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Abstract

The World Health Organization recommends test-and-treat interventions to curb and even
eliminate epidemics of HIV, viral hepatitis, and sexually transmitted infections (e.g., chla-
mydia, gonorrhea, syphilis and trichomoniasis). Epidemic models show these goals are
achievable, provided the participation of individuals in test-and-treat interventions is suffi-
ciently high. We combine epidemic models and game theoretic models to describe individu-
al’s decisions to get tested for infectious diseases within certain epidemiological contexts,
and, implicitly, their voluntary participation to test-and-treat interventions. We develop three
hybrid models, to discuss interventions against HIV, HCV, and sexually transmitted infec-
tions, and the potential behavioral response from the target population. Our findings are sim-
ilar across diseases. Particularly, individuals use three distinct behavioral patterns relative
to testing, based on their perceived costs for testing, besides the payoff for discovering their
disease status. Firstly, if the cost of testing is too high, then individuals refrain from voluntary
testing and get tested only if they are symptomatic. Secondly, if the cost is moderate, some
individuals will test voluntarily, starting treatment if needed. Hence, the spread of the dis-
ease declines and the disease epidemiology is mitigated. Thirdly, the most beneficial testing
behavior takes place as individuals perceive a per-test payoff that surpasses a certain
threshold, every time they get tested. Consequently, individuals achieve high voluntary test-
ing rates, which may result in the elimination of the epidemic, albeit on temporary basis. Tri-
als and studies have attained different levels of participation and testing rates. To increase
testing rates, they should provide each eligible individual with a payoff, above a given
threshold, each time the individual tests voluntarily.

1. Introduction

The World Health Organization (WHO) recognizes HIV, viral hepatitis and sexually transmit-
ted infections (STIs) (such as chlamydia, gonorrhea, syphilis and trichomoniasis), altogether,
as major public health threats worldwide [1]. These diseases share many epidemiological fea-
tures. Infections with HIV, viral hepatitis and STIs often lead to very few symptoms and can
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go unnoticed for years. Meanwhile, infected individuals, unaware of their status, transmit the
infection to others. Furthermore, they do not get access to treatment, which helps reduce the
morbidity and transmission of the infectious disease. This yields one of the biggest challenges
left in the fight against infectious diseases: epidemics of undiagnosed infections or hidden epi-
demics [2,3]. There is an urgent need to increase testing rates, and decrease the time interval
between infection and diagnosis, which, in turn, decreases transmission.

The WHO recommends test-and-treat strategies to eliminate HIV [4,5], HCV [6,7] and
bacterial STIs [8]. Test-and-treat is a public health intervention strategy where the population
at risk of infection is mass-tested and, then, diagnosed individuals receive treatment immedi-
ately following diagnosis. The test-and-treat strategy employs treatment as prevention, since
the infection transmissibility typically declines during treatment and cured individuals no lon-
ger transmit disease. The success of these strategies, in considerably reducing incidence of
infections, depends strongly on the availability and access of testing. Test-and-treat strategies
often recommend to individuals at risk of infection to undergo periodic (e.g., yearly or quar-
terly) testing, followed by immediate treatment, if needed. However, due to various reasons,
including low perceived risk of infection, poor access to testing, etc., individuals do not get
tested or get tested less frequently than recommended.

Until recently, most tests used to diagnose HIV, HCV or bacterial STIs were laboratory-
based, initiated by clinician prescriptions. However, numerous barriers exist to accessing labo-
ratory-based tests, including time and travel required for accessing testing sites, lack of confi-
dentiality, stigma, aversion to the sampling process, etc. [9,10], and therefore testing has been
underused. New testing tools, such as self-testing and self-sampling [9-14], were recently
developed and made available to mitigate these barriers. The WHO defines self-testing as a
process whereby a person who wants to know his/her status collects specimen, performs a test,
and interprets the test result in private. Self-sampling requires the individual to collect and
send his/her specimen to laboratory where it is tested, and then the laboratory returns the test
result to the individual [15]. Self-sampling for HIV and STIs are currently available in many
settings, from public and private providers and rapid self-tests for HIV have been made avail-
able in pharmacies, without medical prescription [16,17]. Population perceptions about volun-
tary testing and willingness to test against HIV [18-20], viral hepatitis [21] and STIs [22,23]
have been evaluated through population surveys. Hopes are that the new testing tools will lead
to increasing testing rates, and, in turn, curb and even eliminate, epidemic dynamics.

