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Abstract

Introduction

Fetal infection during labor with fetal inflammatory response syndrome (FIRS) is associated

with neurodevelopmental disabilities, cerebral palsy, neonatal sepsis, and mortality. Current

methods to diagnose FIRS are inadequate. Thus, the study aim was to explore whether

fetal heart rate variability (HRV) analysis can be used to detect FIRS.

Material and methods

In chronically instrumented near-term fetal sheep, lipopolysaccharide (LPS) was injected

intravenously to model FIRS. A control group received saline solution injection. Hemody-

namic, blood gas analysis, interleukin-6 (IL-6), and 14 HRV indices were recorded for 6 h. In

both groups, comparisons were made between the stability phase and the 6 h following

injection (H1–H6, respectively) and between LPS and control groups.

Results

Fifteen lambs were instrumented. In the LPS group (n = 8), IL-6 increased significantly after

LPS injection (p < 0.001), confirming the FIRS model. Fetal heart rate increased significantly

after H5 (p < 0.01). In our FIRS model without shock or cardiovascular decompensation, five

HRV measures changed significantly after H2 until H4 in comparison to baseline. Moreover,

significant differences between LPS and control groups were observed in HRV measures

between H2 and H4. These changes appear to be mediated by an increase of global vari-

ability and a loss of signal complexity.

Conclusion

As significant HRV changes were detected before FHR increase, these indices may be valu-

able for early detection of acute FIRS.
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Introduction

Intrauterine infection and inflammation (III) are known as risk factors for neonatal brain

damage, morbidity, and mortality [1]. III can be associated with a fetal inflammatory response

syndrome (FIRS), a systemic inflammation in which fetal plasma interleukin-6 (IL-6) is ele-

vated [2]. During FIRS, increased IL-6 and other proinflammatory cytokines have been impli-

cated in the development of periventricular leukomalacia, cerebral palsy, neonatal sepsis, and

mortality [1,3–7]. A large cohort study showed that during labor, maternal fever (an objective

sign of III) without fetal hypoxia was associated with neonatal encephalopathy (odds ratio

[OR] = 6.3 [2.7–14.8]), and maternal fever associated with fetal hypoxia was strongly associ-

ated with neonatal encephalopathy (OR = 76.2 [23.1–251.7]) [8].

However, clinical signs of III show poor or limited sensitivity and specificity [5]. Despite

the morbidity and mortality associated with FIRS, current methods to detect fetal infection are

inadequate [5]. Improved detection of the early signs of FIRS would be valuable for identifying

fetal complication risks. If identified, these fetuses at risk of morbidity could benefit from

more vigilant monitoring during labor. A suspicion of concomitant hypoxia could lead to

early cesarian or instrumental delivery.

Heart rate variability (HRV) could be an interested tool to detect FIRS. HRV reflects

changes in time intervals between consecutive heartbeats [9]. It is an efficient way to study the

autonomic nervous system (ANS) which regulates systemic infection and inflammation [10].

Activation of the adrenergic system during sepsis is critical for initiating a physiologic

response to pathogens but can become detrimental in excess. In contrast, the efferent vagus

nerve inhibits proinflammatory cytokine release and protects against systemic inflammation.

This vagal function is called the cholinergic anti-inflammatory pathway [11].

It was previously shown that detection of neonatal infection is possible using abnormal

heart rate characteristics including HRV[12]. Perinatal studies show that HRV monitoring is a

potential noninvasive, sensitive, and specific measure of inflammatory response [13,14]. In a

randomized controlled trial of neonates in intensive care, HRV monitoring was associated

with lower septicemia, possibly due to earlier diagnosis of illness [14].

Since HRV is correlated with SNA alterations and since it allows detection of neonatal

inflammation, we hypothesized that HRV analysis can be used for early detection of acute

FIRS. The study aims to explore HRV indices response to acute FIRS in a fetal sheep model.

Material and methods

Surgical preparation

Near-term pregnant sheep (race ‘Ile de France’, Tours, INRA, Orfrasière Animal Physiology

Experimental Unit, Val de Loire Center) of gestational age 124 ± 1 d (term = 145 d) underwent

our previously described surgical procedure [10,15,16]. Briefly, sheep were fasted for 24 h

before general anesthesia and surgery. They were then placed supine, anesthetized with an

intravenous injection of xylazine (Sedaxylan1; CEVA Santé Animale, Libourne, France), intu-

bated, and maintained with 2% isoflurane (Aerrane1; Baxter, Guyancourt, France). After

maternal laparotomy and hysterotomy, catheters (umbilical catheters 4Fr diameter, Vygon,

