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Abstract

Lung cancer makes up one-fourth of all cancer-related mortality with the highest mortality

rate among all cancers. Despite recent scientific advancements in cancer therapeutics, the

5-year survival rate of lung adenocarcinoma (LUAD) cancer patients remains below 15 per-

cent. It has been suggested that the high mortality rate of LUAD is linked to the acquisition of

progenitor-like cells with stem-like characteristics that assist the whole tumor in regulating

immune cell infiltration. To examine this hypothesis further, this study mined several data-

bases to explore the presence of stemness-related genes and miRNAs in LUAD cancers.

We examine their association with immune and accessory cell infiltration rates and patient

survival. We found 3 stem cell-related genes, ORC1L, KIF20A, and DLGAP5, present in

LUAD that also correlate with changes in immune infiltration rates and reduced patient sur-

vival rates. Additionally, the modulation in myeloid-derived suppressor cell (MDSC) infiltra-

tion and miRNA hsa-mir-1247-3p mediated targeting of tumor suppressor SLC24A4 and

oncogenes RAB3B and HJURP appears to primarily regulate LUAD patient survival. Given

these findings, hsa-mir-1247-3p and/or its associated gene targets may offer a promising

avenue to enhance patient survivability.

Introduction

Lung cancer corresponds to 25% of all cancer deaths [1], the greatest mortality rate among all

cancers [2]. The two most common types of lung cancer are lung adenocarcinoma (LUAD)

and lung squamous cell carcinoma (LUSC) [3], with LUAD recently replacing squamous cell

cancer as the most prevalent non-small cell cancer in the United States. Despite recent scien-

tific advancements in the development of anti-cancer therapeutics, the 5-year survival rate of

LUAD cancer patients remains less than 12% to 15% [4].

One hypothesis for the high mortality rate of LUAD is its ability to evade the body’s

immune system [5]. Cancer progression is marked by the de-differentiation of tissue-specific
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cells and acquisition of progenitor-like cells with stem-like characteristics. These cancer stem

cells (CSC) [6] are then able to assist the whole tumor [7] with proliferation, progression and

propagation [8]. Moreover, stem cells and CSCs in cancers correlate with the rate and type of

immune responses [9], tumor metastasis [10], multi-drug resistance [11], and low cancer

patient survival [12, 13]. The relationship between CSCs, stem cell-related genes, and cancer

therapeutics has been widely investigated in a number of cancers with respect to potential bio-

markers [14, 15], the tumor microenvironment (TME) [15, 16], and immune cell infiltration

[17, 18]. CSCs have also been shown to be resistant to traditional therapies, correlating with

enhanced epithelial to mesenchymal (EMT) properties, reduced DNA repair mechanisms,

enhanced expression of ATP-binding cassette (ABC) membrane transporters, activation of

several survival signaling pathways, and increased immune evasion [19].

Because immune cell infiltration affects cancer progression [20–22], immune cells have

been proposed as possible delivery vehicles for gene therapy [23]. HSCs can infiltrate tumors

to fight disease progression, but exhibit only limited infiltration in lung tumors [24]. Con-

versely, immune cells that enable cancer progression include MDSCs that can suppress T cell

activation, induce other immune-suppressive cell populations, regulate inflammation, and

promote the switching of the immune system to tolerate tumor growth [25, 26], and Th2 T cell

CD4+ (Th2) cells promotes angiogenesis and inhibit cytotoxic T-cell immune responses [27].

Th2 cells regulate humoral immune response and produce interleukin 4 and 10 [28], which in

turn reduces the normal Th1 cytotoxic activity [28] that can kill cancer cells [29]. Moreover, a

negative relationship between cancer patient survival probability and Th2 infiltration rates has

been demonstrated in LUAD patients [22, 30].

In addition to immune cell infiltration, the production of inflammatory molecules and

other changes in gene expression and microRNAs (miRNAs) can act as a key cell signaling

molecules in cancer initiation and metastasis [31]. miRNAs can change gene expression by

inhibiting or promoting mRNA translation, stability, or degradation [32]. Therefore, changes

in expression levels of miRNA can promote or inhibit tumorigenesis by altering the expression

of tumor suppressors and oncogenes [33, 34]. Most recently, CSC-associated drug resistance

and metastasis are being specifically targeted (reviewed in [35]) as potential treatment options.