Mathematical models have been extensively employed to study the role of HIV [4,24-34],
HCV [35-38] and STI [30,39] testing for the epidemic course and public health interventions.
They all found that frequent testing is central to epidemic elimination [4,24,25,27,34]. Granich
et al. [4] suggested that HIV elimination in South Africa would require yearly mass-testing and
universal anti-retroviral treatment immediately following HIV diagnosis. Philips et al. [24]
showed that, in the United Kingdom, HIV elimination among men who have sex with men
(MSM) would require diagnosing 90% of MSM within a year of their infection, and starting
treatment at the time of diagnosis. Breban et al. [35] discussed the epidemiological conse-
quences of successfully targeting an HCV core group with testing and treatment. However, the
question of whether a certain testing coverage can be achieved in a population has not been
addressed. These modeling studies only assume that the coverage reaches much needed values,
while this may not be granted in the practice of public health. Furthermore, they do not discuss
how individuals decide to get tested, and how decisions to get tested depend on the perception
of infection risk, as well as pros and cons of testing uptake. Nevertheless, individual-level
behavior and decision-making in response to disease epidemiology have often been included
in mathematical models.
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These modeling studies are reunited in a young discipline, the behavioral epidemiology of
infectious diseases, focusing on the interplay between human behavior and the transmission
and control of infectious diseases [40]. While its origins can be traced back to the 70’s, the turn
of the century marked an important moment, when several influential ideas originated, bring-
ing the discipline where it is today. We note the seminal papers by Philipson [41], Bauch and
Earn [42], Bauch [43] and d’Onofrio and Manfredi [44], which argue that prevention tools
delivered by private markets, and deployed according to disease prevalence, cannot lead to dis-
ease elimination since the incentive to safe behavior declines with enacted prevention. Never-
theless, public health interventions can act to circumvent this negative outcome and may even
lead to disease elimination; see the papers by Philipson [41], D’Onofrio, Manfredi and Poletti
[45], and Vardavas, Breban and Blower [46]. In this work, we shift the discussion from disease
prevention to voluntary testing and model the potential impact of test-and-treat strategies.

The simplest way to account for behavior in an epidemic model has been to include preva-
lence dependence in rate parameters [47-50]. However, decisions made by individuals, within
a given epidemiological context, have been typically described using mixed models, merging a
game-theoretic model and an epidemic model [40,51,52]. Several topics have been addressed
thus far: voluntary vaccination [42,50,53-64], adoption of pre-exposure prophylaxis [65],
social distancing [66-68] and self-isolation [69]. In fact, Hellmann and Thiele [69] modeled
home testing as an aid in the decision making about whether or not to self-isolate. Fallucchi
et al. [70] discuss universal, voluntary testing for COVID-19, explaining various game-theo-
retic aspects.

Here, we develop new mixed models to address, for the first time, the question of voluntary
testing. We merge a utility-based game for the decision-making about testing with three differ-
ent paradigm epidemic models for describing the epidemiological contexts of several infec-
tious diseases, such as HIV, HCV, and bacterial STIs. We determine whether and under what
conditions certain testing rate levels can be reached and lead to disease elimination. We discuss
implications for test-and-treat strategies and the epidemiologies of HIV, HCV and STIs.

2. A game-theoretic framework for modeling voluntary testing

During an epidemic, individuals may get tested for various reasons. First, there are many cir-
cumstances where testing is demanded by medical protocols such as pregnancy check-up,
check-up to provide contraceptives, blood donations, etc. Second, individuals may follow rec-
ommendations of periodic testing; e.g., the WHO recommendation to test quarterly for HIV.
Third, as the incubation period comes to an end and symptoms become noticeable, individuals
may seek testing due to having symptoms, i.e., symptom-driven testing. These approaches to
testing may be seen as coercive. In contrast, another approach may be voluntary testing, where
individuals make voluntary, informed decisions about whether or not to get tested, according
to their perceived risk of infection (e.g., a surrogate for this is the prevalence of infection) and
the perceived pros and cons of voluntary testing, which may include the price and the accessi-
bility of testing tools, the consequences of being infected, the importance of knowing his/her
own infection status, etc. These factors, summarizing monetary and/or non-monetary aspects,
can be expressed in a decision-making model as costs or/and payoffs perceived by the individ-
ual. Once the decision to get tested is made, individuals can get tested either through clinician-
prescribed laboratory testing, through casual access of laboratory services, using self-sampling
kits or self-testing, depending on the available testing protocols.