France, Ecouen) were placed in the fetal left axillary artery and vein and in the right axillary

artery. Four electrocardiogram electrodes (Mywire 101; Maquet, Rastatt, Germany) were

placed on the fetal intercostal muscles near the heart to record fetal electrocardiogram. A

5F5-diameter catheter (Arrow1) was placed into the amniotic cavity to replace amniotic fluid

lost during surgery with 500 mL saline containing antibiotics (amoxicillin–clavulanic acid)

and to measure baseline intra-amniotic pressure. All leads were exteriorized through the
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maternal flank. After surgery, ewes were given free access to food and drink. Postoperative

analgesia was provided by maternal intramuscular injection of 0.3 mL/10 kg buprenorphine

(Buprenodale1; Dechra Veterinary Products, Montigny-le-Bretonneux, France) at 24 and 48

h after surgery.

Data acquisition

Fetal arterial and intra-amniotic catheters were connected to pressure sensors (Pressure Moni-

toring Kit1; Baxter). Blood pressure sensors and electrocardiogram electrodes were connected

to a multiparametric anesthesia monitor (Merlin; Hewlett Packard, Palo Alto, CA, USA).

Mean arterial pressure (MAP) was measured from blood pressure phasic signals and corrected

for intra-amniotic pressure value (calculated MAP = observed MAP − observed intra-amniotic

pressure). Electrocardiogram and blood pressure signals were recorded through a Physiotrace™
data acquisition board (Estaris Monitoring, Lille, France).

Experimental procedure

The experiments began after the sheep had rested for at least 72 h after surgery. Lipopolysac-

charide (LPS) derived from Escherichia coli, serotype 0111:B4 (Sigma-Aldrich, Merck, Darm-

stadt, Germany) was used to create a FIRS model.

Before LPS injection, a 60-min stability period was recorded to ensure that the animals

were healthy (normal gas blood and normal hemodynamic parameters). Hemodynamic

(MAP, fetal heart rate [FHR]), gasometric (pH, lactate, pO2, and pCO2), and HRV measures

were recorded at the end of the stability period to obtain baseline values.

Eight fetuses received LPS (400 ng dissolved in 2 ml saline) intravenously to induce FIRS.

This protocol was used by Durosier et al. to model FIRS in 10 fetal sheep without shock or car-

diovascular decompensation [17]. Eight control fetuses received an equivalent volume of 0.9%

NaCl solution.

FHR and arterial blood pressure were monitored continuously during the stability period

and for 6 h after LPS or saline injection. Blood samples (2 mL) were collected for arterial blood

gases, lactate, and IL-6 analyses at time points 0 (baseline) and 1 (H1), 2 (H2), 3 (H3), 4 (H4),

5 (H5), and 6 (H6) h after LPS or saline injection.

Euthanasia was administered at the end of the experimental procedure, or in case of fetal

death. Euthanasia was carried out by intravenous injection of 6 ml/50 kg T61 (1 ml contains

embutramide 200 mg + mebezonium 26.92 mg + tetracaine 4.39 mg, MSD, France).

HRV analysis

ECG analysis to compute fetal R–R series was conducted offline using an automatic R-wave

detection algorithm. HRV indices were computed through a program developed in MATLAB

(version R2017B, MathWorks, Inc., Natick, MA, USA). Continuous computation of HRV

indices uses a one-second moving window. Indices are then taken at average of the last 20

min.

HRV time domain analyses included: 1/ root mean square of successive differences

(RMSSD) between adjacent R–R intervals; 2/ standard deviation of normal to normal R–R

intervals (SDNN); 3/ short-term variability (STV), defined as the mean difference between suc-

cessive 3.75-sec R–R interval epochs; and 4/ long-term variability (LTV), defined by the differ-

ence between the highest and lowest values within the 16 epochs of an analyzed minute [18].

Spectral HRV analysis included the low frequency (LF) component, from 0.04–0.15 Hz,

which is related to both sympathetic and parasympathetic activity, and also associated with

baroreflex activity. We also studied the high frequency (HF) component >0.15 Hz, which is
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related to the parasympathetic nervous system alone. The LF/HF ratio represents parasympa-

thetic–sympathetic imbalance [19].