Current strategies for targeting CSCs in cancer include small molecule inhibitors, immuno-

therapy, microRNA mediated inhibitors, epigenetic methods as well as targeting CSC niche-

microenvironmental factors and differentiation.

To capture and integrate the long list of potential factors associated with tumor progression

and patient survivability, bioinformatics methods are gaining traction in the study of large

gene sets, including stem cell-related gene in cancer cells [10], aimed at identifying new thera-

pies for treating resistant cancers. Malta et. al, used an innovative one-class logistic regression

(OCLR) machine-learning algorithm [36] to extract transcriptomic and epigenetic feature sets

derived from pluripotent stem cells and differentiated cells, and found biological mechanisms

associated with a dedifferentiated oncogenic state, called the stemness index. Two independent

stemness indices were found, a methylated DNA stemness index (mDNAsi) highlighted the

epigenetic features of the cells and a messenger RNA stemness index (mRNAsi) indicating

gene expression [10]. The associations between the two stemness indices highlighted novel

oncogenic pathways, somatic alterations, miRNAs and transcriptional regulatory networks,

and revealed a strong negative correlation between cancer stemness and infiltrating immune

cells in the tumors [10]. These advancements in bioinformatics methods, stemness index has

been applied to identify key biomarkers and potential therapeutic strategies associated with

cancer [30, 37–42].

Using the recently reported stem cell-related biomarkers in cells from LUAD patients [30,

43, 44]. We explored the relationship between stemness related gene and miRNA expression,
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and immune infiltration rates in the TMEs of LUAD patients and patient survival probability.

We found that the increased expression of stemness related genes in LUAD correlated with

reduced immune cell infiltration and reduced patient survivability. We also identified modula-

tion of MDSC infiltration and hsa-miR-1247-3p expression as a key regulators in LUAD

patient survival rates, potentially biomarkers for diagnoses and treatment in LUAD patients.

Methods

Data collection

We used 109 stem cell-related genes indicating tumor stemness from cancer transcriptomes

using single-sample gene set enrichment analysis (ssGSEA) from cancer transcriptomes [9].

Gene and miRNA expression data of 537 LUAD tumor and 59 normal samples were collected

from The Cancer Genome Atlas (TCGA) database [45], and two more microarray gene expres-

sion datasets were obtained from GEO database [46] (GSE ID: GSE40419 and GSE31210) and

used as a validation cohort for gene differential expression test. Here GSE40419 contains 87

tumor samples and 77 normal samples, whereas GSE31210 contains 226 tumor samples and

20 normal samples. Tumor patient cancer stage (I, II, III, and IV), patient age, and LUAD spe-

cific patients survival duration (in months) were collected from cBioPortal [47].

Differential expression test

A differential expression test of TCGA gene and miRNA expression data was performed using

DeSeq2 [48] to detect differentially expressed genes and miRNA in LUAD cancer. Limma [49]

was used to perform differential expression test on microarray gene expression data obtained

from GEO database. Differentially expressed genes and miRNA were identified using Benja-

mini and Hochberg (BH) adjusted p-value cutoff < = 0.05 and log2 foldchange (LFC) >2 or

LFC < –2. Here, the foldchange in gene and miRNA expression corresponds to the ratio

between expression in cancer compared with normal samples.

Univariate Cox-proportional hazard model-based survival analysis

Cox-proportional hazard model [50] was implemented to calculate a hazard ratio, which cor-

responds to the relationship between the change in expression of a gene in cancer samples and

patient survival probability. A hazard rate is defined as the likelihood of experiencing a hazard-

ous event, such as increased disease progression or death, during a defined duration time [50].