The epidemiological circumstances where individuals get tested can be conceptually
described using epidemic models, expressed by ordinary differential equations (ODE); see sec-
tions 3-5 below. The decision to get tested can be modeled as a non-cooperative game, where
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each individual acts in his/her own interest, to maximize his/her own perceived testing utility
[71] and benefit from treatment as soon as possible, if needed. We propose the following
model for the utility of voluntary testing perceived by a typical individual

U(p,c) = p(Il = o), (1)

where p is the testing rate, and II is the perceived probability of being infected and, at the same
time, the expected per-test payoff for finding out the disease status. It is reasonable to assume
that individuals actively searching to get tested will perceive finding out their disease status as
a per-test payoff. We also assume that individuals employing voluntary testing make the a pri-
ori assumption that they will test negative. Hence, we consider that the per-test payoff for find-
ing about disease negative status is zero. The parameter ¢ summarizes other per-test costs and
payoffs in addition to knowing the disease status. If ¢ > 0, then ¢ represents a cost. Otherwise,
¢ < 0, and c represents a payoff. For example, ¢ > 0 may represent the cost of accessing a labo-
ratory site for the testing procedure, while ¢ < 0 may represent the perceived payoff for having
access to self testing. Therefore, after receiving the test results, the individual perceives a cost
pc if s/he is found negative and a smaller cost, p(c-1), if s/he is found positive. We assume that
positive individuals are immediately diagnosed and start treatment, without making further
decisions regarding their own health.

Individual decisions on whether or not to get tested may be biased, yet, overall, closely relate
to the course of the epidemic. Each individual’s decision is indirectly influenced by the deci-
sions of others, since the sum of all decisions determines the testing coverage, which, conse-
quently, determines the rate of going on treatment and the risk of becoming infected. The
decision-making game model is thus intertwined with the epidemic model. We assume that
the long-term outcome of the feedback dynamics between voluntary testing and disease epide-
miology leads to an equilibrium, where individuals make their testing decisions in quasi-sta-
tionary epidemic conditions. Hence, we restrict our models to describe stationary
epidemiology; i.e., they do not apply to epidemic outbreaks.

Epidemiologically, we interpret IT as the ratio between the number of asymptomatic
infected individuals and the total population size; that is, the prevalence of asymptomatic
infections. We employ mathematical models of disease transmission to describe the epidemio-
logical context and obtain formulae for 7, which depend implicitly on the testing rate p and
other epidemiological parameters (sections 3-5). In particular, we consider the following mod-
els: Susceptible-Infected-Susceptible (SIS), to describe transmission of bacterial STIs such as
syphilis, chlamydia, etc., Susceptible-Infected-Removed (SIR), to describe HIV transmission,
and we define a Susceptible-Infected-Chronic-Antibody positive-Treated (SICAT) model to
describe HCV transmission in the general population.

The three models have common features. In particular, each of them has two equilibrium
states, with corresponding disease prevalence. First, there exists a disease-free state (DFS)
where the prevalence is zero and, second, each model has an endemic state (ES), where the
equilibrium prevalence is larger than zero. Specifically,

_ {HDFS(p)7if R(p) <1, 2)
I(p),if R(p) > 1,

where R(p) is the expected number of cases caused by an infected individual at disease inva-
sion, during his/her entire infectious period, in the presence of control interventions, includ-
ing voluntary testing. If R(p) < 1, then the disease-free state is stable and the endemic state
does not exist; in the long term, the disease-free state is reached. However, if R(p) > 1, then an
unique endemic state appears and is stable; in the long term, the endemic state is reached. We
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assume that, in absence of voluntary testing, R(p) = R(0), where R(0) is the basic reproduction
number, the expected number of cases caused by an infected individual at disease invasion,
during his/her entire infectious period, in absence of control interventions. We further assume
that R(0) > 1; i.e., disease transmission is sustained in absence of voluntary testing. We model
how voluntary testing followed by immediate treatment mitigates the endemic state of the
epidemic.