Nonlinear analyses included: 1/ Poincaré plot standard deviation perpendicular to the line

of identity (SD1); 2/ Poincaré plot standard deviation along the line of identity (SD2); 3/

approximate entropy (ApEn), which measures the regularity and complexity of a time series;

4/ detrended fluctuation analysis (DFA) α1, which describes short-term fluctuations; and 5/

DFA α2, which describes long-term fluctuations. These nonlinear measurements allow quanti-

fication of time series unpredictability [19]. A Poincaré plot is graphed by plotting every R–R

interval against the prior interval, creating a scatter plot [19]. A Poincaré plot can be analyzed

by fitting an ellipse to the plotted points. The standard deviation of each point from the y = x
+ average R–R interval (SD2) specifies the ellipse’s length [19] and SD2 measures short- and

long-term HRV and is correlated with SDNN [20]. DFA is a nonlinear method for quantifying

a fractal scale and the degree of correlation with an HRV signal in the form of a dimensionless

measurement. Briefly, the root mean square fluctuation of the integrated and detrended data is

measured in observation windows of different sizes. The data are then plotted against the size

of the window on a log–log scale. The scaling exponent represents the slope of the line, which

relates (log) fluctuation to (log) window size [21].

The last HRV indice was the Fetal stress index (FSI). It was developed by our team based

on an original HRV analysis method that combines spectral and time domain analyses.

Briefly, The RR series is isolated in a 64-second moving window, normalized and high pass-

filtered above 0.15Hz using a wavelet-based numerical filter. The magnitudes of the remain-

ing oscillations are computed by plotting local minima and maxima. The area between the

upper and lower envelopes is divided into four sub-areas, A1, A2, A3 and A4, and the mini-

mum area under the curve (AUC min) is defined as the minimum of the four sub-areas. A

linear transformation is then applied to AUCmin to obtain an FSI value between 0 and 100:

FSI = a × AUCmin + b, where a = 39.84 and b = 9.38 are two constants empirically deter-

mined on a dataset of 200 RR series records [22]. In previous experimental studies, we dem-

onstrated that FSI was correlated with acidosis and parasympathetic activation [10,15,

16,23,24].

Fetal arterial blood samples

Arterial blood gas parameters were measured with the i-STAT 1 blood analyzer (i-STAT 1 Sys-

tem; Abbott Point of Care, Inc., Princeton, NJ, USA) using CG4+ cartridges at specific time

points.

Serum IL-6 concentrations were determined using an ovine-specific sandwich ELISA

(ELISA KIT for interleukin 6, SEA079ov, Cloud-Clone Corp., Katy, TX, USA). Collected

blood samples were centrifuged at 3500 g for 10 min and supernatant was stored at −80˚C

until assessment. The kit microplate is pre-coated with an antibody specific to IL-6. Following

the manufacturer instructions, biotin-conjugated antibody specific to IL-6 (100 μl) was added

to the microplate wells and incubated for 1 h at 37˚C. After 3 washing stages, avidin conjugated

to horseradish peroxidase was added to each microplate well and incubated for 30 min at

37˚C. After 5 washing stages, 5’-tetramethylbenzidine substrate solution (90 μl) was added and

incubated for 10–20 min at 37˚C. The enzyme-substrate reaction was terminated by the addi-

tion of sulfuric acid solution (50 μl). Finally, optical density was measured spectrophotometri-

cally at a wavelength of 450 nm.

The detection range of IL-6 was 7.8–500 pg/ml with an intra-assay precision of 10% and an

inter-assay precision of 12%. When the maximum limit was reached, dilution was carried out

with phosphate-buffered saline. Maximum dilution was 1/20.
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Statistical analyses

Numerical data are described as median (first and third quartiles). Differences between mea-

sures before and after LPS injection (H0 to H6) were evaluated using a Friedman nonparamet-

ric test for repeated measurements, followed by a Wilcoxon test when deemed significant

(p< 0.05). Comparisons between LPS and control groups were performed by Mann-Whitney

test. Statistical significance was assumed for p< 0.05. Data were analyzed using RStudio soft-

ware (RStudio version 2022.07.2–576, USA).

Ethics statement

Anesthesia, surgery, and experiment protocols were consistent with the recommendations of

the French Ministry of Higher Education and Research, and the study was approved by the

Animal Experimentation Ethics Committee (CEEA #2016121312148878).

Results

Cohort characteristics

Twenty-two fetuses were instrumented. Two fetuses died during the instrumentation, one

died at the third post operative day. Nineteen experiments were performed: ten in LPS group

and nine in the control group. In LPS group, one fetus died during the experimentation and

one was excluded for severe intra uterine growth restriction. In the control group, one fetus

was excluded for recording defect of HRV and a second for elevated Il-6 at baseline. In total,

Eight LPS group and seven control group fetuses were included in analyses.

Median maternal body weight was 75.5 kg [72.5; 78.0]. Median fetal body weight was 3830

g [3625; 4092]. Gestational age at the experimental procedure was precisely 129 d for all

fetuses. In the control group, 5/7 fetuses were male and 2/7 were singletons. In the LPS group,

6/8 fetuses were male and 3/8 were singletons.