We divided patient clinical assessment and gene expression data into high and low gene

expression groups and calculated a hazard rate for both groups. A hazard ratio was then calcu-

lated from the hazard rate obtained from high expression group and low expression groups. A

hazard ratio greater than 1.0, with adjusted p-value less than 0.05, indicated a reduced proba-

bility of patient survival in the group containing higher expression of stemness genes. This

step, known as survival analysis, was performed using Timer2.0 [51]. The p-values obtained

from survival analysis were adjusted for multiple tests using Benjamini and Hochberg method.

The genes with adjusted p-value less than 0.05 were selected as markers associated with the

loss of patient survival in LUAD for downstream analysis.

Immune infiltration test

Immune infiltration profile and its association with gene expression in LUAD patient samples

were obtained from Timer2.0 (http://timer.cistrome.org/) [51], a comprehensive resource that

includes data on immune and accessory cell infiltration calculated using TCGA gene expres-

sion data through various computational methods such as Timer [52], TIDE [53], MCP-
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counter [54], quanTIseq [55], xCell [56], CIBERSORT [57], Epic [58], and immunedeconv

[59]. Computationally predicted LUAD tumor infiltration rate of a total of 32 immune and

accessory cell types were examined in this study including endothelial cell, cancer associated

fibroblasts, hematopoietic stem cells (HSCs), memory B cells, naïve B cell, plasma B cell, naive

T cell CD4+, central memory T cell CD4+, effector memory T cell CD4+, Th1 T cell CD4+

(Th1), Th2, naive T cell CD8+, central memory T cell CD8+, effector memory T cell CD8+,

Tregs, neutrophils, monocytes, macrophage M0, macrophage M1, macrophage M2, myeloid

dendritic cells, plasmacytoid dendritic cells, natural killer (NK) cells, mast cells, common lym-

phoid progenitors, common myeloid progenitors, granulocyte-monocyte progenitor, eosino-

phils, T cell follicular helper, T cell gamma delta, natural killer T cell, myeloid derived

suppressor cells (MDSCs). Here, immune cells with correlation greater than 0.6 or less than

-0.6, and p-value < = 0.05, were used as a selection cutoff to identify highly correlated gene

expression and immune cell infiltration rate pairs. Cox-proportional hazard model test and

Kaplan-Meier curve calculation results were also obtained from Timer2.0 to test the relation-

ship between high and low immune cell infiltration rates and LUAD cancer patient survival.

Identification of miRNAs binding to the 3’ UTR region of marker genes

All miRNAs binding to 3’ UTR region of genes were identified using mirWalk [60]. Along

with miRNA-gene 3’ UTR binding prediction, mirWalk looks for validated miRNA-gene

binding from miRTarBase [61]. In this study, the 3p and 5p variants of miRNA that bind to

the 3’ UTR region of the differentially expressed stemness-related genes were identified and

selected using mirWalk and annotated as known gene targeting miRNAs in miRTarBase data-

base. The stemness genes targeting miRNAs that exhibited a LFC greater than 2 or less than -2,

with BH adjusted p-value� 0.05 in both DeSeq2 and Limma differential expression tests were

selected for further downstream analysis.

Multivariate Cox-proportional hazard model-based survival analysis

Multivariate Cox-proportional hazard model-based survival analysis was performed to calcu-

late contribution of key factors to change in patient survival rate. The data set consisted of vari-

ous predictors, including patient age, cancer stages, patient survival duration after being

diagnosed with LUAD, genes expression level, miRNAs expression level, and computationally

predicted immune cell infiltration rates. Here, MDSC infiltration rates were collected from

Tide [62]. Computationally predicted infiltration data of HSC and T-cell CD4+ Th2 (Th2) was

obtained from Timer2.0 database. Multivariate Cox-proportional hazard model analysis was

conducted using Survival Analysis package in R. This comprehensive approach allowed us to

account for the complex interplay between the variables and their effects on cancer patient sur-

vival rate.