In the sections 3-5, we combine the game with each of the three models. Game theory pos-
tulates that the value of p maximizing the utility U(p,c), denoted p, estimates the testing rate
that is achieved voluntarily [71]. If R(p) < 1, then we say that the epidemic is eliminated. If
1 < R(p) < R(0), then we say that the epidemic is mitigated or controlled by the voluntary test-
ing intervention.

3. The SIS model

The SIS model can describe the epidemiology of bacterial STTIs, such as chlamydia, gonorrhea,
syphilis and trichomoniasis. Susceptible individuals (S) can become infected and infectious (I),
showing very few symptoms. Upon diagnosis, they immediately start treatment, which is
rather brief for bacterial STTs. After the completion of the treatment regimen, individuals
immediately become susceptible, again; see Fig 1 for the flow diagram. The population dynam-
ics are given by

ds pSI

= S+ (o)

7= N A +7(p)

di pSI (3)
C e B =y (p)I

pr N K 7(p)

where N = § + I denotes the total population size. The parameters 7 and y are demographic
and denote, respectively, the inflow of susceptible individuals and the rate at which individuals
quit the sexually mixing pool. The symbol 3 denotes the infection transmissibility, and y(p)
denotes the rate at which infected individuals get diagnosed and treated. Since we assume the
duration of treatment is short, y(p) also represents the rate at which individuals become sus-
ceptible again.

To explicitly model testing, we write y(p) = y(0) + sp, where y(0) is the baseline, symptom-
driven diagnosis rate, resulting from symptom-driven testing, and sp is the diagnosis rate
achieved through voluntary testing. In particular, p is the testing rate and s is the sensitivity of
the testing procedure.

The reproduction number in the presence of voluntary testing is R(p) = 5/(y(p) + ). The
epidemic can be eliminated (i.e., R(p) < 1) if the testing rate p is larger than the threshold p/,
given by (n.b., R(p’) = 1)

pr = B(1 - 1/R(0))/s. (4)

Therefore, the equilibrium prevalence of asymptomatic infections in Eq (2) can be written
as a function of p

(p) =

{HDFS(p) =0 if p > pr (5)

I(p) = 1—=1/R(p) ifp <p!

PLOS ONE | https://doi.org/10.1371/journal.pone.0293968 November 7, 2023 5/19


https://doi.org/10.1371/journal.pone.0293968

PLOS ONE Impact of voluntary testing on infectious disease epidemiology: A game theoretic approach

BSI/N

Tt

S y(p)I

Fig 1. Flow diagram of the SIS model. The population variables are: susceptible, S, and infected and infectious, I.
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The maximization of the utility U provides the rate of voluntary testing p (i.e.,
(0U/0p),_, = 0) as a function of c and other disease parameters

0 if €26
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where
¢, =1/R(0)-1<0, ¢, =—¢ > 0. (7)

Note that p(c,) = p'. There exist two boundaries ¢, and ¢, that divide the domain of ¢ into
three regions, corresponding to three different epidemiological outcomes, resulting due to dif-
ferent attitudes toward testing (Fig 2).

Region I, where ¢ > ¢,, U(p) is negative or zero, and decreasing for all p > 0. The maximum
of Uisreached at p = 0, i.e., p = 0 (Fig 2, region I). The perceived additional cost c of voluntary
testing is too high, so individuals choose not to test unless they have symptoms. The resulting
epidemiological equilibrium is a stable endemic equilibrium.

Region II, where ¢; < ¢ < ¢,,U(p) is differentiable and strictly concave for 0 < p < p’. The
voluntary testing rate, p, is the unique solution of the equation OU(p)/Jp = 0; see equation Eq
(6). The reproduction number becomes

R(p(c)) = 2R(0)/[R(0)(1 = ¢) +1J; (8)

hence, 1 < R(p) < R(0). The resulting epidemiological equilibrium is a stable endemic equi-
librium, mitigated by voluntary testing.

