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Abstract

Texas Rio Grande Valley Red—crowned Parrots (Psittaciformes: Amazona viridigenalis [Cas-
sin, 1853]) primarily occupy vegetated urban rather than natural areas. We investigated the util-
ity of raw vegetation indices and their derivatives as well as elevation in modelling the Red-
crowned parrot’s general use, nest site, and roost site habitat distributions. A feature selection
algorithm was employed to create and select an ensemble of fine—scale, top—ranked MaxEnt
models from optimally—sized, decorrelated subsets of four to seven of 199 potential variables.
Variables were ranked post hoc by frequency of appearance and mean permutation impor-
tance in top—ranked models. Our ensemble models accurately predicted the three distributions
of interest (x Area Under the Curve [AUC] = 0.904-0.969). Top—ranked variables for different
habitat distribution models included: (a) general use—percent cover of preferred ranges of
entropy texture of Normalized Difference Vegetation Index (NDVI) values, entropy and contrast
textures of NDVI, and elevation; (b) nest site—entropy textures of NDVI and Green—Blue NDVI,
and percent cover of preferred range of entropy texture of NDVI values; (c) roost site—percent
cover of preferred ranges of entropy texture of NDVI values, contrast texture of NDVI, and
entropy texture of Green—Red Normalized Difference Index. Texas Rio Grande Valley Red—
crowned Parrot presence was associated with urban areas with high heterogeneity and ran-
domness in the distribution of vegetation and/or its characteristics (e.g., arrangement, type,
structure). Maintaining existing preferred vegetation types and incorporating them into new
developments should support the persistence of Red—crowned Parrots in southern Texas.
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repeated poaching of chicks from nests is possible
and can potentially be problematic at the
population or even species level because pairs
often use a given nest site repeatedly from year-to-
year [1]. In general, we argue that making the data
used in this study publicly available might enable
people to use it in manners that might disturb the
parrots found in the area of interest in ways that
negatively impact their ability to persist in the area;
in addition to disruption of the parrots’ nesting
activities, people could easily disrupt the parrots’
foraging and roosting activities if they know where
to look for them. In sum, sharing this data publicly
could result in negative outcomes for this relatively
small but important population in manners that
could potentially result in their decline and even
collapse. Although this data will not be made
available publicly, all data used in this study can be
ascertained by an persons considered to have a
reasonable need for it by submitting requests

directly to eBird at https://science.ebird.org/en/use-

ebird-data/download-ebird-data-products or
https://ebird.org/explore and/or GBIF at https:/
www.gbif.org/. 1. Poaching birds from nests a
major threat [eArticle]. Bay City Tribune. 2018.
[Accessed Jul 2, 2022 from: https://baycitytribune.
com/community/article_6a63176c-af42-11e8-
8a2e-0f3e50c20382.html].
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Introduction

There is growing interest in how distributions of species of conservation concern are affected
by alarmingly rapid and intense global anthropogenic landscape modification [1-4], especially
because it typically reduces their abundance as well as the size of their distributions [5-7].
However, some sensitive species of conservation concern have adapted relatively well to life in
the city and/or suburbia [8]. Further study is needed to better understand the patterns and
processes of suburban adaptation to develop strategies that support their persistence and make
urban landscapes more attractive to a wider diversity of “desirable” species [9]. Interestingly,
the populations of Endangered Red-crowned Parrots (Amazona viridigenalis [Cassin, 1853])
found in the southern United States of America (USA) are typically absent from natural areas
but instead seem to prefer certain highly-modified urban areas [10-14] and are found in cities
in least three states (i.e., California, Florida, Texas) [15]. Those found in the Rio Grande Valley
of Texas are the focus of this study. There is debate over how the founders of the Texas Rio
Grande Valley populations arrived and whether they are native to the USA [13, 16-19]; how-
ever, we accept the position of the United States Fish and Wildlife Service (USFWS) [12, 20]
that Red-crowned Parrots are native to South Texas [18]. As such, we consider the current nat-
ural range of the Red-crowned Parrot to stretch between the south-central region of Veracruz
in Mexico and just north of the Rio Grande River in Texas in the USA [12]. Factors including
habitat degradation and/or loss, poaching of individuals (especially young birds) for sale in the
illegal wildlife trade, and the culling of large numbers of individuals by farmers who perceive
them as pests have synergistically resulted in its extirpation [14, 21-24] from over 75% of its
historical range in Mexico [12, 14, 25, 26]. As such, those found in southern Texas are of par-
ticular interest to many people.

Like so many other parrot species (order Psittaciformes) around the world [27], the future
of the Texas Rio Grande Valley Red-crowned Parrots is far from guaranteed. The United
States’ track record of protecting its native parrot species (n = 5) is poor. While, the once abun-
dant Carolina Parakeet (Conuropsis carolinensis [Linnaeus, 1758]) was declared extinct in
1939, and the Thick-billed Parrot (Rhynchopsitta pachyrhyncha [Swainson, 1827]) has been
considered functionally extinct throughout its historical range within the USA since 1995 [28].
As such, Red-crowned Parrots of the Texas Rio Grande Valley are one of the few native Psitta-
ciformes (order of parrots) that persist in their natural range within the USA in viable numbers
today [13]. Since their populations are currently fairly stable and are composed of a reasonable
number of individuals (ca. 700 as of 2018 [13]), Americans have a unique opportunity to
choose a path that leads to a different outcome for one of the last of its native parrot species
without the need to pour massive amounts of capital into conservation efforts to do so. The
purpose of this study is to take an important step forward on this path by striving to improve
our understanding of the unique habitat requirements of the Texas Rio Grande Valley Red-
crowned Parrots [29].

As with most land-dwelling birds, vegetation is a key factor to parrots’ survival wherever
they are found [30]. Large, mature trees and certain shrubs are particularly valuable to parrots
because they provide sources of food, places to nest (i.e., hollow tree cavities) and roost as well
as refuge from threats such as predators and inclement weather [31]. As urban-dwelling par-
rots, we suspect that Texas Rio Grande Valley Red-crowned Parrot presence is likely particu-
larly closely related to not only the presence of the necessary types of vegetation but patterns in
the manner in which it is distributed [32, 33]. While a similar suggestion has been made for
the urban-dwelling Red-crowned Parrots of southern California, it has not been investigated
empirically for either sets of populations [10, 11, 34]. Our general aim is to evaluate this
hypothesis further using a correlative species distribution modelling approach.
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Correlative species distribution models (SDMs) are often critical components of conserva-
tion planning and management efforts for a variety of sensitive species, including birds such as
parrots [34-37] because they can help reveal how the presence (or absence) of a given species
is related to the environmental conditions (and resources) necessary for its survival [38]. A
wide array of variables has been employed in SDMs to elucidate what these conditions and
resources might be from what is often a long list of possibilities. Common types of said vari-
ables include those that represent the effects of climate (e.g., temperature, precipitation,
humidity, etc.), topography or bathymetry (e.g., elevation or depth, slope, aspect, etc.), biogeo-
chemistry (e.g., soil, hydrology, irradiation, etc.), and land use/land cover (e.g., class, distur-
bance or change, patch characteristics, distance to/from critical type, etc.) on SDMs [39]. We
focus on vegetation-based variables in our SDMs based on the potential aforementioned con-
nection and because vegetation presence (or absence) is often strongly associated with envi-
ronmental conditions (e.g., climate, biogeochemistry, topography) [40-43]. Furthermore,
vegetation is often one of the primary characteristics of landscapes used to define different
land-use land-cover (LULC) classes [44, 45], and LULC type variables are increasingly
employed in SDMs. We do not employ LULC variables in our SDMs for two reasons. First,
many of the pre-processing steps required to create LULC maps (e.g., geometric, radiometric,
solar, and atmospheric corrections and orthometric rectification applied to satellite imagery
followed by supervised or unsupervised classification) [46-49] add their own type and level of
variability and error that impact the qualitative and quantitative value of the final product(s)
[50]. This can impact their suitability for use in SDM-type applications [51]. Second, LULC
maps are invariably products of how humans see the world, and evaluating predictor variables
less affected by this bias was of great interest to us [52].

The primary goals of this study are to examine whether vegetation influences Red-crowned
Parrot habitat suitability in the Texas Rio Grande Valley using predictive modelling tools and
to create maps of the distribution of suitable habitat for the species in the region. Our first spe-
cific objective is to evaluate the utility of vegetation-based predictive variables (i.e., topogra-
phy, raw vegetation indices and their derivatives) in three high-quality, fine-scale MaxEnt
habitat distribution models for Texas Rio Grande Valley Red-crowned Parrots: (a) general
use, (b) nest sites, and (¢) communal roost sites [13]. These three habitat distributions are
modelled separately because the Red—crowned Parrots’ use of the landscape changes seasonally
[53]. For example, Red-crowned Parrots roost communally throughout the year; however, the
size and social structure of the communal roosts varies seasonally. During fall and winter,
roosts are large and are comprised of members of all ages but as spring approaches, the size of
roosts decreases (but number of roosts increases) as separate groups begin to disperse into
smaller flocks; these smaller roosts subsequently shrink further as individual pairs disperse to
nest [54]. Nest sites are only occupied during the breeding season, which occurs from March
to July (personal observation, Simon Kiacz). Our second specific objective is to create and
study a series of projections of each of the three habitat distributions.

To achieve our first objective, we will develop a series of variables derived from aerial imag-
ery that we will use to study the presence of and patterns in vegetation in the region of interest
in a practical, low—cost manner at relatively high resolutions [55]. We will explore vegetation
indices as predictor features in our SDMs as they are among the most common tools used to
detect and study vegetation using spectral data extracted from aerial imagery [56-59]. Vegeta-
tion indices have been used in an increasing number of SDMs for various taxa in recent years,
including birds [60-65], however, this is one of the first involving parrots. In addition to the
simple presence or absence of vegetation (or certain characteristics of vegetation), the distribu-
tion of birds can be influenced by patterns in its distribution and/or those of its defining char-
acteristics (e.g., arrangement, composition, diversity, structure, etc.) [66—68]. As such, our list
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of environmental predictor features will include certain derivatives of raw vegetation indices
which contain information about said patterns as seen from the perspective of the parrots
themselves (i.e., percent cover of preferred ranges of vegetation index values, texture of raw
vegetation indices, and percent cover of preferred ranges of vegetation index textures). We will
use the cross—validated random subset feature selection algorithm (RSFSA-CV) [69] to iden-
tify top—performing MaxEnt models [70-72] and rank the performance of variables. Finally,
we will use a set of 12 randomly selected top-performing models to create frequency of consen-
sus projections for each suitable habitat distribution of interest and study their similarities and
differences.

Materials and methods
Ethics statement

All experimental procedures were evaluated and approved by the Institutional Animal Use
Care and Committee (IACUC) of Texas A&M University (TAMU) as well as by the ethics
committee of the Texas Wildlife Research Program for the Texas Parks and Wildlife Depart-
ment (TPWD). This study was conducted under IACUC Animal Use Protocol number 2018-
0089 and TPWD Scientific Research Permit number 0418-138. Researchers made every effort
to observe the parrots that were being studied for this project in a manner that caused as little
disturbance to them as possible. All observations of the birds whose locations and activities
were monitored for this study were obtained visually. This study was thus conducted without
any need to have physical contact with the parrots of interest.

Species of interest

The focal species is the Red-crowned Parrot (Fig 1). It is approximately 12 in long with a
short, rounded tail. Their color is described as being mostly a dull yellowish-green that is
somewhat “scaly”. They can be distinguished from other Amazona species by the combination
of their distinct red crown and forehead, pale green cheeks, and flashy red wing patches [54].