Results

Stemness genes associated with cancer patient survival

Out of total 109 stemness related genes obtained from Miranda et al., 2019 [9], four (ORC1L,

KIF20A, DLGAP5, and RAB3B) genes were found to be differentially expressed in LUAD can-

cer using datasets TCGA, GSE40419, and GSE31210, hazard ratio > 1. Benjamini and Hoch-

berg (BH) adjusted p-value� 0.05 (Table 1). Due to their likely role in promoting cancer

progression, ORC1L, KIF20A, DLGAP5, and RAB3B were selected as marker genes for down-

stream analysis.
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Stemness genes and immune cell infiltration

Three stemness-related gene (ORC1L, KIF20A, DLGAP5) positively correlated (> 0.6) with

the infiltration rate of Th2 and MDSC. ORC1L negatively correlated with hematopoietic stem

cell (HSC) infiltration rate (< -0.6) (Fig 1). Cox-proportional hazard Model-based survival

analysis coefficients obtained from Timer2.0 indicated a higher infiltration rate of both Th2

and MDSCs in three genes (ORC1L, KIF20A, and DLCAP5) corresponding to a lower patient

survival rate. RAB3B did not exhibit a correlation with any immune and accessory cell infiltra-

tion rate within the correlation cutoff range. Moreover, higher infiltration rate of HSCs corre-

sponded to higher patient survival rate (Table 2).

miRNAs regulating stemness genes

From cross-referencing the mirWalk and miRTarBase database [61], total five miRNAs (hsa-

mir-197-3p, hsa-mir-1247-3p, hsa-mir-122-5p, hsa-mir-215-5p, hsa-mir-192-5p) were differ-

entially expressed in TCGA dataset DeSeq2 results, all targeting 3’ UTR region of RAB3B

(Table 3). No miRNAs targeting ORC1L, KIF20A, and DLGAP5 3’ UTR regions were differen-

tially expressed in TCGA dataset in DeSeq2 analysis results. Differential expressions of these 5

miRNAs in the TCGA dataset were also conducted using Limma to remove potential false pos-

itives. As RAB3B is upregulated in LUAD, downregulated miRNAs with Limma LFC less than

-2, and BH adjusted p-value�0.05, were selected for downstream analysis. Out of these 5 miR-

NAs, only one, hsa-mir-1247-3p, exhibited the Limma LFC and BH adjusted p-value within

the cutoff criteria (Table 3).

Table 1. Differentially expressed stemness genes and regression coefficients obtained from survival analysis. Here, positive log foldchange change (LFC) corresponds

to upregulated genes and negative log foldchange corresponds to downregulated genes. LUAD cancer patient data is divided into high expression and low expression

groups, with low gene expression used as reference values when performing Cox-proportional hazard model analysis [51] in Timer 2.0. The hazard ratio for each gene rep-

resents the impact of the corresponding gene expression change observed in high expression sample as compared to the low expression samples within the tumor samples.

Genes with log foldchange greater than 2 or less than -2 across TCGA using DeSeq2 and GSE40419 datasets and GSE31210 dataset using Limma, and with hazard ratio

greater than 1 with Benjamini and Hochberg (BH) adjusted p-value less than 0.05 is selected as key genes that are associated with loss of cancer patient survival. If gene dif-

ferential expression test BH adjusted p-value is not smaller than 0.05, then it is represented with ns.