Comparison of hemodynamic, blood gas and biochemical measures in LPS group from H1

to H6 compared with stability (H0), and comparison between LPS and control groups are

shown in Table 1 and Fig 1. Complete data about each fetus is provided in Supporting

information.

Hemodynamic variations

FHR and MAP were normal at baseline in both groups. In control group, there were no signifi-

cant changes in FHR or MAP. In the LPS group, FHR was significantly higher at H5 (196 bpm

[182; 209], p = 0.01) and H6 (203 bpm [187; 223], p = 0.01) compared with baseline (173 bpm

[170; 178]) and MAP did not significantly decrease at H6 (41.0 mmHg [40.0; 42.2], p = 0.07)

compared with baseline (45.5 mmHg [43.7; 48.5]).

FHR was significantly higher at H6 in LPS group (203 bpm [187; 223]) compared with con-

trol group (181 bpm [177; 188], p = 0.02). MAP was significantly lower at H6 in LPS group

(41.0 mmHg [40.0; 42.2]) compared with control group (47.0 mmHg [43.0; 55.5], p = 0.04).

Blood sample parameters

pH and lactate were normal at baseline in both groups. In the LPS group, pH was significantly

lower than baseline (H0 = 7,39 [7.39; 7.40]) from H1 to H6 (H1 = 7.39 [7.37; 7.39], p = 0.04;

H6 = 7.33 [7.30; 7.35], p = 0.01). Lactate were significantly higher than baseline (H0 = 2.19

mmol/L [1.99; 2.5]) from H2 to H6 (H2 = 3.16 mmol/L [2.69; 3.85], p = 0.01; H6 = 5.65 mmol/

L [4.88; 8.42], p = 0.01).
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PO2 was significantly lower than baseline (17.0 mmHg [15.7; 21.2]) at H4 (16.0 mmHg

[14.0; 18.0], p = 0.05), H5 (16.5 mmHg [13.7; 17.2], p = 0.042) and H6 (16.5 mmHg [15.0;

18.2], p = 0.035). PCO2 was significantly higher than baseline (H0 = 47.6 mmHg [45.7; 49.1])

from H2 to H6, (H2 = 51.7 mmHg [49.0; 52.5]; H6 = 51.8 mmHg [50.0; 56.9]), p = 0.01). IL-6

was significantly higher than baseline (H0<7.8 pg/ml) from H1 to H6 (H1 = 54.1 pg/ml [21.7;

79.2]; H6 = 3340 pg/ml [1970; 3801], p = 0.01).

Table 1. Hemodynamic, blood gas and biochemical measures in LPS and control groups.

H0 H1 H2 H3 H4 H5 H6 p(1)

FHR

bpm

LPS 173(170;178) 166(159;180) 174(172;180) 161(155;168) 181(165;191) 196(182;209)* 203(187;223)* <0.001

Control 175(173;179) 178(169;205) 178(172;182) 176(172;178) 182(175;185) 177(172;196) 181(177;188) 0.46

p(2) 0.39 0.23 0.53 0.15 0.53 0.09 0.02

MAP

mmHg

LPS 45.5(43.7;48.5) 49,0(47,0;51.5) 47,0(45.2;49.2) 44.5(43,0;47,0) 46,0(44.7;46.2) 42,0(41,0;45.2) 41,0(40,0;42.2) 0.01

Control 48(43;55.5) 47(43.5;56) 45(44;53) 43(42;52) 48(42.5;50) 43(40.5;59) 47(43;55.5) 0.84

p(2) 0.90 0.91 1 1 0.48 0.48 0.04

pH LPS 7.39(7.38;7.40) 7.39

(7.37;7.39)*
7.35

(7.32;7.38)*
7.32

(7.3;7.35)*
7.33

(7.29;7.36)*
7.33

(7.29;7.36)*
7.33

(7.30;7.35)*
<0.001

Control 7.41(7.39;7.42) 7.41(7.4;7.43) 7.41(7.39;7.42) 7.4(7.4;7.42) 7.41(7.39;7.42) 7.4(7.39;7.41) 7.4(7.38;7.41) 0.06

p(2) 0.26 0.01 0.01 0.01 0.01 0.01 0.01

PCO2

mmHg

LPS 47.6(45.7;49.1) 49.3(46.6;50.9) 51.7(49,0;52.5) 54.4

(51.0;56.8) *
52.3

(48.4;54.4) *
52.4

(50.5;55.8) *
51.8

(50,0;56.9) *
<0.001

Control 48.1(45.4;50.3) 48(45.5;50.4) 48.3(45.7;50.8) 47.8(45.8;49.6) 48.1(47.4;49.5) 48.3(46.9;50.1) 47.8(47.2;50.6) 0.071

p(2) 0.86 0.72 0.32 0.01 0.07 0.05 0.14

PO2

mmHg

LPS 17,0(15.7;21.2) 19,0(17.5;20.2) 19.5(17.5;20.5) 16,0(15.2;19,0) 16,0(14,0;18,0) 16.5(13.7;17.2) 16.5(15,0;18.2) <0.001