Study area

The Rio Grande Valley of Texas, the area of interest, is located at the southernmost tip of the
state. It is typically defined as the region encompassed by Starr (1,383 km?), Hidalgo (4,100
km?), Willacy (1,530 km?) and Cameron (3,305 km?) counties and the southern third of
Kenedy County (3,776 km?; Fig 2).

Red-crowned Parrot presence points

Red-crowned Parrot presence points (n = 967) from the study area used for the general habitat
distribution models (without regard to season or behavior) were obtained from eBird and iNa-
turalist prior to March 2021, as well as from the Tejano Parrot Project between 2014 and 2019
(Fig 3) [73-75]. Presence points used to develop the nest site (n = 61) and communal roost site
(n = 79) habitat distribution models were acquired via surveys conducted by the Tejano Parrot
Project between 2014 and 2019 (Fig 3) [74]. Only presence points with a positional accuracy of
an arbitrarily selected 100 m or less were used for modelling (i.e., we had high confidence that
the true location of any given point was located in a pixel included within the area of a circle of
a diameter of 100 m or less where the point was the circle center). For eBird data, this meant
we only utilized data collected using “Incidental”, “Stationary”, and “My Yard Counts” sam-
pling protocols [76]. Eighty percent of the presence points representing sightings of Red-
crowned Parrots within general use habitat (n = 747) were allocated to modelling and 20%
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Fig 1. The species of interest-Red-crowned Parrot (Amazona viridigenalis). A Red—crowned Parrot perches on a
tree branch in the Rio Grande Valley of Texas. Photo by Simon Kiacz ca. 2017.

https://doi.org/10.1371/journal.pone.0294118.9001
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Fig 2. The study area-Rio Grande Valley of Texas. The Rio Grande Valley of Texas, USA includes Starr, Hidalgo,
Cameron, and Willacy counties as well as the southern third of Kenedy County. The southern border of the study area
is the Rio Grande River, which separates the USA from Mexico.
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randomly generated background points.
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PLOS ONE | https://doi.org/10.1371/journal.pone.0294118 December 6, 2023

6/42


https://doi.org/10.1371/journal.pone.0294118.g002
https://doi.org/10.1371/journal.pone.0294118.g003
https://doi.org/10.1371/journal.pone.0294118

PLOS ONE

Modelling Red-Crowned Parrot general use, nest site, and roost site habitat distributions in southern Texas

(n =220) were withheld for calculating new variables based upon parrot-preferred ranges of
other variables (described below). These points were withheld from modelling to avoid con-
founding points used in variable calculations with points used in the MaxEnt models. All nest
site and roost site presence data were allocated to modelling. Finally, presence points allocated
for modelling were spatially filtered such that only a single random point within an area of a
circle with a diameter of 100 m was used wherever a cluster of points occurred to reduce spatial
autocorrelation (e.g., Boria et al. [77]) using ArcMap [78].

Presence data will not be made generally available to the public to protect the parrots from
disturbance and poaching; however, the data can be requested via the eBird [79] and iNatural-
ist [80] websites or by contacting Dr. Donald J. Brightsmith, the director of the Tejano Parrot
Project [74].

Background and pseudoabsence points

We generated 10,000 background points, the MaxEnt default [81], separated from one another
by a distance of at least 100 m to reduce spatial autocorrelation using ArcMap (Fig 3). Pseu-
doabsence was represented by a set of 10,000 points that were generated in the same fashion as
background points with the exception that we filtered out all pseudoabsence points located
within 200 m of any true presence point (n = 9,814).

Environmental predictor features

We considered 199 environmental predictor features (variables), each of which falls into one
of seven categories, in our SDM efforts: (1) topography (n = 1), (2) raw vegetation index

(n = 8), (3) multitemporal vegetation index difference (n = 4), (4) percent cover of preferred
ranges of raw vegetation index values (n = 24), (5) raw vegetation index textures (n = 48), (6)
texture of binary preferred/non—preferred ranges of raw vegetation index values (n = 48), and (7)
percent cover of preferred ranges of vegetation index texture values (n = 66; total N = 199;

S1 Table). Detailed descriptions of the features in each of these categories are provided below.

Each predictor feature was a 9.5 m resolution raster projected to the 1983 North American
Datum (NAD83) that covered the study area plus a one km buffer, which was added to elimi-
nate edge effects introduced by the focal neighborhood calculations used to derive certain fea-
ture types. Feature rasters were converted from floating-point to integer format with a
maximum of seven single digits to reduce raster size and computational complexity. Addition-
ally, we applied a few additional non-linear transformations to certain feature rasters to mag-
nify differences between pixel values (S1 Table). All feature rasters were clipped to match a
study extent raster to ensure they were perfectly aligned with one another, a vital step in pre-
processing variables used in MaxEnt modelling, and then converted to Tag Image File Format
(TIFF) files using ArcMap for further processing in R Studio, an integrated develop environ-
ment software [82].

Topography. Since topography can have a strong influence on the distribution of vegeta-
tion, we elected to assess the utility of a single representative feature, a simple digital elevation
model in our SDMs [83-85]. We downloaded each of the USGS National Elevation Dataset 10
m resolution rasters for the study area [86] and mosaiced them (e.g., pieced together like a puz-
zle) using ArcMap. Finally, we resampled the resulting raster to 9.5 m to create the elevation
feature (S1 Fig).

Raw vegetation indices. Vegetation indices can be used to qualitatively and quantita-
tively study a variety of characteristics of vegetation (e.g., type, presence of vegetative cover
versus non-cover, vigor, growth dynamics, etc.) using information derived from spectral
reflectance data [56, 59]. Hundreds of different vegetation indices have been developed over
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the past few decades [87]. Each vegetation index is derived by applying unique calculations
to the spectral bands of images in ways that enhance different spectral signatures (and thus
different characteristics of vegetation) and/or reduce noise from sources such as soil and
the atmosphere that can distort remotely-sensed aerial imagery. We chose to consider the
utility of a relatively large number of vegetation indices compared to previous SDMs to
explore as many different characteristics of vegetation as possible within reason given con-
straints on available computing resources.

The first vegetation index we chose to include was Normalized Difference Vegetation Index
(NDVI). The basic function of NDVI is evaluate the contrast between vegetative canopy cover
and non-vegetative cover reflectance using the near-infrared and red spectral bands [88]. It
can be used to detect the presence and health of vegetation, estimate biomass, calculate leaf
area index (LAI) etc., and measure vegetation productivity while minimizing topographic
noise [89, 90]. One weakness of this vegetation index, however, is that it does not account for
the invariable background brightness (e.g., spectral noise) associated with reflections that
bounce off non-vegetative surfaces such as soil and particles in the atmosphere within the
spectral bands of interest (ibid.). As such, we chose to consider Soil-and Atmospherically—
resistant Vegetation Index (SARVI), a vegetation index that was specifically designed to reduce
the effects of this noise, and thus because it effectively improves vegetation signal sensitivity
[91]. Next, we chose to include Green-Blue NDVI (GBNDVI) because it is not as strongly
impacted by saturation as NDVI when LAI values are high [92, 93], and it can thus be useful
for detecting vegetation [94] and greenspaces [95] in urban areas. We chose to include Blue
NDVI (BNDVI) because it is particularly valued for effectively discriminating between pervi-
ous and impervious surfaces in urban landscapes [96]. Furthermore, BND VI is reportedly bet-
ter at distinguishing vegetation from various other non-vegetative surfaces in urban
landscapes than either NDVI or Green-Normalized Difference Vegetation Index (GNDVI)
[97]. Lastly, we chose to include GRNDI because it represented a type “vegetation” index
(technically, it is actually a simple “spectral” index rather than a true vegetation index [98]
because it does not require a near infrared (NIR) band to calculate). This was of interest
because not all those interested in creating SDMs will have access to imagery with the NIR
band needed to derive so—called true vegetation indices. Although GRNDI might initially
seem inferior to other vegetation indices for this reason, GRNDI (as Normalized Difference
Green Index, NDGI) is reportedly useful for detecting urban greenspaces in landscapes [95].
The unique capabilities of GBNDVI, BNDVI, and GRNDI made them attractive for our pur-
poses because the Texas Rio Grande Valley Red-crowned Parrots appear to prefer to use cer-
tain urban greenspaces (personal observation, Simon Kiacz) that are scattered throughout the
greater urban matrix, which is otherwise comprised of relatively large swaths of non-vegetated
land cover types (e.g., impervious surfaces). For example, many of the Washingtonian palm
trees (Washingtonia spp. [Wendl]) they often prefer to nest in [13] are found in relatively
small urban greenspaces that are abutted by paved areas (e.g., roads, parking lots, sidewalks,
etc.) or other man-made structures (e.g., buildings, etc.).

Each of the vegetation indices considered in this study were derived from National Agricul-
tural Imagery Program (NAIP) images. We downloaded two sets of image tiles for each county
in the study area that included an infrared band (i.e., collected on April, 29 2008 with red,
green, blue, infrared bands and April 23 to 30, 2010 with red, green, infrared bands) from the
Texas Natural Resource Information System (TNRIS) website [99]. The image tiles were
mosaiced using ArcMap to create two continuous images (i.e., 2008, 2010) consisting of three
bands each (e.g., red, green, blue, infrared) that covered the study area. The three bands from
each of these images were exported as individual rasters and used the equations found in
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Table 1. Equations used to calculate vegetation index values for individual pixels using various spectral bands
extracted from National Aerial Imagery Program (NAIP) imagery.

Vegetation Index Equation
Normalized Difference Vegetation Index (NDVI) (NIR-Red)/(NIR+Red+0.00001)
Blue Normalized Difference Vegetation Index (BNDVT) (NIR-Blue)/(NIR+Blue+0.00001)
Green-Blue Normalized Difference Vegetation Index (NIR-(Green+Blue))/(NIR+(Green+Blue
(GBNDVI) +0.00001))
Green-Red Normalized Difference Index (GRNDI) ((Green-Red)/(Green+Red+0.00001))

Soil-and Atmospherically-Resistant Vegetation Index (SARVI) | (1+L) (NIR-(Red-RB)/(NIR+RB+L))

NIR, Near Infrared; RB, RedBlue; L, soil conditioning index (improves sensitivity of index by reducing spectral noise
caused by soil).

RB = Red-y(Blue-Red) wherey = 1.

L=0.5.

https://doi.org/10.1371/journal.pone.0294118.t001

Table 1 to calculate five vegetation indices in R Studio: NDVI (2008, 2010), BNDVI (2008),
GBNDVI (2008), SARVI (2008), and GRNDI (2008, 2010).

The nomenclature for this type of feature should be read as follows: “vegetation index abbre-
viation”“abbreviated year of imagery collection”. For example, “bndvi08” (S2 Fig) depicts raw
BNDVI values derived using bands from the mosaiced 2008 NAIP image.

Multitemporal raw vegetation index difference. This novel variable type, a simple vege-
tation index derivative, contained information about change in raw vegetation index values
over the period time. Most terrestrial birds are sensitive to changes in vegetation distributions
across the landscapes they occupy (e.g., patterns such as composition and structure); such
changes can have strong impacts on bird diversity and distributions [100]. As with other ter-
restrial birds [101] including parrots [102], the stability of the vegetation used by Texas Rio
Grande Valley Red-crowned Parrots is likely important to their persistence in the region, and
as such, we included variables that depicted a measure of change in vegetation over time in our
SDMs.