Differential expression test log foldchange Survival Analysis

Dataset TCGA TCGA GSE40419 GSE31210 Hazard ratio p-value BH adjusted p-value

Method DeSeq2 Limma Limma Limma

DLGAP5 3.671 5.411 4.184 3.003 1.314 0.0 0.0

KIF20A 3.143 4.791 3.912 2.211 1.314 0.0 0.0

CENPI 2.740 3.907 2.719 ns 1.225 0.013 0.02785

ORC1L 2.741 4.081 2.564 2.530 1.263 0.002 0.006

IGF2BP1 6.589 4.805 3.485 ns 1.272 0.0 0.0

HMGA2 5.761 4.583 4.192 ns 1.14 0.001 0.00375

RAB3B 4.242 4.785 3.152 2.065 1.181 0.026 0.04875

DNMT3B 2.046 2.836 1.536 0.601 1.109 0.131 0.17863

SOHLH2 4.433 3.367 2.588 ns 1.021 0.727 0.77892

FGF2 -2.009 -3.058 -2.269 -0.828 1.217 0.11 0.165

MYCN 3.378 2.916 0.834 ns 0.94 0.275 0.32307

INHBE 4.239 3.322 0.809 ns 0.97 0.813 0.813

NMNAT2 2.735 2.252 0.771 ns 1.052 0.28 0.32307

LIN28B 7.632 5.190 3.884 ns 1.238 0.047 0.07833

ALX1 3.189 2.699 1.372 ns 1.286 0.007 0.0175

https://doi.org/10.1371/journal.pone.0294171.t001
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Key markers of LUAD

Multivariate Cox-proportional hazard model analysis was first conducted using hsa-mir-1247-

3p, KIF20A, RAB3B, ORC1L, and DLGAP5 expression, MDSC, Th2, and HSC infiltration,

LUAD cancer patient age and cancer stage as covariates to identify key markers promoting

loss of patient survival rate. Results (Table 4) indicate that although hsa-mir-1247-3p was

Fig 1. Immune cell infiltration profiles. a) correlation between T cell CD4+ Th2 (Th2) cells infiltration rate and ORC1L gene expression, b) correlation

between MDSC infiltration rate and ORC1L gene expression, c) correlation between HSC infiltration rate and ORC1L gene expression, d) correlation between

Th2 cells infiltration rate and KIF20A gene expression, e) correlation between MDSCs infiltration rate and KIF20A gene expression, f) correlation between Th2

cells infiltration rate and DLGAP5 gene expression, g) correlation between MDSCs infiltration rate and DLGAP5 gene expression.

https://doi.org/10.1371/journal.pone.0294171.g001
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downregulated in LUAD, increases in hsa-mir-1247 expression within the cancer patient sam-

ples lead to loss of survival rate (Table 4). Furthermore, the increase in infiltration of MDSC is

also shown to be associated with LUAD loss of survival rate (Table 4). No significant correla-

tion (Pearson correlation score = -0.05) between MDSC, and hsa-mir-1247-3p was observed.

Furthermore, as expected, cancer stage II, III, and IV and increased age are significantly associ-

ated with a decrease in cancer patient survival rate (Table 4). These results suggest that modu-

lation of hsa-mir-1247-3p expression and MDSC infiltration significantly contributed to the

loss of patient survival in LUAD, but likely use distinctly different mechanisms.

Role of hsa-mir-1247-3p target genes in LUAD

A total of 53 genes were identified as common targets of has-mir-1247-3p in both the mirWalk

and mirTarBase databases (S1 Table). Differential expression analysis of the TCGA,

GSE40419, and GSE31210 datasets of these 53 genes, utilizing both DeSeq2 and Limma meth-

ods, showed that HJURP and RAB3B consistently exhibited a LFC greater than 2.0 across all

datasets (S2 Table). Additionally, SLC24A4 showed an LFC of less than -2.0 across all three

datasets when analyzed with the Limma, and an LFC of -1.98158 when assessed using the

DeSeq2 (S2 Table). These results indicate that in addition to RAB3B, two other hsa-mir-1247-

3p target genes HJURP and SLC24A4, are also significantly differentially expressed across all

examined datasets and methodological approaches. Like expression trends of ORC1L, HJURP

exhibited significant positive correlation with Th2 and MDSC, and a significant negative cor-

relation with HSC (Fig 2). However, SLC24A4 did not exhibit a correlation greater than 0.6 or

less than -0.6 with any immune and accessory cell infiltration rates. Additionally, hsa-mir-

1247-3p, binding to the 3’ UTR region of the STAT5A gene, has also been suggested to play a

role in reducing the progression of LUAD [63]. Here, univariate Cox-proportional hazard

model analysis results obtained from Timer2.0 database indicates that change expression of

HJURP and SALC24A4 is significantly associated with loss of LUAD cancer patient survival

rate, whereas STAT5A exhibited a weaker association trend with patient survival rate

(Table 5). A multivariate Cox-proportional hazard model analysis incorporating factors

including hsa-mir-1247-3p, RAB3B, HJURP, SLC24A4, and STAT5A expression, cancer stage,

Table 2. Hazard ratio and p-value of Cox-proportional hazard model test for Th2, MDSC, and HSC cell immune infiltration rate with patient survival report.

