class. Others and CN both have IntraCranialVol. If

IntraCranialVol is positively modified, the Others class is affected.

Features for individual Participants. Waterfall plots are intended to show justifications

for certain predictions on any specific participant or subject. The expected feature value of the

model output appears at the bottom of a waterfall plot, and each row demonstrates how the

negative (blue) or positive (red) contribution of each feature changes the value from the

expected results E[f(x)] over the dataset to the model output f(x) for this prediction.

In Fig 7 it is interesting that having the value of Memory = 0, Sumbox = 0, Orient = 0, Judg-

ment = 0, Homehobb = 0, Commun = 0, MMSE = 24.5, IntraCranialVol = 1727701.242, and

DigiB = 5; increases this particular person’s probability to be in CN class. Here, each feature is

contributing positively and the overall prediction score is 99%. Fig 8 shows that the model’s

prediction score for classifying AD is 98%. Here, the important features and their scores are

Memory = 1, Sumbox = 3.513, Judgment = 0551, Homehobb = 0.654, DigiFlen = 6.103, Ori-

ent = 0.551, Commun = 0.654, Height = 70.974, and Age at entry = 71.704. These features are

contributing positively.

Similarly, for Non-AD classification in Fig 9, Judgment, Perscare, Homehobb, Sumbox,

IntraCranialVol, etc features are positively influencing the model and the prediction accuracy

is 96%. The Figs 10 and 11 are showing the features and their positive influence on Uncertain

and Others, respectively. These models’ prediction values are 97% and 97% for Uncertain and

Others, respectively.

Clinical evidence

To understand and measure level the significance of the conclusion that Memory, Sumbox,

Judgment, Homehobb, and Orient are the most important features for predicting five class

PLOS ONE Explainable AI-based Alzheimer’s prediction and management using multimodal data

PLOS ONE | https://doi.org/10.1371/journal.pone.0294253 November 16, 2023 21 / 26

https://doi.org/10.1371/journal.pone.0294253


predictions, the t-test is done and the p-value is calculated. Here, the Null Hypothesis was

—“Memory, Sumbox, Judgment, Homehobb, and Orient are not contributing to predict AD.”

The Alternative Hypothesis was—“Memory, Sumbox, Judgment, Homehobb, and Orient are

contributing to predict AD”. For all classes, the p-values of these features were less than 0.001.

For the AD class, the p-values of Memory, Sumbox, Judgment, Homehobb, and Orient are

0.079,.00000091, 0.00064, 0.00072, and 0.0000095 respectively. As the p-values are less than the

significance value of 0.05, it can be stated that the Null Hypothesis is rejected and the Alterna-

tive Hypothesis is accepted. So, now it is evident that Memory, Sumbox, Judgment, Home-

hobb, and Orient are the most contributing factors for predicting AD.

Conclusion

This study proposes an explainable multimodal approach for predicting AD. This multimodal

approach consists of data-level fusion on three datasets from three different genres. ADRC

clinical data, MRI segmentation numeric data, and psychological data from the OASIS-3

repository are used here. The feature selection operation is performed here to improve the ML

Fig 7. Features and their influence for a participant with CN class (SHAP waterfall plot).

https://doi.org/10.1371/journal.pone.0294253.g007

Fig 8. Features and their influence for a participant with AD class (SHAP waterfall plot).

https://doi.org/10.1371/journal.pone.0294253.g008
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process and increase the predictive power of ML algorithms by finding the important variables

and eliminating the redundant and irrelevant features. This multimodal approach provides

98.81% accuracy for five classifications using an RF classifier. Whereas using clinical, psycho-

logical, and MRI segmentation data the achieved accuracies are 98.0%, 94.21%, and 88.85%. So

it is clear that the usage of multimodal dataset can bring a better-performing AD prediction

model. To achieve the trustworthiness of the predictions of this model, the SHAP explainer is

used here, and all the decision-making features along with their values are displayed. From the

outcome of the explainer, it is clear that Judgment, Memory, Homehobb, Orient, and

Sumbox are the most important features. Even for perfect decision-making, features of all

three individual datasets played an important role. This work also provided an entire architec-

ture for AD patient management and 24/7 monitoring. One limitation of this work is that the

effectiveness of the proposed AD patient management architecture is not evaluated. In the

future, this proposed patient management system should be implemented and evaluated in

real life. An efficient model can be developed that will give early AD prediction and prediction

Fig 9. Features and their influence for a participant with Non-AD class (SHAP waterfall plot).

https://doi.org/10.1371/journal.pone.0294253.g009

Fig 10. Features and their influence for a participant with Uncertain class (SHAP waterfall plot).

https://doi.org/10.1371/journal.pone.0294253.g010
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on different AD stages. To ensure the multimodality of the dataset at a robust level, demo-

graphic data, text data, numerical data, and image data could also be used.
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