We calculated two types of multitemporal vegetation index difference features. We calcu-
lated simple multitemporal vegetation index difference features by subtracting 2008 raw NDVI
or GRNDI values (e.g., b = ndvi08 or grndi08) from 2010 raw NDVI or GRNI values (e.g., a =
ndvil0 or grndil0 [y = a-b])(104). Normalized multitemporal vegetation index difference fea-
tures were calculated as y = (a-b)/(a+b). Although the simple multitemporal vegetation index
difference type features may have been used in SDMs previously [103], the normalized multi-
temporal vegetation index difference type feature is novel to our knowledge.

The nomenclature for this type of feature should be read as follows: “(n)delt” "abbreviated
name of vegetation index” “year two of imagery collection_year one of imagery collection”. For
example, “deltgrn10_08” (S3 Fig) depicts the simple difference between 2008 and 2010 raw
GRNDI values. Similarly, “ndeltgrn10_08” depicts the normalized difference between raw 2008
and 2010 GRNDI values.

Percent cover of preferred ranges of raw vegetation index values. This novel variable
type, a simple vegetation index derivative, contained information about what portion of an
area of a given size was associated with pixels values that fell within certain ranges of raw vege-
tation index values. To derive it, we first sampled raw vegetation index values for the set of
Red-crowned Parrot presence points withheld from modelling. Second, we used Microsoft
Excel’s [104] percentile ranking function to determine two different “preferred” ranges of raw
vegetation index values. This involved calculating median central tendencies about these
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presence points. We arbitrarily chose a standard median central range of 50% and a slightly
wider central range of 70% to explore how different range sizes affected the utility of variables
(S4 Fig). Third, these two ranges were used to develop two separate binary preferred/non-pre-
ferred rasters in ArcMap for each vegetation index of interest where a value of “1” was assigned
to a pixel in the target raster if the value of its twin pixel in the raw vegetation index raster fell
within the “preferred” range and “0” if not.

Animals can have varying functional grains (perceptual scales) of the landscape in relation to dif-
ferent resource patches, such as foraging and nesting and roosting sites [105], making variables
defined over different spatial scales valuable for capturing this variability in functional grain for
developing SDMs (e.g., Bellamy et al. [106]). As such, we applied the ArcMap focal statistics tool to
the binary preferred/non-preferred rasters to calculate the percent cover of area associated with
preferred ranges of raw vegetation index values within two different rectangular focal window sizes:
310 by 310 m (i.e., 9.61 ha) and 990 by 990 m (i.e., 98.01 ha) to evaluate the effects of the Red-
crowned Parrots’ perception of the overall spread of available potential habitat patches. These win-
dow sizes were chosen to explore how the spread of resources might influence habitat suitability.

The nomenclature for this type of feature should be read as “abbreviated name of vegetation
index” “abbreviated year of imagery collection_median tendency range_ size of focal window”.
For example, “bnd08_70_990” (S5 Fig) depicts the percentage of pixels around each pixel as a
centroid within a 990 m focal window whose values fell within the “preferred” range of raw
2008 BNDVI values (i.e., central 70% of values about the median value associated with Red-
crowned Parrot presence points).

Raw vegetation index textures. This variable type, a complex vegetation index derivative,
contained information about the texture of raw vegetation index values. Image texture analysis
can generally be described as evaluating how the values (e.g., intensity, brightness of grayscale or
color values) of image pixels vary within a moving window analysis [107]. Although image texture
analysis can be performed using a variety of either statistically or modelling-based methods
[108], we focused on a single statistically-based method, the Grey-Level Co-occurrence Matrix
(GLCM). This type of texture analysis involves using a series mathematical functions to calculate
how often pairs of pixels with certain values and spatial arrangements within an area of a given
size co—occur in an image (a GLCM) and then extracting certain statistical information (e.g.,
mean, standard deviation, entropy, contrast, homogeneity, etc.) [109] from the resulting GLCM.
The output from each type of statistical analysis can be used to characterize different information
about the texture of the image of interest (i.e., roughness, coarseness, directionality).

We utilized the R package R GLCM Texture package [110] to calculate four GLCM textures
(i.e., 2"4—order mean, variance, contrast, and entropy) for each of the vegetation indices of
interest using both 310 and 990 m focal windows sizes in R Studio (see Haralick et al. [111] for
GLCM texture descriptions and equations used to calculate them). These particular textures
were selected to minimize the amount redundant information among predictor variables
being entered into models.

The nomenclature for this feature type should be read as “abbreviated name of vegetation
index” “abbreviated year of imagery collection” “abbreviated name of texture type” “size of focal
window”. For example, “bnd082c990” (S6 Fig) depicts the GLCM 2"_order contrast texture of
raw 2008 BNDVI values for each pixel as a centroid of a 990 by 990 m focal window.

Texture of binary preferred/non-preferred ranges of raw vegetation index values. This
novel variable type, a complex vegetation index derivative, contained information about differ-

» «

ent patterns in binary preferred/non-preferred ranges of raw vegetation index values. We used
the GLCM Texture package to calculate 2"?~order GLCM mean, variance, contrast, and
entropy textures of the binary preferred/non—preferred raw vegetation index rasters (described
above) using square 310 and 990 m focal window sizes in R Studio.
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The nomenclature for this type of feature should be read as “abbreviated name of vegetation
index” “abbreviated year of imagery collection” “abbreviated name of texture type” “size of focal
window” “median tendency range”. For example, “bnd082m31070” (S7 Fig) depicts the GLCM
2"_order mean texture of the 70% median central tendency raw 2008 BNDVI binary pre-
ferred/non-preferred range raster of each pixel as a centroid of a square 310 by 310 m focal
window.

» « » «

Percent cover of preferred range of vegetation index texture values. This novel variable
type, a complex vegetation index derivative, contained information about what portion of an
area of a given size was associated with pixels values that fell within certain ranges of raw vege-
tation index texture values. We derived it using a process similar to that used to create percent
cover of preferred ranges of raw vegetation index values type features (see above). We experi-
mented with several median central tendency ranges (i.e., 25 to 95% of values associated with
parrot presence about the median value) and ultimately selected two to four ranges (i.e., 70%,
80%, 85%, and/or 90%). Our selection of these particular ranges was somewhat subjective but
was driven in part by a visual estimation of the approximate threshold that separated preferred
from non-preferred ranges of values.

The nomenclature for this type of feature should be read as “abbreviated name of vegetation
index” “abbreviated year of imagery collection” “abbreviated name of texture type” “abbreviated
size of focal window” “median tendency value”. For example, “bnd082c9985” (S8 Fig) depicts
the percentage of pixels around each pixel as a centroid in a square 990 by 990 m window
whose values fell within the “preferred” range of 2"%-order GLCM contrast texture of raw
2008 BNDVI values (i.e., central 85% of values about the median value associated with Red-
crowned Parrot presence).

Feature selection and ranking

Rather than relying on single subset of highly-ranked individual features to create a final SDM
(an approach commonly used to develop SDMs [112, 113]), we opted to use the RSFSA
approach, which involves selecting multiple random feature subsets that produce higher per-
forming models and then randomly selecting a set of these models to create a consensus
ensemble (described below) that represents the final SDM [69]. One benefit of the RSFSA
approach is that it allows users to explore the utility of different variables in terms of their syn-
ergistic value in certain feature subsets. Other SDM methods that involve creating a single
model from a single subset of variables might exclude certain variables that perform poorly in
some feature subsets or by themselves without being aware that they may work synergistically
with other variables in different feature subsets (e.g., Guyon and Elisseeff [114]). Another bene-
fit of the RSFSA approach is that it limits collinearity via the use of a correlation filter prior to
generating the original feature subsets. Sets of variables with a level of correlation greater than
a specific threshold, which was set to a more restrictive level of |0.5| rather than the typical |0.7|
for this study (i.e., feature subsets were composed of features that were less correlated to each
other), cannot co-occur in any given feature subset.

We employed an updated version of the RSFSA used in Tracy et al. [69], the cross—validated
RSFSA (RSFSA-CV) [115] in this study. The primary difference is that RSESA-CV involves
re-randomizing the presence and pseudoabsence data sets to cross—validate both the training
and testing data sets in the subset wrapper and evaluation phases (Fig 4). Presence data can
thus be used more efficiently, which is especially important when using smaller presence data
sets such as was the case with our nest site and roost site presence data sets.

The MaxEnt RSFSA-CV has three primary stages (Fig 4). In the first stage, 250 models
are run using the rapid MaxEnt Samples with Data (SWD, non-raster producing) format for
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Fig 4. A workflow diagram for the Cross-Validated Random Subset Feature Section Algorithm (RSFSA-CV) was used to develop the
habitat distribution models in this study. The basic procedures used to create the three predictive MaxEnt habitat distribution models for the

Texas Rio Grande Valley Red-crowned Parrots. See Tracy et al. [69] for more detailed information about this method.

https://doi.org/10.1371/journal.pone.0294118.9004
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various variable subset sizes (one to ten variables) to find the top ten performing variable
subsets (compared to randomly-selected models) of a given subset size. In both the first and
second stages, model performance is evaluated using three criteria: (1) higher accuracy as
indicated by pseudoabsence AUC (AUC,,; calculated with pseudoabsence points as
absences), (2) lower complexity and higher information content as indicated by background
corrected Akaike Information Criterion (AICcy,g, calculated using background points)
[116], and lower overfitting as indicated by pseudoabsence difference AUC, which is calcu-
lated by subtracting pseudoabsence test AUC from pseudoabsence training AUC (AUC,,_-
diff = AUCpsa_train—AUCpsa_test) [69, 117]. The lowest subset size producing high
performance models is then chosen for the second stage of RSFSA-CV. In the second stage,
three replicates of about 3,000 MaxEnt models each of the optimal variable subset size are
run with SWD format to identify the top 250 of 3,000 models compared to 250 randomly-
selected models according to the three above evaluation criteria (Welch’s t—test; o. = 0.05).
The higher performing selection method (e.g., AUC,, or AICcyg) is used to rank the 250
top models in each of the three replicates. In the third stage, four of the 250 top-ranked
models from each of the three replicates (750 models total) are chosen to create a feature
subset ensemble consisting of 12 models (these 12 models are not necessarily better per-
forming than any of the other 750 selected models). The 12 top-selected models are run
using SWD format in MaxEnt evaluation mode (k—fold cross-validation; k = 10) to produce
variable response curves and derive final metrics to assess model performance (i.e., AUC,,
background presence AUC [AUCy,,, calculated using background and presence points as
absences], AUC,_aifr, AICcpg, pseudoabsence True Skill Statistic [TSS ., calculated using
pseudoabsence points as absences], and background True Skill Statistic [TSSyg, the MaxEnt
default; c.f., Tracy et al. [69]]). The top-selected 12 models are projected to develop a feature
subset ensemble model (see below). Finally, the performance of predictor features in the top
250 models from all three RSFSA-CV replicates is ranked (see below) and the effects of top-
ranking variables on the probability of species presence are evaluated using their response
curves (i.e., individual, marginal). A marginal response curve is a graph-based depiction of
MaxEnt cloglog output for probability of presence (y-axis) plotted against the values of the
given predictor variable values vary (x-axis) while the other predictor variable values are
kept at their average sample value [81].