Control 19(16.5;21.5) 19(17;19.5) 19(18;21) 19(18;21) 18

(16.5;20)*
19

(17.5;20.5)*
18

(16;19.5)*
0.48

p(2) 0.48 0.60 0.81 0.06 0.19 0.03 0.23

Base Excess LPS 3.5(3,00;5.5) 3.5(2,00;5.25) 1,00

(-1,0;3.5)*
1,00

(0.2;2.25)*
0.5

(-0.2;2.25)*
1.5

(-1,0;2.75)*
1,00

(-0.2;3.5)*
<0.001

Control 6(5;6.5) 6(6;6.5) 6(4.5;6.5) 6(5;6.5) 5(5;6.5) 6(5;6.5) 5(4.5;6.5) 0.48

p(2) 0.21 0.07 0.02 0.11 0.01 0.02 0.03

HCO3

mmol/L

LPS 27.9(27.4;29.6) 28.2(26.8;29.9) 26.5

(25.2;28.2)*
26.3

(25.6;27.9)

25.9

(25.2;26.7)

26.1

(25.1;28.0)*
26.5

(25.1;28.7)*
0.02

Control 30.2(29.0;30.8) 30.2(30.1;30.4) 30.2(28.5;30.7) 29.8(29.0;30.7) 29.8(29.3;30.6) 30.1(29.2;30.7) 29(28.6;30.7) 0.48

p(2) 0.33 0.14 0.02 0.20 0.02 0.05 0.05

Lactate

mmol/L

LPS 2.19(1.99;2.5) 2.44(2.34;2.62) 3.16

(2.69;3.85)*
4.44

(3.81;4.94)*
4.58

(4.25;6.34)*
5.29

(4.84;7.43)*
5.65

(4.88;8.42)*
<0.001

Control 2.55(2.46;2.73) 2.43(2.14;2.59) 2.35(1.98;2.53) 2.00 (1.90;2.22)* 2.12

(1.79;2.27)*
2.1

(1.80;2.32)*
2.09

(1.87;2.29)*
<0.001

p(2) 0.24 0.95 <0.01 <0.01 <0.01 <0.01 <0.01

Il6

pg/ml

LPS <7.8(7.8;7.8) 54.1(21.7;79.2) 1062

(508.;1419)

3166

(2789;4207)

3330

(2238;3928)

3783

(2078;4203)

3340

(1970;3801)

<0.001

Control <7.8(7.8;7.8) <7.8 <7.8 <7.8 <7.8 <7.8( <7.8 1

p(2) 39 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Data are presented on median (interquartile range).

Statistical analysis: (1) Comparison from H1 to H6 compared with stability (H0): Friedman nonparametric test; p < 0.05 was significant

*Wilcoxon test: P< 0.05 was significant.
(2) Comparison between LPS and control group: Mann-Whitney test: P < 0.05 was significant.

FHR = fetal heart rate, MAP = mean arterial pressure, IL6 = interleukin 6.

https://doi.org/10.1371/journal.pone.0293926.t001
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In the control group, there were no significant changes in pH, pO2, pCO2, or IL-6. Lactate

was significantly lower than baseline (2.55 mmol/L [2.46; 2.73]) from H3 (2.00 mmol/L [1.90;

2.22], p = 0.016) to H6 (2.09 mmol/L [1.87; 2.29], p = 0.016).

In LPS group, compared to control group, pH was significantly lower from H1 to H6 and

lactate higher from H2 to H6. At H3, pO2 was significantly lower (p = 0.03) and pCo2 higher

(p< 0.01). IL6 was significantly higher from H1 to H6.

Fig 1. Evolution of Hemodynamic, blood gas and biochemical parameters in LPS group and control group. Black LPS group (n = 8); Grey control group

(n = 7) at baseline (H0), H1, H2, H3, H4, H5, H6 after LPS (LPS group) or saline injection (control group). FHR = fetal heart rate, IL-6 = interleukin 6. Data are

presented on median with interquartile rang. Comparisons between stability phase and H1 to H6 were performed, in LPS group and control group, using a

Wilcoxon test if nonparametric Friedmans’ test found a statistical significance. * = Statistical significance was assumed for p< 0.05 in comparison to baseline

in LPS group. No significantly change was found in control group. Comparisons between LPS and control group were performed using a Mann-Whitney test.