Here, LUAD cancer patient data is divided into high and low infiltration groups with low immune cell infiltration is used as reference value when performing Cox-propor-

tional hazard model analysis in Timer2.0 [51].

Factor name Reference value Factor value Hazard ratio pvalue BH adjusted p-value

Th2 Low infiltration High infiltration 3.804 0.006 0.009

MDSC Low infiltration High infiltration 62.036 0 0

HSC Low infiltration High infiltration 0.167 0.046 0.046

https://doi.org/10.1371/journal.pone.0294171.t002

Table 3. Log2 foldchange (LFC) and Benjamini/Hochberg (BH) adjusted p-value obtained from DeSeq2 and Limma for 5 miRNAs. Here, miRNAs with both

DeSeq2 and Limma log foldchange greater than 2 or less than -2, and BH adjusted p-value�0.05 were selected for downstream analysis.

miRNAs DeSeq2 Limma

RAB3B binding miRNA variant LFC BH adjusted p-value LFC BH adjusted p-value

hsa-mir-1247 3p -2.324 3.51E-19 -3.151 1.63E-11

hsa-mir-192 5p 3.162 1.62E-21 2.715 4.19E-08

hsa-mir-122 3p 1.806 9.95E-08 2.007 0.245932

hsa-mir-215 5p 2.135 2.51E-09 0.655 0.245932

hsa-mir-197 3p -2.965 1.58E-79 0.130 0.628424

https://doi.org/10.1371/journal.pone.0294171.t003
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patient age, and MDSC, Th2, and HSC infiltration rates, was conducted to assess the specific

influence of HJURP, SLC24A4, and STAT5A on patient survival. Genes HJURP, STAT5A,

and SLC24A4, like RAB3B, also failed to demonstrate a significant trend of association with

the loss of patient survival rate (Table 6).

Discussion and conclusions

Using predefined stemness-related genes and cross-referencing these against the LUAD

patients, we found 15 differentially expressed stemness-related genes in LUAD. Of these, four

genes (ORC1L, KIF20A, DLGAP5, and RAB3B) negatively correlated with the probability of

patient survival (Table 1 and Fig 1). We then examined the immune cell infiltration in LUAD

cancer patients and found a decreased infiltration rate of HSCs and increased infiltration of

MDSC and Th2 cells correlating with decreased survival probability correlating with three

genes (ORC1L, KIF20A, and DLGAP5—Fig 1). Lastly, the examination of stemness-related

genes and immune cell infiltration rates in LAUD patients linked the increase in expression of

ORC1L with the negatively correlated infiltration rate of HSC (Fig 2C) but did not suggest a

strong correlation between Th2 infiltration or other differentially expressed stemness-related

genes.

Table 4. Multivariate Cox-proportional hazard model analysis results highlighting key markers associated with increase in patient mortality rate. Here, LUAD

patient tumor samples are divided into low and high infiltration groups for immune cell infiltration, low and high expression groups for gene and miRNA expression, and

low and high age groups for LUAD cancer patient age. Reference values used for multivariate Cox-proportional hazard model analysis for each factor are shown in the

table.

Factor name Reference value Factor value HR p-value

Cancer stage STAGE I STAGE III 3.17373 6.30E-08

Cancer stage STAGE I STAGE IV 3.627736 2.46E-05

Cancer stage STAGE I STAGE II 1.941041 0.001473

hsa-mir-1247-3p High expression Low expression 0.667653 0.02279

MDSC High infiltration Low infiltration 0.655898 0.028825

Age High Low 0.740296 0.071889

Th2 High infiltration Low infiltration 0.829268 0.361647

KIF20A High expression Low expression 0.807105 0.428903

RAB3B High expression Low expression 0.892945 0.536809

HSC High infiltration Low infiltration 1.048088 0.827427

ORC1L High expression Low expression 0.964545 0.881234

DLGAP5 High expression Low expression 0.981126 0.944834

https://doi.org/10.1371/journal.pone.0294171.t004

Fig 2. Immune cell infiltration profiles. a) correlation between T-cell CD4+ Th2 (Th2) cells infiltration rate and HJURP gene expression, b) correlation

between MDSC infiltration rate and HJURP gene expression, c) correlation between HSC infiltration rate and HJURP gene expression.