Variable ranking. We used the updated methodology of Tracy et al. [115] to rank vari-
ables. Variable performance was ranked using weights of 60% and 40% for MaxEnt model
mean permutation importance (i.e., novel information contributed by a given variable added
to each of the 250 top—performing models it appeared in over three replications) and total fre-
quency of appearance in models (i.e., how often the variable appeared in the 250 top-perform-
ing models), respectively. While both of these measures are important for evaluating variable
performance, we gave more weight in the rankings to mean permutation importance as it is
somewhat more relevant. We reported the ranking and correlation group number of each set
of predictor variables (top 30) associated with their respective set of 250 top—performing mod-
els. Variable correlation groupings were formed under top ranking variables to include other
closely ranked variables correlated at |0.5| or higher by placing variables in multiple correlation
groups where they have the closest ranking below the top ranked group member.

Feature subset ensembles

The 12 top-selected models for each habitat distribution selected using the RSFSA-CV (see
above) were calibrated to binary presence/absence format using a threshold of maximum

TSSpsa [118]. These models were then used to create a series of feature subset ensembles (FSE;

PLOS ONE | https://doi.org/10.1371/journal.pone.0294118 December 6, 2023 13/42


https://doi.org/10.1371/journal.pone.0294118

PLOS ONE

Modelling Red-Crowned Parrot general use, nest site, and roost site habitat distributions in southern Texas

frequency of consensus between all 12 of the binary presence/absence calibrated MaxEnt mod-
els) from which our final projected habitat distributions (maps) were derived. The color red in
the FSE frequency consensus map indicated agreement among all 12 models, with other colors
showing a lower level of agreement, indicating lower levels of confidence that they are actually
part of the true habitat distribution. In addition to creating a frequency of consensus projec-
tion for each habitat distribution of interest, we used the calibrated binary presence/absence
MaxEnt models to create “core” and “semi—core” projections. The core maps show the pre-
dicted habitat distributions as determined according to areas where there was 100% and 50%
or greater agreement between the 12 top-selected models, respectively. Note that while the
information depicted by these maps would change somewhat if a different set of randomly
selected top-performing models was used to create the feature subset ensembles, the frequency
of consensus method captures provides a reasonable snapshot of this variability.

Habitat distribution extents and land-use/land-cover compositions

ArcMap was used to calculate the areal extents of the predicted general use, nest site, and roost
site habitat distributions as identified by the core and semi-core projections. An LULC map
for the State of Texas was downloaded from the Texas Parks and Wildlife Department
(TPWD) website [119] and resampled to 9.5 m. The percentages of the LULC types that over-
lapped the areas that made up each of the core projections were also calculated in ArcMap.

Results
Suitable general use habitat distribution

Feature selection performance. A feature subset size of seven variables with a model
selection criterion of AICc;,, was optimal for producing high performing models (Figs 5 and
6). The 12 top-selected models had high accuracy with an AUC,, of 0.942+0.005, which was
markedly higher than the MaxEnt default AUC,g;, (i.e., 0.904+0.004). A similar trend was
observed with TSS (i.e., TSS,s, = 0.779+0.013 vs. TSSgp = 0.7160.013; Table 2).

Variable rankings in 250 top-performing models. The top 15 ranked variables in the
feature selected general use habitat models were dominated by percent cover of preferred
ranges (i.e., 70%) of 2™_order GLCM entropy and contrast textures of raw 2010 NDVI values
(ndv102e99pc70) followed by 2™-order GLCM entropy and contrast textures of raw 2010
NDVI values derived using a 990 m focal window (ndv102e990, ndv102c990; Table 3; S1
Table). Probability of parrot occurrence increased gradually in a manner resembling a convex
curve from low to high values of ndv102e99pc70, but the response curve was mostly flat over
low and medium values of ndv102e990, increasing sharply in a sigmoidal fashion at the highest
presence values (S9 Fig). Elevation occurred among the list of the top five top-ranked variables
(Table 3). The probability of parrot occurrence peaked at low values of elevation, sharply
decreasing in a manner resembling a concave curve to zero at relatively medium to high eleva-
tions (i.e., 30 to 50 m; S9 Fig). Variables ranked from ten to 20 were dominated by 2" _order
entropy textures of raw 2008 GBNDVI, BNDVI, and NDVI derived using both focal window
sizes (e.g., ndv082e990; Table 3). The probability of parrot occurrence exhibited a gradual sig-
moid increase to high values of ndv082e990 (S9 Fig). Raw vegetation indices, including raw
2010 NDVI and GRNDI and multitemporal vegetation index differences variables (i.e.,
deltgrn10_08), ranked poorly and generally had a low mean permutation importance; however,
they did occasionally appear in top-performing models (S9 Fig and S2 Table). Additional
information about variables in the 12 top-selected models can be found in the Supporting
Information section (S1 and S2 Tables).
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Fig 5. Stage I results of the MaxEnt version of the Cross-Validated Random Subset Feature Selection Algorithm (RSFSA-CV). Texas Rio Grande Valley
Red-crowned Parrot general use (A, D, G), nest site (B, E, H), and roost site (C, F, I) habitat distribution models were derived from top ten performing
AUC,,s,—or AICcyg-selected feature subsets compared to ten random subsets out of 250 randomly generated subsets as determined using the RSFSA-CV.
Model performance evaluation statistics shown include: AUC,,_cv2 (A to C), AICchs cv2 (D to F), and AUC,,,_aifr cv2 ((G to I)). Filled markers indicate

AICcpg—or AUC,q,—selected models performed significantly better than randomly selected models (Welch’s t-test, p < .05).

https://doi.org/10.1371/journal.pone.0294118.g005

Predicted extent and LULC composition

The areal extents of the general use habitat distribution core and semi-core projections were
546.5 and 1195.1 km?, respectively (Fig 7). The LULC types associated with the area encom-
passed by the core projection were: Low Urban-53.9%, Disturbance Grassland-15.4%, High
Urban-12.0%, Row Crops-5.7%, Tamaulipan Mixed Deciduous Thornscrub (i.e., Clayey Black-
brush Mixed Shrubland)-3.0%, Sandy Mesquite Dense Shrubland-2.1%, Open Water-1.1%,
and others—<1.0%.

Suitable nest site habitat distribution

Feature selection performance. Five-variable subsets with a selection criterion of AICcy,
were optimal for producing high performing models (Figs 5 and 6). High accuracy in the 12
top-selected models was reflected in both AUC measures (i.e., AUC,, = 0.969+0.019, AUC,g,
=0.965+0.018). The two TSS measures were approximately equal (i.e., TSS,,, = 0.889+0.062;
TSSygp = 0.883+0.05; Table 2).

PLOS ONE | https://doi.org/10.1371/journal.pone.0294118 December 6, 2023

15/42


https://doi.org/10.1371/journal.pone.0294118.g005
https://doi.org/10.1371/journal.pone.0294118

PLOS ONE

Modelling Red-Crowned Parrot general use, nest site, and roost site habitat distributions in southern Texas

A AUC,,, cv;over Three Replications D AICe,, cy, over Three Replications G AUC,,, aittwsintet vz Over Three Replications
RCP General Distribution Models (n = 250) RCP General Distribution Models (n = 250) RCP General Distribution Models (n = 250)
099
8200
0.97 0022 *
8000 1 7 0017 -
T 095 - %% £ ooz -
2 £ 7800 é/ g
2093 = / S 0.007
5 g %
: S 7600 £ 0002
091 5 g
g o g / £
z 0.89 7400 % 3 s
: o -0.008
7200 / =1
087 % < 0013 1
55 7000 RS @ -0.018 5 ( L = F—— TR
§ & AR QR AR
Qf » v Q?“b » ® va} N @‘99 ®
Rep 1 Rep2 Rep 3 Rep 3 Rep 1 Rep 2 Rep3
B AUC,,, cv, over Three Replications E AICe,, v, over Three Replications H AUC,,, gitaintes cv2 OVer Three Replications
RCP Nest Site Distribution Models (n = 250) RCP Nest Site Distribution Models (n = 250) RCP Nest Site Distribution Models (n = 250)
700
* *
_ 650
- 7
3 g SSI7
b E W
5, S 600 % NN —* ]
S S .
= =z \ 5 I
< 550 \ U -0.008 *
§ 2 oo
500 S7 0.018
& o o & & v o S N § o of & o & & ot OF $ oo¥ o
& ¥ & $ & & AR % & LOF & ¢ & & ¢ SRS
ST 8 S FE TS SEET ST S
Rep2 Rep 1 Rep2 Rep3 Rep 1 Rep2 Rep3
C AUC,,, cv;over Three Replications F AICcy, ¢y, over Three Replications I AUCy, dimusintes_cv2 Over Three Replications
RCP Roost Site Distribution Models (n = 250) RCP Roost Site Distribution Models (n = 250) RCP Roost Site Distribution Models (n =250)
2000
099
%%, SN 1600 = o
0.97 % NN ]
- 7 \ = 2 0023
£ 95 % \ 2 1200 g
g 093 % \ 5 UK
§ v % \ g é
o o] H
2 091 % § = 3 oo '_L ] 1 [
/ \ I T
0.89 % \ = -0.007
Z N
0.87 . » 0 r
QAo St Foered S &F o QG Al & ot
3
& T ¥ R & ¥ & ¥ ¥ & Q_f TS S
Rep 1 Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3
Fig 6. Stage II results of the MaxEnt version of the Cross-Validated Random Subset Feature Selection Algorithm (RSFSA-CV). Top AUC,,,,—or

AICcpg—selected 250 Texas Rio Grande Valley Red-crowned Parrot general use (A, D, G; seven variable feature subsets), nest site (B, E, H; five variable feature
subsets), and roost site (C, F, I; four variable feature subsets) habitat distribution models performance compared to randomly selected models as determined via
the RSFSA-CV (Welch’s t-test, p < .05). Performance determined using mean evaluation statistics (x+s of AUC,, cv2 (A to C), AlCcpg cv2 (Dto F),
AUCq._dgifr cvz (G to 1)); 3,000 feature subsets per three training replicates. Asterisks indicate AICc,g—or AUC,-selected models performed significantly
better than randomly selected models (Welch’s t-test, p < .05).

https://doi.org/10.1371/journal.pone.0294118.9006

Variable rankings in 250 top-performing models. The top 15 ranked variables in feature
selected nest site habitat distribution models were dominated by six feature type correlation
groups (correlation group number): (1) 2"¢
2010 NDVI values derived using both focal window sizes and precent cover of preferred ranges
of 2™-order GLCM entropy textures of raw 2010 NDVI values (i.e., 70/85/90%) derived using
a 310 m focal window (e.g., ndv102e31pc70); (2) 2™-order entropy textures of raw 2008
GBNDVI, BNDVI, and NDVI values derived using both focal window sizes (e.g., gbn082e310);
(3) percent cover of preferred ranges (i.e., 70%) of 2"_order GLCM entropy and contrast tex-
tures of raw 2010 NDVT values derived using a 990 m focal window; and (4) elevation
(Table 3). The probability of parrot occurrence increased gradually in a convex curve from low
to high values of ndv102e31pc70, but it increased in a gradual sigmoidal fashion at higher val-
ues of gbn082e310 (S10 Fig). Two raw 2008 vegetation indices, GBNDVI and NDVI, occurred
among the list of the top 30 variables; however, this type of variable, along with the even lower
ranked multitemporal vegetation index difference type variables (e.g., deltgrn10_08) had

—order GLCM entropy and contrast textures of raw
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Table 2. Stage III results from the Maxent Cross-Validated Random Feature Subset Selection Algorithm (RSFSA-CV) for Texas Rio Grande Valley Red-crowned

Parrots.
Habitat Distribution FSE Selection Criteria Data Used Feature Subset Size | Number of Features | True Skill Statistic Area Under the
Used Curve
Type Type Type # x s X s x s

General Use AlCcg Testpea 7 6.75 0.452 0.779 0.0130 0.942 0.005

General Use AlCcg Testypg 7 6.75 0.452 0.716 0.0130 0.904 0.004

Nest Site AlCcg Testpea 5 4917 0.289 0.889 0.062 0.969 0.019

Nest Site AlCcg Testypg 5 4917 0.289 0.883 0.059 0.965 0.018

Roost Site AlCcpg Testpsa 4 3.833 0.39 0.86 0.06 0.967 0.019

Roost Site AIchg Tes‘[bpg 4 3.833 0.39 0.85 0.06 0.962 0.019

X, arithmetic mean; s, standard deviation of the mean; AICc, corrected Akaike information criterion; psa, pseudoabsence; bg, background; bpg, background presence;

FSE, feature subset ensemble.