▲ = Statistical significance was assumed for p< 0.05 between LPS and control groups.

https://doi.org/10.1371/journal.pone.0293926.g001
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HRV analysis

HRV measures in LPS group from H1 to H6 compared with stability (H0) are shown in

Table 2 and Fig 2. In comparison to baseline, five HRV measures changed significantly at least

once during the 6 h after LPS injection.

SDNN was significantly higher than baseline (H0 = 8.07 ms [6.11; 10.0]) from H2 to H4

(H2 = 13.8 ms [7.98; 18.0], p< 0.01, H3 = 15.7 ms [12.6; 29.3], p< 0.01 and H4 = 15.3 ms

[10.6; 17.4], p = 0.04). DFA α1 was significantly lower than baseline (H0 = 7.49 [5.92; 9.32]) at

H2, H3, H4 and H6 (H2 = 0.76 [−1.2; 5.74], p< 0.01, H3 = 0.42[-3.1; 2.44], p< 0.01,

H4 = 0.08 [−1.0; 3.46], p< 0.01 and H6 = 4.62 [0.82; 6.12], p = 0.04). DFA α2 was significantly

lower than baseline (H0 = 5.97 [4.11; 8.00]) from H2 to H4, (H2 = 0.93 [−1.7; 4.55], p< 0.01,

H3 = -0.7 [-2.1; 1.73], p = 0.02 and H4 = 0.24 [−0.8; 2.19], p = 0.02). SD2 was significantly

higher than baseline (H0 = 0.98 [0.79; 1.20]) from H2 to H4 (H2 = 1.81 [1.01; 2.35], p< 0.01,

H3 = 2.01[1.70; 2.91], p< 0.01 and H4 = 2.04 [1.33; 2.33], p< 0.01). LTV was significantly

higher than baseline (H0 = 31.0 ms [25.0; 37.0]) from H2 to H4 (H2 = 49.3 ms [32.2; 63.3],

p = 0.02, H3 = 56,6 ms [51,9; 75,2], p< 0.01 and H4 = 58.1 ms [40.8; 64.1], p< 0.01). No sig-

nificant variation was found in any of the other HRV measures. No significant variation was

found in any HRV measure in the control group in comparison to baseline.

Comparison between LPS and control groups are shown in Table 2 and Fig 2. Five HRV

measures significantly differed at least once during the 6 h after LPS injection in comparison

to control group. DFA alpha1 was significantly lower at H3 (0.42 [-3.1; 2.44] vs 4.44 [3.32;

6.35], p< 0.01) in LPS group compared to control group. DFA alpha 2 was significantly lower

at H3 (-0.7 [-2.1; 1.73] vs 3.31 [1.55; 3.86], p = 0.02) in LPS group compared to control group.

ApEn was significantly lower at H3 (0.49 [0.45; 0.55] vs 0.57 [5.47; 5.82], p = 0.02) in LPS

group compared to control group. LTV was significantly higher at H2 (49.3 [32.2; 63.3] vs 33.0

[26.8; 42.7], p = 0.04) and H4 (58.1 [40.8; 64.1] vs 41.2 [34.8; 48.3], p< 0.01) in LPS group,

compared to control group. SDNN was significantly higher at H6 (9.50 [8.80; 13.0] vs 13.5

[11.1; 16.3], p = 0.02) in LPS group compared to control group.

Discussion

In this near-term fetal sheep experimental FIRS model, hemodynamic, gasometric, and HRV

parameters changed after LPS injection. FIRS was associated with increased FHR, decreased

pH, and increased lactate. Among the 14 HRV indices analyzed, five changed significantly at

least once after LPS injection in comparison to baseline. These five indices were: SDNN, DFA

α1, DFA α2, LTV, and SD2, all of which changed significantly from H2 to H4.

Among these five indices, DFA α1, DFA α2, LTV and SD2 demonstrated significant differ-

ences between LPS and control groups after LPS injection (between H2 and H4). ApEn was

significantly lower at H3 in LPS group in comparison to control group.

FIRS is a systemic inflammation with elevated fetal IL-6 [25]. Elevated IL-6 in the LPS

group 1 h after LPS injection confirmed successful FIRS model creation. This model was previ-

ously used by Durosier et al., who administered intravenous LPS to 10 fetal sheep, inducing

FIRS without shock or cardiovascular decompensation [17]. These investigators also found

septicemia 3 h after LPS injection, with a slight blood pressure drop, FHR increase, mild hyp-

oxia, and IL-6 rise [17].

In our model, pH decreased starting at H1 and lactate increased starting at H2. PCO2

increased from H2, and PO2 decreased from H4. Placental vascular resistance can explain

some of these gas changes. Several mechanisms can cause increased placental resistance [26].