In Region III, where ¢ < ¢, the solution p, such that the disease epidemiology is stationary,
does not exist. This is a consequence of the fact that, ultimately, in contrast to the SIS model,
the disease-free state is always unstable in the mixed model. We propose the following inter-
pretation inspired by the theory of dynamical games [67,68,72]. The endemic prevalence can
be zero, hence U(p) = -pc, where ¢ < 0.U is positive and strictly increasing; individuals are
prone to voluntary testing because the cost of voluntary testing is negative, so it corresponds to
a payoff. The resulting rates of voluntary testing are high and the epidemic can be eliminated.
However, elimination can be only temporary, since the disease-free state is unstable (Fig 2,
Region III). Indeed, once the epidemic is eliminated, individuals perceive the risk of infection

PLOS ONE | https://doi.org/10.1371/journal.pone.0293968 November 7, 2023 6/19


https://doi.org/10.1371/journal.pone.0293968.g001
https://doi.org/10.1371/journal.pone.0293968

PLOS ONE

Impact of voluntary testing on infectious disease epidemiology: A game theoretic approach

I11

o
p—t

0 Co C

Fig 2. The rate of voluntary testing p as a function of the perceived additional cost ¢ associated to voluntary
testing in the case of the SIS model. Three regions can be distinguished, marking different attitudes toward voluntary
testing: I, ¢ > c,, individuals are not prone to voluntarily test at all, II, ¢; < ¢ < ¢, individuals voluntarily test at the rate
p (c), but not sufficiently to eliminate the epidemic and III, ¢ < ¢; individuals test frequently enough to eliminate the
epidemic, but as soon as they perceive the disease to be eliminated, they no longer test, which makes the disease
reemerge. Region III has unstable epidemic dynamics.

https://doi.org/10.1371/journal.pone.0293968.g002

as being low and testing as no longer necessary. Hence, the frequency of voluntary testing
decreases and the epidemic dynamics in Region III can enter Region II or Region I, where the
epidemic reemerges and becomes, again, of public health concern. See S1 Fig for further
illustration.

We note elements of realism that the utility game brings to the SIS model. First the parame-
ter y(p), denoting the testing and diagnosis rate, with very little empirical and quantitative
understanding, is intuitively explicated in terms of costs/payofts perceived by the individual.
Second, the game-theoretic component provides an intuitive explanation why a voluntary test-
ing rate much larger than p’, the threshold for disease elimination, should not be expected in
practice, as a long-term trend.

4. The SIR model

The SIR model can describe the current epidemiology of HIV; see Fig 3 for the flow diagram.
Susceptible individuals (S) can become infected and infectious, with very few symptoms (I).
Upon diagnosis, individuals start lifetime treatment under which they remain infected but no
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T BSI/N y(p)I

S I R

uS ul UR

Fig 3. Flow diagram of the SIR model. The population variables are: susceptible. S, infected and infectious, I, and removed, R. The individuals in the R compartment are
treated. According to the current HIV epidemiology, they remain infected but they are no longer infectious.

https://doi.org/10.1371/journal.pone.0293968.9003

longer infectious (R). The population dynamics are given by

Y

a - TN

dl

o BSI (9)
dt = W—ﬂl—/(P)I,

dR

at = 7(p)I — UR,

where N = § + I + R is the size of the total population and the parameter definitions are just
like in the SIS model, and so is the reproduction number, R(p) = /y((p) + u). However, the
formula for the endemic prevalence of asymptomatic disease becomes

(p) = n(R(p) — 1)/B, 10

so the utility maximization yields

if ¢2¢6
b= {2<\/R(0)u/(u B9 —1)/(ROS) (1)
e <e<e,
where
¢ =—u(1-1/R(0)/B, ¢ =wnRO)—1)/B. (12)

Like for the SIS model, the domain of the variable ¢ is partitioned into three regions (Fig 4).

In Region I, where ¢ > c,, the endemic equilibrium is stable and the maximum of U is
reached for p = 0 (Fig 4). The perceived cost of voluntary testing is too high, so individuals
choose to get tested only if they have symptoms.