The average performance over three replications of the final 12 top-selected models used to predict general use, nest site, and roost site habitat distributions.

https://doi.org/10.1371/journal.pone.0294118.t1002

relatively low mean permutation importance whenever they did appear in our 12 top-selected
models (Table 3). Additional information about variables in the 12 top-selected models can be
found in the Supporting Information section (S1, S2 Tables).

Predicted extent and LULC composition. The areal extents of the predicted nest site hab-
itat distribution core and semi-core projections were 118.2 and 871.1 km?, respectively (Fig
8). The LULC types associated with the core projection were: Low Urban-61.6%, Disturbance
Grassland-13.6%, Tamaulipan Mixed Deciduous Thornscrub (i.e., Clayey Blackbrush Mixed
Shrubland)-5.2%, High Urban-4.0%, Sandy Mesquite Dense Shrubland-3.6%, Row Crops-
2.7%, Floodplain Evergreen Forest and Woodland-1.2%, Floodplain Herbaceous Wetland-1.2%,
Orchard-1.0%, and others—1.0%.

Suitable roost site habitat distribution

Feature selection performance. Feature subsets of four variables and a model selection
criterion of AICc;,, was optimal for identifying high performing models of the roost site habitat
distribution (Figs 5 and 6). High accuracy in the 12 top—selected models was reflected in values
of both AUC,, and AUC,g, at 0.967+0.019 and 0.962+0.019, respectively. The two TSS mea-
sures were approximately equal (i.e., TSSys, = 0.86+0.06, TSS},g;, = 0.85+0.06; Table 2).

Variable rankings in 250 top-performing models. The 15 top-ranked variables in fea-
ture selected roost site habitat distribution models were dominated by percent cover of pre-
ferred ranges of 2"?~order GLCM entropy and contrast textures of raw 2010 NDVI values
(ndv102c99pc85, ndv102e99pc85) and 2™%-order GLCM contrast texture of raw 2010 NDVI
(ndv102c990; Table 3). The probability of parrot presence increased gradually from zero to
peak levels at a moderate value of ndv102c99pc85 before gradually declining in a concave fash-
ion at high values (S11 Fig). Other highly ranked variable types in the 30 top-ranked variables
included 2010 2"-order GLCM entropy and contrast textures of raw GRNDI and NDV1 val-
ues derived using a 990 m focal window (e.g., grn102c990) and percent cover of preferred (cen-
tral 70%) range of 2"*-order GLCM mean textures of raw 2010 GRNDI values derived using
both focal window sizes (e.g., grn102m31pc70; Table 3). The probability of parrot occurrence
sharply peaked at a lower value for grn102c990 and gradually declined to zero at a medium
value. The probability of occurrence slowly increased in a concave fashion before peaking at
high values for grn102m31pc70 (S11 Fig). Four percent cover of preferred ranges of raw vegeta-
tion index values type features, such as ndv08_50_310, appeared in the 12 top-selected models,
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Table 3. The 30 top-ranked variables that occurred in feature subsets of each of the 250 top-performing models used to derive the general use, nest site, and roost
site habitat distribution projections for Texas Rio Grande Valley Red-crowned Parrots.

Variable Rank

Variable_Name®

(Variable Correlation Group Number)®

[Variable Occurrence in 12 Top-Selected Models]

General Use Habitat Nest Site Habitat Roost Site Habitat

7 Variables per Model® 5 Variables per Model* 4 Variables per Model*
1 ndv102e99pc70 (1)[4] ndv102e310 (1)[0] ndv102c¢99pc85 (1)[1]
2 ndv102e990 (2)[3] gbn082e310 (2)[1] ndv102¢990 (1)[0]
3 ndv102¢990 (2)[0] ndv102e990 (1)[0] ndv102e99pc70 (1)[0]
4 ndv102e99pc80 (1)[2] ndv102e99pc80 (3)[0] grn102e310 (2)[0]
5 elevation (3)[5] ndv102e99pc70 (3)[1] ndv102c310 (2)[0]
6 ndv102c99pc70 (1)[1] elevation (4)[1] ndv102c99pc90 (1)[0]
7 ndv102c99pc85 (1)[1] ndv102e31pc70 (1)[1] grn102m99pc70 (3)[0]
8 ndv102c99pc90 (2)[1] bnd082e310 (2)[1] grn102¢31070 (4)[2]
9 ndv102e310 (2)[0] ndv102c99pc70 (3)[0] bnd082¢310 (5)[1]
10 gbn082e990 (4)[0] ndv102c99pc85 (3)[1] grn102c99pc90 (6)[0]
11 bnd082¢990 (4)[0] ndv102c99pc90 (3)[1] ndv102c¢99pc70 (1)[0]
12 ndv102m310 (5)[0] ndv082e310 (2)[1] ndv102e310 (5)[0]
13 ndv102m990 (5)[1] ndv102¢990 (1)[0] grn102m31pc70 (3)[1]
14 ndv102c99070 (6)[0] ndv102c31pc70 (5)[0] ndv102¢99070 (7)[0]
15 ndv082e990 (4)[1] ndv082e990 (2)[0] grn102v31pc70 (8)[1]
16 bnd082e310 (4)[0] sar082¢990 (6)[0] bnd082e310 (5)[0]
17 gbn082e310 (4)[0] sar082c310 (6)[0] gbn082c99pc70 (9)[0]
18 ndv102v990 (5)[2] gbndvio8 (7)[1] ndv102c¢31070 (7)[0]
19 sar08_50_990 (7)[0] gbn082v310 (7)[0] grn102c990 (2)[1]
20 sar082m99070 (7)[1] bnd082e99pc70 (8)[0] ndv102m99pc70 (10)[0]
21 ndv102v310 (5)[0] ndv082m990 (7)[0] grn102e31070 (4)[0]
22 bnd082c99070 (4)[0] gbn082¢990 (8)[1] grn10_70_990 (11)[0]
23 gbn082e99pc80 (4)(0] ndvi08 (7)[0] grn102v99pc70 (3)[0]
24 5ar082e99pc80 (8)[0] bnd082e99pc80 (8)[0] bnd082c99pc70 (9)[1]
25 ndv102e31pc70 (2)[0] sar082m31pc70 (9)[1] ndv102v99pc70 (10)[0]
26 sar08_50_310 (7)[0] sar082e310 (6)[0] ndv102c31pc70 (1)[0]
27 sar082v99070 (7)[0] 5ar082e99pc80 (6)[1] gbn082e310 (5)[0]
28 grn102c¢99070 (6)[1] sar08_50_990 (10)[0] ndv102e31070 (7)[0]
29 ndv082v990 (9)[1] ndv082¢990 (8)[0] bnd082¢990 (9)[0]
30 sar082c¢99pc70 (8)[0] bnd082¢99070 (11)[0] gbn082c990 (9)[0]

Percent of top 30 variables from all 250 top-performing models occurring in 12 top-selected models

43% (13/30)

40% (12/30)

23% (7/30)

Ranks determined using percent mean permutation importance (60% weight) and frequency of occurrence (40% weight) over three replications (3,000 models each).

Shaded cells denote variables occurring in at least one of the 12 top-selected models used to derive final projections.

See S1 Table in Supporting Information section for variable nomenclature.

"Variables within a correlation group cannot co-occur in a feature subset (see Methods).

“Optimal number of variables per model type determined via feature selection (see Results).

https://doi.org/10.1371/journal.pone.0294118.t003

but they had medium to low mean permutation importance and generally ranked lower overall
(Table 3; S2 Table). Raw vegetation index type features (e.g., grndi08, gbndvi08) and multitem-
poral vegetation index difference type features (e.g., deltndvil0_08) were also low ranking, and
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Fig 7. Texas Rio Grande Valley Red-crowned Parrot predicted general use habitat distribution as determined via
a consensus-based feature ensemble of 12 calibrated (binary presence/absence) MaxEnt models. (A) complete
graduated (frequency of consensus between the 12 top-selected models), (B) 100% consensus (“core” = 12 models),
and (C) 50% consensus (“semi-core” >6 models).

https://doi.org/10.1371/journal.pone.0294118.g007

their mean permutation importance ranged from zero to mid-range values (S2 Table). They
did appear in some of our 12 top-selected models (S1, S2 Tables). Additional information
about variables in the 12 top-selected models can be found in the Supporting Information
section.
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Fig 8. Texas Rio Grande Valley Red-crowned Parrot predicted nest site habitat distribution as determined via a
consensus-based feature ensemble of 12 calibrated (binary presence/absence) MaxEnt models. (A) complete
graduated (frequency of consensus between the 12 top-selected models), (B) 100% consensus (“core” = 12 models),
and (C) 50% consensus (“semi-core” >6 models).

https://doi.org/10.1371/journal.pone.0294118.g008
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Predicted extent and LULC composition. The areal extents of the roost site habitat distri-
bution core and semi-core projections were 10.4 and 494.4 km?, respectively (Fig 9). The
LULC types associated with the area encompassed by the core projection were: Low Urban-
97.3%, High Urban-1.8%, and various others-0.9%.

Overlap and differences between suitable habitat distributions

The combined areal extent of the core and semi core projections of the general use, nest site,
and roost site habitat distributions was 1583.0 km* and 5840.5 km®, respectively.

Most of the combined areal extents of the core projections of the roost and nest site habitat
distributions fell within the bounds of that of the general use habitat distribution (i.e., 128.1
km? [88.0%]; Fig 10). Most of the areal extent of the semi-core projection of the nest site habi-
tat distribution also fell within the bounds of that of the general use habitat distribution (i.e.,
837.2 km? [82.4%]). The same was true for the areal extent of the semi—core projection of the
roost site habitat distribution (i.e., 296 km? [94.1%]; Fig 10). There was more overlap between
the semi-core projections of the roost and nest site habitat distributions but little to no overlap
between the core projections. The combined areal extent of the core and semi-core projections
of nest site and roost site habitat distributions was 145 km” and 1058.4 km?, respectively.
Approximately 1.06 km? (0.73%) and 272.9 km? (25.8%) of their areal extents of their core and
semi-core projection overlapped, respectively (Fig 10).