https://doi.org/10.1371/journal.pone.0294171.g002
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ORC1L is a highly conserved six subunit protein, which plays an important role in regulat-

ing initiation of DNA replication process during cell division [64] and organ development

[65]. Recently, aberrations in ORC1L have been implicated in breast cancer [66], cervical can-

cer [67], as well as LUAD cancer progression [68]. Investigating the role of ORC1L more

closely, we found that aberrations in ORC1L gene expression have been previously linked with

LUAD tumor growth [68, 69] through changes in immune cell infiltration [68]. Han et al., [68]

postulated that ORC1L promotes LUAD tumor progression and aberration of immune infil-

tration by deregulating WNT signaling pathway. Alterations of WNT signaling have been

implicated in modulation of immune infiltration in cancer, thereby promoting tumor progres-

sion [70]. Therefore, the relationship between the upregulation of ORC1L and changes in

immune infiltration and loss LUAD patient survival is likely driven by changes in the WNT

signaling pathway.

As expected, our results also agreed with previous studies [22, 25–27, 30] showing that an

increase in infiltration of MDSC and Th2 decreased the survival probability of cancer patients

in LUAD (Fig 2). Uniquely, we found an increase in expression of ORC1L, KIF20A, and

DLGAP5 stemness-related genes also positively correlated with MDSC and Th2 infiltration

rates in LUAD cancer (Fig 1). Myeloid-derived suppressor cells (MDSCs) comprise a varied

collection of undeveloped myeloid cells and play a crucial role in negatively modulating the

immune response [71]. This regulation, combined with immune infiltration rates of T-helper

Th2 cells, contributes to the advancement of tumors [71], the formation of pre-metastatic

niches [72], and a decrease in the effectiveness of immunotherapy [71]. The underlying pro-

cesses that achieve these functions are intricate and multifaceted, encompassing both immu-

nosuppressive activities (such as the restraint of cytotoxic T-cells [73]) and non-

immunological roles like facilitating stemness genes [74] and encouraging angiogenesis by

Table 5. Hazard ratio and p-value of Cox-proportional hazard model test for HJURP, SLC24A4, and STAT5A expression with patient survival report. Here, LUAD

cancer patient data is divided into high and low and high expression groups, where low expression is used as reference value when performing Cox-proportional hazard

model analysis in Timer2.0 [51].

Factor name Reference value Factor value HR p-value

HJURP Low expression High expression 1.29 0

SLC24A4 Low expression High expression 0.399 0.013

STAT5A Low expression High expression 0.868 0.14

https://doi.org/10.1371/journal.pone.0294171.t005

Table 6. Multivariate Cox-proportional hazard model analysis results of differentially expressed genes targeted by hsa-mir-1247-3p. Here, LUAD patient tumor

samples are divided into low and high infiltration groups for immune cell infiltration, low and high expression groups for gene and miRNA expression, and low and high

age groups for LUAD cancer patient age. Reference values used for multivariate Cox-proportional hazard model analysis for each factor are shown in the table.