In Region I, where ¢; < ¢ < ¢, individuals test voluntarily at the rate p, solution of dU(p)/
0 p = 0, given by Eq (11), which also yields

R(p(c)) = VRO)(u+ pe)/, (13)

for all ¢; < ¢ < ¢;. In particular, for c = 0, R(p) = 1/R(0). We obtain that the epidemic is
controlled through voluntary testing, yet not eliminated; i.e., 1 < R(p) < R(0).

In Region III, where ¢ < ¢, we obtain results similar to those for the SIS model. The epi-
demic dynamics in this region are unstable and the solution p, such that the disease epidemiol-
ogy is stationary, does not exist. We postulate that, in this region, epidemic elimination occurs
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I11

I1

Co

C

Fig 4. The rate of voluntary testing p as a function of the cost ¢ associated to voluntary testing in the case of the
SIR model. Three regions can be distinguished, marking different attitudes toward voluntary testing: I, ¢ > ¢,
individuals find the cost of testing too high and are not prone to test, II, ¢; < ¢ < ¢,, individuals voluntary test at a
certain rate p (c) but not sufficiently to eliminate the epidemic and III, ¢ > ¢, individuals test voluntarily at high rates
which can temporarily lead to disease elimination. As soon as they perceive the disease to be eliminated, they no longer
test and the disease reemerges. In this region, the epidemic dynamics are unstable.

https://doi.org/10.1371/journal.pone.0293968.g004

AS

wol

Y(p)C

lus

nil
(1 —-w)ol

A

HA

(T

but

Fig 5. Flow diagram of the SICAT model describing the community transmission of HCV. The population variables
are: susceptible, S, acute infection, I, chronic infection, C, under treatment, T, and positive for HCV antibody, A.

https://doi.org/10.1371/journal.pone.0293968.g005
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temporarily. The three regions found in the analysis of the SIR model (Fig 4) are qualitatively
similar to those found for the SIS model (Fig 2). See S2 Fig for further illustration.

5. The SICAT model

We define the SICAT model (see the flow diagram in Fig 5) to describe HCV transmission in
the general population, in line with previous literature [35]. The HCV disease is known to
have very few symptoms until the late chronic stage. In our model, susceptible individuals (S)
can become infected and infectious as they enter the acute phase of infection (I). Then, one of
three events can happen. Individuals can either (1) progress from the acute stage to the chronic
stage of the disease (C), or (2) be diagnosed and treated (T) while still being in the acute stage,
or (3) clear the infection naturally and remain positive for HCV antibodies (A). Individuals in
the chronic stage (C) can also be diagnosed and treated (T). It is assumed that all treated indi-
viduals (T) clear the infection, yet remain antibody positive (A). HCV antibodies do not pre-
vent HCV reinfection. However, the reinfection rates in the general population are small
[73,74] and we neglect them here, in the SICAT model.

The population dynamics of the model are given by

ds

il n—AS—uS

dl

5 = AS—(a+i(p)+wI

dc (14)
= = wdl=(ut(p))C

dA

il (1—w)ol +{T —puA

dr

G = PCED =0T

where A = (I + C)/N is the force of infection and N=S + I + C + A + T'is the total population
size. The parameters 7, §, ¥ (p) have the same definitions as in the SIS model. The rest of the
parameters are as follows. The symbol y stands for the rate of disease-unrelated death. The
symbol o stands for the rate of natural clearance of the infection and w for the fraction of indi-
viduals that clear the infection. Finally, { stands for the cure rate, whether individuals are
acutely or chronicly infected.

The reproduction number is

Blwa + y(p) + p)

RO = Gt F W) 1)

and the threshold testing rate needed for disease elimination p’ verifies

0 = (B—)/2 = ((0) + 1) + /(B — 0 /4 + oo (16)

Note that R(p) < 1 ifand onlyifp > p .
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Straightforward calculations yield the following population numbers at the endemic state

T
BT R
L, = n R(p) —1
° a+y(p)+u Rlp)
ol e - (17)
G Boo 00 +p R~
_ r|__U-el (p) .
A = @) T R B+ D (R(p) = 1),
=0 (rep) -
U Blu+0) (R(p) — 1),
and thus, the formula for prevalence at the endemic state is
M(p) = w(R(p) —1)/B. (18)