Discussion
Top-ranked variables in habitat distribution models

Topography. Elevation was the fifth and six top-ranked variable in the 250 top—perform-
ing general use and nest site habitat distribution models, respectively, but not in roost site hab-
itat distribution models. It appeared relatively frequently in the general use and nest site
feature subsets (S1, S2 Tables); however, its mean permutation importance never exceeded
approximately 50% in any of the 12 top-selected models. The frequent appearance of elevation
was likely related to the fact that it was the only variable in its correlation group (and thus had
a much higher chance of appearing in any of the feature subsets derived by the RSFSA-CV. Ele-
vation was a top variable in a model of the distribution of Red-crowned Parrot populations in
southern California [34]. Interestingly, although Red-crowned Parrot presence appears to be
restricted to elevations between one to 70 m in the Rio Grande Valley of Texas, they occupy
elevations upwards of 1,200 m in Mexico [120] and 400 m in California [121]. Given that the
majority of the urban areas of the Rio Grande Valley are generally low-lying and unremark-
able in terms of topographic variability [86], we suggest that while elevation is not a primary
driver of Red-crowned Parrot presence in this area in and of itself, it may be important in that
it influences the distribution of vegetation they rely on as it relates to different habitat types.
For example, elevation may play a meaningful role in defining differences between roosting
and foraging habitats as Red—crowned Parrots reportedly travel up and down elevational gra-
dients between foraging and roosting areas in Mexico [122]. Unfortunately, we were unable to
model their foraging habitat distribution in this study due to a lack of a sufficient number of
unique foraging presence points.

Raw vegetation indices. Raw vegetation indices occasionally appeared in some of our
top-performing models and among our list of top-ranked variables (Table 3; S1, S2 Tables),
suggesting this feature type had some explanatory value in our final habitat distribution mod-
els overall. However, mean permutation importance for this variable type was usually relatively
low in all three sets of our habitat distribution models. We were somewhat surprised that raw
SARVI did not seem to have more explanatory power in our models than raw NDVI (which
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Fig 9. Texas Rio Grande Valley Red-crowned Parrot predicted roost site habitat distribution as determined via a
consensus-based feature ensemble of 12 calibrated (binary presence/absence) MaxEnt models. (A) complete
graduated (frequency of consensus between the 12 top-selected models), (B) 100% consensus (“core” = 12 models),
and (C) 50% consensus (“semi-core” >6 models).

https://doi.org/10.1371/journal.pone.0294118.g009

had relatively low explanatory power in and of itself). The mediocre performance of raw
SARVI could have been caused by the fact that the value we chose for “L”, the soil correction
factor (i.e., 0.5), might have been inappropriate for calculating this vegetation index using
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Fig 10. The overlap of Texas Rio Grande Valley Red-crowned Parrot predicted general use, roost site, and nest site

habitat distributions as determined using consensus-based feature ensembles of separate sets of 12 calibrated (binary
presence/absence) MaxEnt models. (A) 100% consensus (“core”); (B) 50% consensus (“semi-core”). Insets depict certain

parts of the predicted habitat distributions in more detail.

https://doi.org/10.1371/journal.pone.0294118.g010

NAIP imagery because the calculations (and constants) used to derive SARVI were originally
developed to use on Moderate Resolution Imaging Spectroradiometer (MODIS; a different sat-
ellite image acquisition platform that uses somewhat different ranges of spectral values for sim-
ilarly named bands) imagery [123]. The additional non-linear transformations made on one
version of raw SARVI (i.e., sarviO8trans; S1 Table) to bring out differences between varying
pixel values in the original raster seemed to have little effect on its performance in models.
Despite its relatively poor performance in our models, we suggest the utility of raw vegeta-
tion indices, including SARVT, in SDMs deserves further research since they have been useful
in other studies [60, 124]. This is supported by their utility in other SDMs for birds, including
parrots. Raw NDVI was successfully used to determine the extent to which deforestation
affected Neotropical parrot population occupancy rates [125]. Mean annual NDVI was the
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most important variable for modeling the distribution of the IUCN Critically Endangered Lila-
cine Parrot (Amazona lilicana [Lesson, 1844]) in Ecuador [36]. Raw vegetation indices were
used to model the habitat distribution of the IUCN Vulnerable Red-fronted Parrotlet (Touit
costaricensis [Cory, 1913]) in Costa Rica [126]. The spatial distributions of raw NDVI and EVI
values associated with Clapper Rail (Rallus longirostris yumanensis [Dickey, 1923]) presence
was not random [127]. Other vegetation indices that might be valuable for developing SDMs
in urban landscapes are those that include the red and blue bands (e.g., squared Red-Blue
NDVI [97]) because they can be used to effectively discriminate between vegetated and non-
vegetated surfaces. The utility of very few other types of vegetation indices have been explored
in SDMs to date. We strongly encourage thinking outside of the “NDVI” box when choosing
which vegetation indices to include as predictor features in future SDMs.

Multitemporal raw vegetation indices. The multitemporal raw vegetation index differ-
ence type variables were generally poorly ranked in all three habitat distribution models. Only
one of these variables had a small, but measurable permutation importance in one of the 12
top-selected models of our three habitat distributions (S1, S2 Tables). We suggest the changes
in the landscapes’ vegetation that occurred between April 2008 and April 2010 were either rela-
tively minor or had little ecological significance to the Red-crowned Parrots’ survival. Multi-
temporal vegetation index difference type features might be more useful in SDMs when a
significantly greater or lesser period of time between the dates that the imagery used to create
them is acquired has lapsed. For example, since parrots rely on different types and parts of veg-
etation throughout the year (e.g., seasonal availability) for various purposes [128], multitem-
poral vegetation index differences that consider differences between values of vegetation
indices over different periods might improve the utility of this type of variable in SDMs for
parrots. For example, considering changes in NDVI values between the months of April
(spring) and July (summer) or December (winter) within a single year might highlight impor-
tant differences in vegetation that have a stronger influence on habitat suitability of certain
areas during different seasons throughout the year compared to differences between vegetation
as it occurs during the same month after a single year has lapsed.

Percent cover of preferred ranges of raw vegetation index values. This type of variable
appeared slightly more frequently in top-performing models than other types of simple vege-
tation index derivatives and was often more highly ranked; however, it was never the top-per-
forming variable by mean permutation importance in any of the 250 top-performing models
(Table 3; S1, S2 Tables). Percent cover of preferred ranges of raw SARVI and NDVI values
appeared to have slightly more explanatory power than that of other vegetation indices we con-
sidered (i.e., BNDVI, GBNDVI, GRNI; S1 Table). The general shape of the response curves for
this type showed strong decreases in probability of parrots being low at minimum and maxi-
mum values of percent cover and a dramatic increase somewhere in between). This implies
that Texas Rio Grande Valley Red-crowned Parrots prefer moderate rather than high or low
levels of percent cover of preferred vegetation types or characteristics. The Western Ground
Parrot (Pezoporus flaviventris [North, 1911]) also prefers habitat with moderate, rather than
high or low levels of vegetative cover [129]. While it makes sense that the probability of Red-
crowned Parrot presence is minimal at low levels of percent cover of vegetation types or char-
acteristics (since they are so strongly dependent on vegetation as previously mentioned), it was
somewhat unclear why the probability of their presence decreases at maximal values. Another
parrot species’ habitat use patterns provided us with some insight regarding this matter.
Higher vegetative cover was associated with lower productivity at nest sites and higher rates of
predation in two separate populations of Green-rumped Parrotlets (Forpus asserines [Lin-
naeus, 1758]), which also occupy vegetatively heterogenous habitats in Venezuela [130].
Although this variable type was typically not relatively well-performing in our models, we
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suggest it is still worth considering in future SDMs for birds to explore their preferences for
vegetative heterogeneity.

Raw vegetation index textures. This variable type appeared frequently and was often
highly ranked in the 250 top—performing models, including the 12 selected to derive all three
habitat distribution projections (Table 3; S1, S2 Tables). Particularly valuable variables of this
type included 2"?-order GLCM entropy and/or contrast textures of raw NDVI, GBNDVI, and
BNDVI values. In addition, 2™-order GLCM entropy textures of raw GRNDI were highly
ranked in roost site habitat distribution models. In most cases, the marginal responses of this
type of variable showed probability of parrot presence increased as their values increased. The
2"_order GLCM entropy and contrast textures of raw NDVI have been correlated with het-
erogeneity of certain vegetation pattern characteristics (e.g., species richness, canopy height,
etc.) [131]. As such, the combination of the strong performance of entropy and contrast tex-
tures of raw vegetation index—based features in all three sets of habitat distribution models and
marginal response curves suggests Red-crowned Parrot presence is tied to high levels of het-
erogeneity in vegetative characteristics such as canopy structure and/or types of vegetation.
This aptly describes the urban areas of the Texas Rio Grande Valley where the Red-crown Par-
rots can often be found. This assertion is particularly well-supported by our predicted roost
site habitat distribution because their roosts in the area of interest have previously been
described as a collective of small but well-vegetated suburban yards [13]. Vegetative diversity
may be generally important to the persistence Red-crowned Parrot wherever it is found given
that diverse deciduous tropical forest is the habitat type it is most commonly associated with in
the Mexican portion of its historical range [132]. Vegetative diversity has also been found to be
an important factor in defining the habitat distributions of other parrot species [133-135].

Although vegetation index texture type features are not yet commonly employed in SDMs,
several studies provide support for the assertion that they are worth including in SDMs in the
future. Various textures (e.g., entropy, contrast, homogeneity, dissimilarity) of raw vegetation
indices (e.g., NDVI, Soil Adjusted Total Vegetation Index [SATVI], Enhanced Vegetation
Index [EVI]) outperformed other variables in wide range of models (i.e., Critically Endangered
Alaotran gentle lemur (Hapalemur alaotrensis [Rumpler, 1975]) habitat [62], bird species den-
sities and avian species richness [136], avian species diversity in the Chihuahuan Desert [131],
vegetation species richness in Argentinian mesquite (Prosopis alba [Griseb]) woodlands [137],
vegetation canopy height and bird species richness [138], vegetation distribution and heteroge-
neity, spatial variation of different habitats, and predicting key biodiversity patterns [138,
139]). While we did not explore GLCM 2"*-order homogeneity or dissimilarity textures of
raw vegetation indices in our models, we suspect that they might have performed a function
similar to some of the GLCM 2" -order textures we did explore (i.e., contrast, entropy) given
their usefulness in detecting vegetation heterogeneity [131]. The utility of GLCM textures of
vegetation indices should continue to be explored in future SDM efforts.

Texture of binary preferred/non-preferred ranges of vegetation index values. In gen-
eral, this variable type was much lower ranked than other complex vegetation derivatives such
as either texture of raw vegetation indices (see above) or percent cover of preferred ranges of
vegetation index texture values (see below; Table 3). These variables were higher ranked for
general and roost site habitat distribution models compared to nest site habitat models, where
only one of these variables appeared in the top 30 ranked variables (Table 3). These variables
commonly appeared in the selected 12 top-selected models used to derive the habitat distribu-
tion models for each habitat type; however, few had high permutation importance, even in
some nest site habitat distribution models. Further study is needed to assess whether these var-
iables would contribute more to models in the absence of higher ranked vegetation index tex-
ture-type variables and how overall model performance might be affected.