Factor name Reference value Factor value HR p-value

Cancer stage STAGE I STAGE III 3.060216 1.49E-07

Cancer stage STAGE I STAGE IV 3.666859 2.08E-05

Cancer stage STAGE I STAGE II 1.938426 0.001264

hsa-mir-1247-3p High expression Low expression 0.675477 0.02661

MDSC High infiltration Low infiltration 0.681396 0.084532

Age High Low 0.763052 0.102087

HJURP High expression Low expression 0.709094 0.121995

Th2 High infiltration Low infiltration 0.858448 0.456893

SLC24A4 High expression Low expression 1.117642 0.579472

STAT5A High expression Low expression 0.926444 0.682518

RAB3B High expression Low expression 0.934566 0.712562

HSC High infiltration Low infiltration 1.039916 0.852716

https://doi.org/10.1371/journal.pone.0294171.t006
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secreting various growth factors such as vascular endothelial growth factor (VEGF), basic

fibroblast growth factor (bFGF), prokineticin-2 (Bv8), and platelet-derived growth factor

(PDGF) [75]. The MDSC activation and expansion by stemness-related genes [26] has also

been shown to negatively regulate the host’s immune response by promoting release of cyto-

kines and chemokines to protect cancer cells in many cancers [76]. Similarly, upregulation of

KIF20A stemness-related gene is known to positively correlate with Th2, Treg cells and macro-

phage infiltration rates, and negatively correlate with Th17, mast cells and natural killer cells

infiltration in renal cell carcinoma [77]. This meta-analysis confirmed the similar role for

KIF20A in LUAD.

Looking more closely at the two mitosis related gene, DLGAP5, it has also been shown to be

important in cancer prognosis [78, 79], but the mechanism associated with its impact on cancer

progression remains unclear. This meta-analysis found the expression of DLGAP5 is positively

correlated with Th2 and MDSC infiltration rate, as well as loss of patient survival probability,

highlighting its role in promoting cancer progression. DLGAP5 is a microtubule associated pro-

tein, which maintains progression of normal cell division by regulating chromosomal rear-

rangement and gene stability [80]. Looking at current literature, the overexpression of DLGAP5

has been shown to increase cancer cell migration and invasion in gastric cancer [81].

Searching the miRNA database for potential miRNAs correlating positively with stemness-

related genes in LUAD cancer, we found one miRNA (has-mir-1247-3p) targeting RAB3B,

HJURP, SLC24A4, and STAT5A, all differentially expressed in LUAD. Previous reports on

hsa-mir-1247-3p found it to be a key biomarker in pancreatic cancer [82], breast cancer [83],

liver cancer [84], bone cancer [85], and neuroblastoma [86]. Moreover, deregulation of hsa-

mir-1247-3p has been shown to lead to increased cancer progression [63] suggesting that it

may play a role in mitigating cancer progression in LUAD cancers [63] (correlation coefficient

-0.314, p-value 0.001 with STATA5A gene expression).

Despite the downregulation of hsa-mir-1247-3p in LUAD, the multivariate Cox-propor-

tional hazard model analysis suggested that an increase in expression of hsa-mir-1247-3p

within LUAD patients had a significant association with loss of patient survivability (Tables 4

and 5). Upon further investigation further, it seems that miRNAs are known to regulate onco-

genes as well as tumor suppressors, and the balance between the two mediates direction of

impact of tumor progression [87]. Results obtained from this study, and Lin et al., [63], indi-

cate that hsa-mir-1247-3p targets LUAD differentially expressed oncogenes (RAB3B and

HJURP), as well as differentially expressed tumor suppressors (SLC24A4 and STAT5A –

Table 5). While the increase in expression of oncogenes RAB3B and HJURP and loss of expres-

sion of tumor suppressor SLC24A4 is associated with diminished cancer patient survivability,

the downregulation of tumor suppressor STAT5A has been shown to promote tumor growth

[63]. Moreover, hsa-mir-1247-3p modulation mediates the association between the change in

expression of these genes and patient survival rate, acting as a key marker and central node in

the regulatory network associated with tumor progression.

While traditionally considered as gene-regulatory elements, miRNAs—like hsa-mir-1247-

3p - may also influence more complex signaling pathways within the tumor microenviron-

ment. These analyses did not indicate a significant correlation between MDSC infiltration

scores and hsa-mir-1247-3p expression, suggesting distinct regulatory mechanisms leading to

their shared involvement in regulating patient survival rate.

Supporting information

S1 Table. List of genes targeted at 3’ UTR region by hsa-mir-1247-3p obtained from mir-
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