We find that, just like for the SIR and SIS models, there exist two boundaries

- 2sp/\/(ﬁ—o)2/4+ﬁa)al

B B(y(p') + 1+ wo) (19)

6 = FRO)-1),
p
which divide the domain of the variable ¢ in three regions. Region I corresponds to ¢ > ¢,,
where the utility reaches its maximum at p = 0. Hence, individuals do not find utility in vol-
untary testing. Region II corresponds to ¢; < ¢ < ¢,, where the epidemic is controlled, but not
eliminated. Region III corresponds to ¢ < ¢;, where individuals find testing very useful and
can temporarily eliminate the epidemic.

Obtaining an analytic formula for p is cumbersome, since p results as a solution of a cubic
equation. Instead, we approached the problem of the utility maximization numerically. Fig 6
shows the numerical results for p versus c and appears similar to Figs 2 and 4. See S3 Fig for
further illustration.

6. Discussion and conclusion

Each of our three models shows that individuals can adopt three different behaviors toward
testing, depending on the perceived per-test cost ¢, additional to the payoff of finding out the
disease status. First, if the cost c is too high, then individuals do not test voluntarily, rather,
they restrain to symptom-driven testing, and thus the epidemic continues without diminish.
Second, if the cost ¢ is intermediate, then there exists a trade-off between the rate and the cost
of voluntary testing. Some individuals find the cost acceptable and get tested voluntarily;
hence, the epidemic can be controlled through frequent voluntary testing. Third, if the cost c is
low and negative (i.e., ¢ is a per-test payoff), below a certain threshold, then individuals are
prone to voluntary testing, and the epidemic can be eliminated. In consequence, the individu-
als quit testing and the epidemic can reemerge, in which case individuals will later resume
their testing behavior. Therefore, the epidemiological dynamics are not stable and epidemic
elimination can be reached only temporarily.
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Fig 6. The rate of voluntary testing p as a function of the perceived additional cost ¢ associated to voluntary
testing for the SICAT model. The parameter values are [35]: w = 0.33, ¥(0) = 0.1/15 years'l, s=1,0=52/8 years'l, /[1
=75 years. The HCV transmissibility is chosen 8= 0.18 years™, such that R(0) ~ 3.03 [35]. Three regions can be
distinguished, marking different attitudes toward voluntary testing: I,c > ¢, individuals are not prone to voluntary test
atall, IT, ¢; < ¢ < ¢,, individuals voluntary test at a certain rate p (c) but not sufficiently to eliminate the epidemic and
IIL, ¢ < ¢, individuals test sufficiently often to eliminate the disease. However, once the disease is eliminated, they no
longer get tested and the disease can reemerge. This region has unstable epidemic dynamics.

https://doi.org/10.1371/journal.pone.0293968.9006

The transmission of HIV and bacterial STIs has often been modeled using network models
rather than ODE; e.g., Refs [75-77]. These models are more realistic than ODE models, but
also require significantly more data for their parameterization. Besides the inherent limitations
of ODE epidemic models [78], our mixed models have three main limitations. First, the game-
theoretical components assume that individuals have a fair perception about the risk of infec-
tion and make rational choices towards voluntary testing. Second, both components of the
mixed models assume that the studied population is homogeneous regarding testing behavior.
In reality, the population is most likely heterogeneous regarding perception of risk of infection,
correct perception coexisting with misperception, leading to heterogeneous rates of voluntary
testing. Hence, our analyses describe an optimistic scenario where all individuals are rational
players, who accept treatment unconditionally once diagnosed with the disease. Third, our
models address only stationary epidemiologies.

The outcomes of our three mixed models are qualitatively similar. Hence, it is reasonable to
consider qualitatively similar interventions, such as test-and-treat, to increase voluntary testing
and mitigate HIV, HCV and STI epidemics. Increasing the spectrum of testing solutions, with
convenient testing protocols, such as self-sampling Kits or self-testing [9-15], can act as a test-
ing incentive. Indeed, it seems that, with the availability of self-tests on-line and in pharmacies,
the cost of voluntary testing decreased substantially. One may thus expect to see a surge in
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voluntary testing, possibly leading to epidemic elimination. Studies [10,79] showed that, with
the availability of new testing tools, the testing frequency increased, without significant adverse
outcomes. Still, testing rates did not increase sufficiently and it remains unclear whether the
observed increase will last in the long run. For example, it was estimated that, in France, in
2017, only about half of the MSM recently tested for HIV, and testing for STI was even worse
[80]. These testing rates are much lower than modeling estimates of target testing rates to elim-
inate HIV [4,24].