PLOS ONE | https://doi.org/10.1371/journal.pone.0294118 December 6, 2023 25/42


https://doi.org/10.1371/journal.pone.0294118

PLOS ONE

Modelling Red-Crowned Parrot general use, nest site, and roost site habitat distributions in southern Texas

Percent cover of preferred ranges of vegetation index texture values. This variable type
had one of the highest ranked performances of all the types; the top-ranked variable of both
the top-performing 250 models for the general use and roost site habitat distributions was of
this type (Table 3; S1, S2 Tables). Furthermore, they were the variable type most likely to be the
top—performing variable in roost site habitat distribution models. Those derived using 2nd
order GLCM entropy and contrast textures appeared more frequently in models and were
often more highly ranked than other texture types we considered. Unlike the response curves
for percent cover of preferred ranges of raw vegetation index values, the marginal response
curves for this variable type showed that the probability of parrot presence was either moderate
and stable (i.e., mean, variance) or increased from nearly zero to close to maximum (i.e., con-
trast, entropy) as percent cover of the preferred range of values increased. This supports the
suggestion that heterogeneity in vegetation or its characteristics is an important factor in how
these parrots are distributed across the urban Texas Rio Grande Valley landscape. While it is
tempting to gain a better understanding of what the landscape actually looks like as values of
this variable type changes on the ground, we reiterate that the purpose of using this type of var-
iable in SDMs is to identify mathematical patterns that might be important to the species of
interest from their perspective rather than an anthropocentric one [52]. More research is
needed to explore the utility of this type of variable in SDMs.

Additional notes regarding vegetation index type variables in SDMs. The vegetative
cover varies across landscapes in both time and spaces because each plant species has its own
unique life cycle and phenology, and as such, the manner in which Red-crowned Parrots (and
many other animals) likely exploit whatever suitable vegetation is available in the areas they
occupy at any given time of year [140]. As such, it is important to recognize that the utility of
raw vegetation indices and their derivatives in our SDMs was limited by what vegetative cover
could be detected during the two to three days when the aerial images from which said vegeta-
tion indices (and their derivatives) were created were captured [141]. The predictive value of
vegetation indices in SDMs is probably highest when associated with presence data collected
around the same period. Since the Red-crowned Parrot engages in resting, foraging, nesting,
and roosting (much of which is associated with interactions with vegetation) during the time
of year that the aerial imagery we used to derive our predictive features was collected, we are
confident that our models are valid predictions of the habitat distributions of interest during
the spring season; however, their predictive accuracy may not be as strong during other sea-
sons. A time series of aerial (or satellite) imagery can be used to track target plant species in a
more continuous manner and thereby improve the capacity to discriminate between different
plant species [142]. This concept could be applied to a wide variety of aerial imagery products
that could be used in SDMs, including vegetation indices (assuming a time series of the desired
imagery is available).

Focal window size

Variables derived using the larger focal window size (i.e., 990 m) made up higher percentages
of top-ranking variables that made up the 250 top—performing models across all three habitat
distributions (S2 Table). This suggests Red-crowned Parrot presence in the Rio Grande Valley
of Texas appears to be more strongly correlated with vegetation patterns that occur over larger
as opposed to smaller ones. Small patches (i.e., 10 to 100 m?) are likely to provide fewer food
resources and potentially less cover from predators for birds that rely on specific habitat (e.g.,
woodlands) compared to large patches (i.e., >100 m®) [143]. Occupying areas that provide
access to desired resources over relatively larger areas with high levels of heterogeneity in vege-
tative cover may allow the parrots to be choosier about deciding where to go to acquire what is
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needed or desired (i.e., food, mates, places to rest or nest) while simultaneously enabling them to
avoid negative outcomes (i.e., predation) more effectively. Despite this, it is important to consider
that any movement across the landscape involves making decisions based on a simple cost/benefit
trade—off scheme as it relates energy use and predation risk [144]. As such, there is likely a maxi-
mum threshold for the size of the area that could feasibly be covered by the parrots because of the
increasing cost of travel required to exploit increasingly dispersed patches with the desired
resources and/or that provide effective protection from predators and less competition. This asser-
tion is supported by the finding that large birds must travel farther when they occupy relatively
homogenous landscapes [138]. Since the Red-crowned Parrot is considered a relatively large bird
[132], we suspect this phenomenon could affect them. They may be able to persist in certain parts
of the urban landscape that are fairly heterogeneous (i.e., a fair number of smaller patches of suit-
able habitat [e.g., appropriately vegetated] within reasonable distances of each other).

Red-crowned Parrots are highly mobile, strong fliers [23] that move readily between
resource patches used for foraging, roosting, nesting, or other activities. Regular daily move-
ments can exceed 20 km round-trip during the breeding season. They can make larger (~40
km), more irregular movements between roosting and foraging sites during the non-breeding
season [23, 145] in addition to a number of shorter movements between daily foraging bouts.
The focal window sizes considered in this study may have therefore been too small. We suggest
future SDMs considering using predictor features that require neighborhood calculations
explore a wider range of focal window sizes.

Variables that did not involve a focal neighborhood analysis were often less highly ranked
than those that did; the exception was elevation. We suggest this indicates that the distributions
of the various resource patches Red-crowned Parrots exploit across Rio Grande Valley are
likely more important than the exact location of any single patch in isolation [146].

LULC composition

The results of the LULC composition analyses confirm that the majority of all three of the Red-
crowned Parrots’ habitat suitability distributions of interest are primarily composed of LULC
types affected by urbanization (i.e., Low Urban, High Urban); however, it is important to recog-
nize that urbanization in and of itself does not equate to Red-crowned Parrot presence because
not all areas classified as being affected by urbanization fell within the boundaries of our pre-
dicted habitat distributions. Other LULC types that fell within their boundaries (e.g., grasslands,
agriculture areas [i.e., Row Crops, Orchards], thornscrub, shrubland, woodlands, wetlands, etc.)
were more closely related to those found in their habitat in Mexico and may somehow support
the parrots’ persistence in the Texas Rio Grande Valley. The natural habitat of the endangered
Red-crowned Parrot in Mexico consists of tropical lowland forests (e.g., deciduous, gallery, ever-
green floodplain), semi-open woodlands (e.g., open pine-oak savannah), and occasionally open
areas (e.g., coastal plains, cattle pastures) dotted with large trees [16, 17, 23, 147].

While the LULC analysis was of some use in supporting the basic hypotheses that these par-
rots use certain areas within urban landscape the Rio Grande Valley of Texas, we stress that it
did not contribute much novel information to our understanding of the habitat distributions
of the Red-crowned Parrot beyond this. Since LULC type maps are typically developed for cer-
tain types of human use at scales of interest to humans [148], they may not be as useful for
developing SDMs of non-human animals species as currently perceived.

Suitable habitat distribution overlap

The finding that the predicted projections of roost and nest site habitat distributions fell within
the bounds of those of the general use habitat distribution was expected given that at least a
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small number of the presence points used to model the general use habitat distribution were
undoubtedly representative of presence at nest or roost sites. The predicted nest and roost site
distributions may overlap since they are both almost exclusively found in suburban yards
throughout the study site. Additionally, Red-crowned Parrots are secondary tree cavity nesters
(i.e., they rely on holes excavated by other species [122]) and typically roost in trees like most
other parrots [31, 149-151] and it is likely that there are at least some trees suitable for either
nesting or roosting within the area that comprises the general use habitat distribution. We sus-
pect that areas where no overlap occurs between the general use habitat distribution and either
of the other two habitat distributions could be areas used by the parrots use for activities such
as foraging, resting, and/or predator evasion.

Conservation implications and recommendations

An increasing number of parrot species, including those of conservation concern, can be
found in cities around the world and it has been suggested that cities may be a novel niche par-
rots are starting to exploit more and more frequently [15, 152-154]. As such, the Texas Rio
Grande Valley Red-crowned Parrot is far from the only sensitive parrot species to find a home
in urbanized landscapes. For example, the International Union for the Conservation of Nature
(IUCN) Vulnerable Hispaniolan Parrot (Amazona ventralis [Muller, 1776]) and Hispaniolan
Parakeet (Psittacara chloropterus [de Souancé, 1856]) as well as the Vulnerable Forest Red-
tailed Black Cockatoo (Calyptorhynchus banksia naso [Gould, 1837]) and the Critically Endan-
gered Yellow—-crested Cockatoo (Cacatua sulphurea [Gmelin, 1788]) are found in cities in the
Dominican Republic, Western Australia, and Hong Kong, respectively [155-157]. Regardless
of how or why parrots have been able to find a home in various cities around the world, it is
far from certain that they will be able to persist in them in the future. Urban landscapes are
associated with high levels of human activity, and as a result, often change and/or expand so
rapidly that it can difficult for even the most hardy, well-established plants and animals to
adapt quickly enough for them persist without some sort of help or protection from humans
[158, 159]. The cities found in the Texas Rio Grande Valley are no exception to this phenome-
non. The regions’ landscapes are becoming increasingly urbanized at an exceptional rate and
there is no sign that this trend will change any time soon. The human population is estimated
to double from 1.3 to 2.4 million by 2045 [160]. We suspect the area will likely grow even more
rapidly than predicted and change in a dramatically different way than expected with the
arrival of SpaceX’s headquarters to the Brownsville in 2014 [161]. Additionally, the launch of
SpaceX rockets in the area will also likely impact the way animals such as birds are distributed
and move around the area. Indeed, a static firing of its Super Heavy rocket booster in early
2023 “sent up a massive plume of smoke and dust as birds scattered around in the launch site”
[162].

Our results suggest that vegetation heterogeneity is an important factor in the way Red-
crowned Parrots are distributed across certain parts of the urban areas of the Texas Rio Grande
Valley. An adequate network of green spaces, including appropriately vegetated yards of
homes and businesses, where a diversity of vegetation can be found within the greater urban
matrix in this region will likely be essential to the persistence of the existing Red-crowned Par-
rot populations found there in the future; such spaces likely also benefit numerous other ani-
mals, including other birds of conservation concern [163-165] Although some bird species
require a network of fairly large patches of habitat undisturbed by humans in order to survive
in urban areas [159, 166-168], the Red-crowned Parrot appears capable of utilizing a network
of relatively small but abundant patches of green spaces with the right characteristics. The
maintenance of remnants of native vegetation is essential for drawing and keeping native bird
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assemblages to urban areas [169]. Additionally, given that small portions of two of the three
distributions of interest (i.e., general use and nest site habitat) were classified as agricultural
land, grassland and/or a few other natural LULC types, small patches of these LULC types
should be preserved within the urban matrix to increase the heterogeneity in vegetative cover
across the greater landscape.

Well-designed green spaces in urban areas are beneficial to human health (i.e., provide
ecosystem services, increase property values, improve physical and mental well-being, etc.)
[170, 171]. In addition to maintaining the existing diversity of vegetation wherever the par-
rots already occur (especially those used to forage, nest, and roost), incorporating such veg-
etation into areas where the parrots are not currently found but desired should create new
habitat for them and thus should allow existing populations to grow and/or expand [32,
172]. Areas where new development is occurring should plan to incorporate bird-friendly
vegetation in their landscape architecture plans. Plant species commonly used for nesting,
foraging, and roosting include: Washingtonia spp. palm, eucalyptus (Eucalyptus spp.
[L’Hér]), mesquite (Prosopis spp.), fig (Ficus spp.), coma (Bumelia laetevirens [Hems]),
Texas ebony (Ebenopsis ebano [Berland]), silver maple (Acer saccharinum), sycamore (Pla-
tanus spp.), and pecan (Carya illinoinensis [Wangenh]). A more expansive list of plant spe-
cies consumed or used for nests by Red—crowned Parrots can be found elsewhere [10, 13,
23,173].