First, secretion of endothelin 1, a potent vasoconstrictive peptide. Second, formation of placen-

tal edema caused by increase permeability. Third, increased flow to the brain, heart, and
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Table 2. Heart rate variability measures in LPS and control groups.

H0 H1 H2 H3 H4 H5 H6 p(1)

SDNN

(ms)

LPS 8.07(6.11;10.0) 8.82(7.14;12.3) 13.8

(7.98;18.0)*
15.7

(12.6;22.3)*
15.3

(10.6;17.4)*
10.6(10.0;15.8) 9.50(8.80;13.0) <0.001

Control 12.0(9.55;13.9) 12.3(10.2;13.5) 9.26(8.68;9.51) 11.6(9.71;13.1) 10.9(9.77;12.4) 10.1(8.98;13.5) 13.5(11.1;16.3) 0.44

p(2) 0.12 0.33 0.28 0.09 0.23 0.69 0.02

RMSSD

(ms)

LPS 6.22(3.98;8.60) 6.51(4.94;8.98) 9.06(5.24;11.9) 11.4(6.92;14.4) 8.22(6.22;11.8) 8.57(6.92;13.5) 8.20(5.34;10.2) 0.13

Control 6.40(6.03;12.8) 7.27(6.22;9.14) 6.43(5.63;8.37) 8.73(5.67;10.6) 8.53(5.79;9.89) 7.32(6.11;10.2) 13.2(7.11;19.5) 0.36

p(2) 0.23 0.61 0.86 0.18 0.69 0.68 0.28

LF

(dB)

LPS 5.65(4.76;6.95) 5.05(4.69;6.06) 5.10(4.91;5.52) 4.66(4.13;5.23) 4.98(4.39;5.23) 5.50(5.18;5.71) 5.59(4.82;5.94) 0.80

Control 1.86(1.58;1.99) 1.71(1.67;1.82) 1.82(1.70;1.91) 1.71(1.67;1.87) 1.89(1.65;1.94) 1.79(1.69;1.82) 1.76(1.58;1.94) 0.90

p(2) 0.61 0.23 0.33 0.69 0.77 1 0.77

HF

(dB)

LPS 5.97(4.11;8.00) 4.78(1.61;5.39) 0.93(-1.7;4.55) -0.7(-2.1;1.73) 0.24(-0.8;2.19) 3.15(1.08;3.89) 2.97(0.42;4.97) 0.22

Control 5.31(4.93;6.42) 5.82(5.46;6.79) 5.54(4.59;6.07) 6.10(4.00;7.02) 5.84(5.20;6.35) 6.17(4.28;6.17) 6.00(5.68;7.72) 0.87

p(2) 0.86 0.56 0.53 0.12 0.69 0.95 0.53

LFHF ratio LPS 3.92(2.26;4.33) 3.45(3.15;4.19) 3.73(3.07;4.50) 4.23(3.42;5.01) 4.13(3.55;6.26) 3.71(3.12;3.91) 3.92(3.09;4.41) 0.32

Control 4.10(2.65;5.13) 3.94(3.45;4.15) 4.08(2.89;0.47) 3.42(2.82;4.77) 4.01(2.95;4.41) 3.56(3.02;3.93) 2.34(1.88;3.14) 0.21

p(2) 0.61 0.95 1 0.61 0.69 0.95 0.07

sd1 LPS 4.39(2.81;6.08) 4.59(3.49;6.35) 6.40(3.69;8.43) 8.10(4.89;1.01) 5.80(4.39;8.36) 6.05(4.88;9.54) 5.79(3.77;7.24) 0.13

Control 4.52(4.25;9.07) 5.13(4.39;6.45) 4.54(3.97;5.91) 6.17(4.00;7.54) 6.02(4.09;6.99) 5.17(4.31;7.21) 9.36(5.02;1.38) 0.36

p(2) 0.23 0.61 0.86 0.18 0.69 0.61 0.28

sd2

(E-1)

LPS 0.98(0.79;1.20) 1.09(0.92;1.35) 1.81

(1.01;2.35)*
2.01

(1.70;2.91)*
2.04

(1.33;2.33)*
1.34(1.25;1.91) 1.16(1.08;1.67) 0.01

Control 1.42(1.07;1.86) 1.51(1.20;1.64) 1.16(1.09;1.21) 1.47(1.20;1.56) 1.43(1.25;1.55) 1.28(1.15;1.73) 1.59(1.45;1.78) 0.47

p(2) 0.18 0.33 0.23 0.04 0.23 0.77 0.28

ratioSD LPS 6.65(4.34;7.46) 5.41(4.33;6.00) 4.76(4.16;4.97) 4.38(4.02;4.77) 4.14(3.70;4.82) 4.96(4.38;6.51) 5.48(4.75;6.13) 0.03