These findings agree with our modeling results. To achieve epidemic elimination, it is not
sufficient that individuals perceive low or zero cost for voluntary testing, they must perceive a
per-test payoff, above a certain threshold, as motivation to get tested voluntarily, over and
over, whether they are found positive or negative. Theoretically, the threshold payoff depends
on epidemic parameters. In practice, it may be expressed using monetary and/or non-mone-
tary aspects, and may be difficult to quantify. However, in the strive for epidemic elimination,
the per-test payoff should be as large as feasible, to act as a testing incentive. Financial incen-
tives and reminders to get tested for HIV or chlamydia were relatively recently implemented
with various degree of success [81-86]. Particularly, they were successful to lower the per-test
costs and raise the testing coverage in low- and middle-income settings [81,82,84,86]. The
effects of a successful incentive and increased payoff of testing may be estimated through mon-
itoring laboratory activity and sales of self-sampling kits and self-tests.

Moving toward epidemic elimination will also require reaching individuals who may not
perceive themselves at high risk. Therefore, a correct risk perception needs to be maintained
through interventions that increase awareness, motivation and behavioral skills about risk
reduction. These interventions will still be required with epidemic elimination so individuals
keep perceiving a high payoff for voluntary testing and have a fair perception of risk of infec-
tion. Otherwise, diseases can reemerge and reach again an endemic state of concern for public
health. The situation is similar to that of vaccination prevention, which requires continuous
vaccine coverage even though the disease is declared to be eliminated [61]. In conclusion, per-
ception of testing payoff and risk of infection are two key levers to increase the impact of test-
and-treat strategies up to epidemic elimination and maintaining elimination in the context of
less epidemic adversity.

Test-and-treat trials and studies often employed testing protocols different than those for
the general population. For example, within the large-scale trial ANRS 12249, eligible residents
of South Africa were offered rapid HIV testing, during home-based visits every 6 months for a
few years. Eventually, 89% of them had their HIV status ever ascertained [87], demonstrating
that, in this context, offering testing at home considerably decreased the cost of testing. Test-
and-treat strategies have also been employed in smaller trials, for specific demographic sub-
groups, defined by social status (e.g., incarcerated individuals) [88-91], geographical area [92-
94], sexual behavior (e.g., MSM, sex workers) [95,96], or risk of infection (e.g., drug users) [97]
with the goal to achieve local elimination, so-called micro-elimination [98,99].

Some of these trials achieved very high participation and testing rates from the eligible pop-
ulations, much larger than those reported in the studies of the general population. For exam-
ple, HCV elimination efforts met with participation and testing rate of 99.5% in a prison [88],
80% in a cohort of HIV-infected MSM [95], and 89% in an Egyptian village [93], where public
health authorities engaged in short talks to address commonly asked questions, and distributed
booklets, flyers and posters before testing. With positive experience from HCV micro-elimina-
tion, public health agencies look forward to nationwide strategies for HCV elimination [100-
104]. The overall strategic objective also includes elimination of HIV and STIs, because of the
inherent similarities between the HCV and HIV and STI epidemiologies [1].
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It appears that the recipe for achieving large testing rates from targeted populations has
been either (1) careful design of the testing protocol [87], which may be quite different from
typical practice of public health, or (2) careful targeting relatively small populations, which due
to their specificities, are prone to participate in test-and-treat interventions. Either way, build-
ing large scale strategies for systematic, nationwide interventions remains complex. Our mod-
els suggest that, a testing offer, which simply acknowledges the epidemiological context of the
community, would not be met with large testing rates because voluntary testing would likely
not be perceived as providing substantial payoffs to individuals. Comprehensive offers should
be made in line with the principles of voluntary testing. Providing per-test payofts to all eligible
individuals in a population is a task whose complexity can increase substantially with the size
and the diversity of the population.
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