Although the pressures on the populations of this species that are found in the Mexican
portion of its range have been drastically reduced in recent years [174] thanks to extensive con-
servation efforts, we expect the range of the Red-crowned Parrot will continue to slowly creep
northward because of the effects of climate change as has been observed in many other non-
migratory avian species [175]. Since many bird species are reportedly not moving northward
at the pace set by the effects of climate change [176], we suspect the Red-crowned Parrot popu-
lations that are currently well-established in the Rio Grande Valley of Texas, the northernmost
aspect of their range, will only become more valuable to the species as a whole over time. We
believe that protecting the Texas Red-crowned Parrots will require a commitment by a combi-
nation of interested parties (e.g., local residents, businesses, and governmental and non-gov-
ernmental agencies) to develop and carry out a conscientious vegetation management plan (i.
e., support heterogeneity in vegetation type and structure in area; see “Animal-Aided Design”
model proposed by Weisser and Hauck [177]) that involves conserving existing green spaces
in the region’s urban and suburban areas; new plans should be incorporated into new develop-
ments and renovations. These relatively simple actions should help these populations both
endure and potentially even grow in size as the landscape changes in the near future [178,
179]. Failure to conscientiously plan for a future with Red-crowned Parrots could result in the
decline or even collapse of existing populations.

Study limitations

This study was limited by several factors. First, sample size would ideally be larger, especially
regarding the number of general use and nest site habitat presence points. Nests are inevitably
difficult to locate and undoubtedly some were missed despite the monumental efforts under-
taken by S.K., D.].B., and other members of the Tejano Parrot Project to locate as many as pos-
sible. Several additional vegetation indices (and likely a nearly unlimited number of
derivatives) could have been used and/or created and explored; however, we had to keep a real-
istic time period in mind. Second, although newer NAIP imagery was available that we would
have liked to use, we could not because the files were too large for our readily available com-
puting resources to handle. Third, the feature selection methodology produces a set of 12
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models that are randomly selected from a set of 250 top—performing models. Consequently,
the 12 top-selected models used to create our final feature subset ensemble from which our
final projected habitat distributions were derived may have been slightly different if different
sets of top—performing models were selected for their derivation.

Conclusions

We utilized MaxEnt with feature selection of a list of variables including elevation, vegetation
indices and their simple and complex derivatives to create accurate, fine-scale general use,
nest site, and roost site habitat distribution models for Texas Rio Grande Valley Red-crowned
Parrots. This study revealed the utility of a series of novel variable types as well as variable
types that are seldom used in SDMs for birds. Variables such as 2™*-order GLCM entropy and
contrast textures of raw NDVT and percent cover of preferred ranges of 2"_order GLCM tex-
tures of raw vegetation index values performed especially well in our models. The utility of
novel types of variables that performed well in our models, as well as those variables that per-
formed well but have previously been rarely used in SDMs efforts, should be further evaluated.
We suggest that some of these variables may prove to be of greater value in SDM efforts that
aim to use variables derived from higher-resolution aerial imagery (i.e., <10 m resolution; c.f,,
>30 m resolution imagery may not be as valuable).

Cities have often described as “biological deserts” [180]; however, a number of plants and
animals (including those of conservation concern) have successfully adapted to the city life.
While cities will never support all of the plants and animals that occupied the landscapes wher-
ever cities are found before they were built [155], we might be able to support the development
of novel ecosystems in cities that we can appreciate and that can support a number of “desir-
able” species by approaching the management of urban landscapes from a nature-positive per-
spective [181]. We found urbanization does not in and of itself equate to Red-crowned Parrot
presence in the Texas Rio Grande Valley, but rather it is only those parts of the region’s cities
that have a diverse array of vegetation (and/or certain defining characteristics) that have a rela-
tively high likelihood of being associated with supporting their presence. The urban landscapes
of the Texas Rio Grande Valley are changing and expanding so rapidly that it may be difficult
for locally occurring flora and fauna to adapt and persist in them in the near future. The recent
arrival of SpaceX’s headquarters is likely to magnify this issue. We suggest conservation—ori-
ented management of the region’s urban landscapes may be critical for the continued survival
of various bird species, including the Red-crowned Parrot, in the Rio Grande Valley of Texas.
We recommend that parties interested in supporting the persistence of these parrots: (1) man-
age existing parrot-friendly vegetation found in urban areas in ways that preserve and other-
wise protect it and (2) incorporate new parrot-friendly vegetation into parts of the landscape
where existing developments occur where the parrots are not currently found and/or new
developments as they are being planned.

Given the aforementioned threats the species continues to face in Mexico, the Texas Rio
Grande Valley Red-crowned Parrots may very well end up being a critical genetic reservoir
that ultimately ends up being vital to the long—term survival of the species [182, 183]. We
argue they should be treated as the valuable resource they are today and could be in the future.
The USA’s approach to how they choose to treat these parrots should therefore be one that
focuses on protection and conservation. Parrots do not recognize political borders and as
such, we suggest that parties from both the USA and Mexico must come together to effectively
conserve the Red-crowned Parrot populations found in the Rio Grande Valley in order for
them to persist for generations to come.
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with the manuscript entitled “Modelling Red-crowned Parrot (Psittaciformes: Amazona viridi-
genalis [Cassin, 1853]) distributions in the Rio Grande Valley of Texas using elevation and veg-
etation indices and their derivatives”.
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S1 Fig. A digital elevation model used to represent topography. This variable, elevation, was
derived using parts of the 10 m United States Geological National Elevation Survey dataset.
(TIF)

S2 Fig. An example of a type of a raw vegetation index type feature. The variable raw 2008
Blue Normalized Difference Vegetation Index (BNDVI), bndvi08, was created by performing a
simple calculation to the information contained in each of the three spectral bands of National
Aerial Imagery Program (NAIP) images for 2008 (Table 1).

(TIF)

$3 Fig. An example of a type of multitemporal raw vegetation index difference type fea-
ture. This variable, deltgrn10_08, was derived by subtracting raw 2008 Green Red Normalized
Difference Index (GRNDI; grndi08) from raw 2010 GRNDI (grndi10).

(TIF)

$4 Fig. Frequency of Red-Crowned Parrot occurrences (n = 1,847 held out from niche
modelling) in the Texas Rio Grande Valley associated with raw 2010 Normalized Differ-
ence Vegetation Index (NDVI) values. Blue dashed lines represent the central range (i.e.,
50%) of raw 2010 Normalized Difference Vegetation Index (NDVI) values (i.e., -211 to 156)
while red dotted lines represent the central range (i.e., 70%) of raw 2010 NDVT values (i.e., 191
to 155) of parrot presence points around the median raw 2010 NDVI value of 21.

(TIF)

S5 Fig. An example of a type of a percent cover of preferred ranges of raw vegetation index
values type feature. This variable, bndvi_70_990, depicts the percent cover of a preferred
range of raw 2008 Blue Normalized Difference Vegetation Index (BNDVT; bndvi08) values (i.
e., set of values associated with Red-crowned Parrot presence points about the median value).
First, we calculated the preferred range of bndvi08 values (70%; see S4 Fig), which was then
used to create a binary preferred/non-preferred raster. The final raster was created by applying
a focal window analysis to the binary raster using a square 990 m focal window.

(TIF)

S6 Fig. An example of a type of raw vegetation index texture type feature. This variable,
bnd082c990, represents the 2" order Gray Level Co-Occurrence Matrix (GLCM) contrast tex-
ture of raw 2008 Blue Normalized Difference Vegetation Index (BNDVTI; bndvi08) values that
was derived using a square 990 m focal window.

(TIF)

S7 Fig. An example of a type of texture of binary preferred/non-preferred ranges of raw
vegetation index values type feature. This variable, bnd08m70310, depicts the 2"-order Grey
Level Co-Occurrence Matrix (GLCM) mean texture of the binary preferred/nonpreferred
range of raw 2008 Blue Normalized Difference Vegetation Index (BNDVI) values (i.e., central
set of values associated with Red-crowned Parrot presence points about the median value).
Deriving this variable involved (1) calculating the central range of raw 2008 BNDVI values (i.
e., 70%; see 54 Fig), (2) creating a binary preferred/nonpreferred raster using the
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aforementioned ranges, and (3) calculating the 2"%-order GLCM mean texture for the binary
raster using a square 990 m focal window.
(TIF)

S8 Fig. An example of a type of percent cover of preferred ranges of vegetation index tex-
ture values type feature. This variable, bnd082c99pc85, depicts the percent cover of preferred
ranges of 2"%-order Grey Level Co-Occurrence Matrix (GLCM) contrast texture of raw 2008
Blue Normalized Difference Vegetation Index (BNDVI) values (i.e., set of values associated
with Red-crowned Parrot presence points about the median value). Creating this variable
involved (1) calculating the central range (i.e., 85%) of 2" order GLCM contrast texture of
raw 2008 BNDVI values derived using a square 990 m focal window, (2) creating a binary pre-
ferred/non-preferred raster from this range, and (3) calculating the percent cover of preferred
areas from the binary raster using a square 990 m focal window.

(TIF)

S9 Fig. Texas Rio Grande Valley Red-crowned Parrot general use habitat distribution jack-
knife analysis of Area under the Curve (AUC) accuracy values for individual features and
response curves for individual features of the 12 top-selected MaxEnt models. The jack-
knife of AUC for species graph (left) and response curve (right) results for each of the final
models used to create the feature subset ensemble for the suitable general use habitat distribu-
tion.

(TIF)

$10 Fig. Texas Rio Grande Valley Red-crowned Parrot nest site habitat distribution jack-
knife analysis of Area under the Curve (AUC) accuracy values for individual features and
response curves for individual features of the 12 top-selected MaxEnt models. The jack-
knife of AUC for species graph (left) and response curve (right) results for each of the final
models used to create the feature subset ensemble for the suitable nest site habitat distribution.
(TIF)

S11 Fig. Texas Rio Grande Valley Red-crowned Parrot roost site habitat distribution jack-
knife analysis of Area under the Curve (AUC) accuracy values for individual features and
response curves for individual features of the 12 top-selected MaxEnt models. The jack-
knife of AUC for species (left) and response curve (right) results for each of the final models
used to create the feature subset ensemble for the suitable roost site habitat distribution.

(TIF)

S1 Table. Variable performance in 250 top-performing models and the subset of 12 models
selected from these used to create the final projections for the predicted habitat distribu-
tions of Texas Rio Grande Valley Red-crowned Parrots. X, arithmetic mean; s, standard devi-
ation of the mean; Transf, transformation; Corr Group, correlation group; Imprt, importance;
GLCM, Grey Level Co-occurrence Matrix; m, meters; b/w, between; diff, difference. For Corr
Group: G, General Use; N, Nest Site; R, Roost Site. For Variable Rank, bolding indicates that
the feature of interest appeared in Table 3 as one of the 30 top-ranked variables for its respec-
tive set of habitat distribution models. *Variable only appeared in one of three replicates of the
250 top-performing models for a given habitat distribution. **Variable only appeared in two
of the three replicates of the 250 top-performing models for a given habitat distribution. Vari-
ables that belonged to the same correlation group did not appear in models together. Our cor-
relation cutoff was |0.5], which is more restrictive than previous instances where this version of
RSFSA-CV has been used.

(XLSX)
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$2 Table. Occurrence of variable types that appeared in the 250 top-performing models
and subset of 12 selected to derive projections of predicted Texas Rio Grande Valley Red-
crowned Parrot general use, nest site, and roost site habitat distributions. Includes the per-
centage of selected 12 top-selected models with at least one occurrence of variable type [%
Models] and percentage among all 250 top-performing models with variable type being the
top-performing variable by permutation importance (% Top). Percentage of variables used in
top-selected 12 models does not include variables with 0.0% mean permutation importance
(omitted from final models).

(XLSX)
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