Control 4.71(3.33;6.75) 4.78(3.66;5.83) 4.74(4.40;5.46) 5.56(4.07;5.74) 4.61(3.90;5.05) 4.60(4.36;5.18) 5.40(4.60;6.44) 0.91

p(2) 0.46 0.61 0.61 0.46 0.61 0.46 1

DFAα1

(E-18)

LPS 7.49(5.92;9.32) 6.10(3.23;7.25) 0.76

(-1.2;5.74)*
0.42

(-3.1;2.44)*
0.08

(-1.0;3.46)*
3.92(1.89;4.60) 4.62(0.82;6.12) <0.001

Control 3.53(3.59;8.67) 3.38(1.35;6.13) 5.73(4.13;6.52) 4.44(3.32;6.35) 3.69(2.90;4.23) 4.31(2.75;5.33) 3.09(2.51;4.14) 0.54

p(2) 0.23 0.46 0.09 0.01 0.15 1 0.53

DFAα2

(E-18)

LPS 5.97(4.11;8.00) 4.78(1.61;5.39) 0.93

(-1.7;4.55)*
-0.7

(-2.1;1.73)*
0.24

(-0.8;2.19)*
3.15(1.08;3.89) 2.97(0.42;4.97) <0.001

Control 2.37(2.26;4.95) 3.57(7.67;5.39) 4.82(3.24;5.40) 3.31(1.55;3.86) 2.33(1.03;3.68) 3.37(2.75;3.88) 1.93(7.98;3.73) 0.61

p(2) 0.09 0.69 0.07 0.02 0.07 0.77 0.69

ApEn LPS 0.61(0.55;0.63) 0.59(0.53;0.62) 0.54(0.48;0.62) 0.49(0.45;0.55) 0.53(0.49;0.57) 0.59(0.54;0.59) 0.55(0.47;0.59) 0.26

Control 0.55(5.17;5.74) 0.54(5.22;5.61) 0.57(5.66;5.93) 0.57(5.47;5.82) 0.56(5.28;5.67) 0.54(5.14;5.76) 0.53(5.16;5.58) 0.35

p(2) 0.15 0.18 0.86 0.02 0.28 0.39 0.46

STV LPS 3.01(2.36;3.40) 3.54(3.17;5.05) 4.64(3.09;6.43) 5.44(5.28;6.90) 4.53(2.35;5.54) 3.89(2.66;6.33) 4.46(3.85;5.16) 0.30

Control 3,36(3.01;4.58) 3.10(2.78;4.05) 3.07(2.74;3.85) 3.70(3.04;3.99) 4.63(3.46;4.81) 4.06(3.44;4.55) 3.89(3.54;4.23) 0.72

p(2) 0.30 0.24 0.9 0.6 0.58 0.93 0.39

LTV LPS 31.0(25.0;37.0) 37.9(32.5;50.2) 49.3

(32.2;63.3)*
56.6

(51.9;75.2)*
58.1

(40.8;64.1)*
41.8(27.8;59.3) 42.8(39.4;56.8) <0.001

Control 34.5(29.5;47.6) 34.8(30.5;42.9) 33.0(26.8;42.7) 41.2(35.7;45.3) 41.2(34.8;48.3) 35.8(34.5;47.5) 43.2(35.8;45.1) 0.27

p(2) 0.48 0.39 0.04 0.6 0.01 0.48 0.81

(Continued)
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adrenals at the expense of placental flow [26]. FHR elevation that appeared at H5 can be

explained by secretion of catecholamines induced by LPS injection [26]. No significant MAP

modification was found, but there was a decreasing trend at H5 that could be explained by

endothelial dysfunction caused by inflammation. This hemodynamic response and increased

IL-6 from H1 after LPS injection validate this FIRS model, without shock or cardiovascular

decompensation. The hemodynamic and gasometric responses to LPS injection herein were

similar to other studies after intravenous LPS in near-term fetal sheep [17,27].

In fetal sheep, LPS bolus administration was inconstantly associated with an increase of

HRV [17,27–31]. These studies used different HRV analyses, with different models of FIRS

(acute, chronic), by different LPS injection modes (intraamniotic et intravenous) at different

gestational age. Only two teams have studied HRV changes after intravenous LPS injection in

the near-term fetus. Blad et al. studied ECG and HRV changes in preterm and near-term fetal

sheep following LPS exposure, finding no HRV changes or tachycardia after one intravenous

LPS injection [27]. However, only one global HRV analysis was conducted and the dose (100

ng/kg) and LPS (Sigma O55:B5) differed from those used herein. Durosier et al. used a multi-

dimensional analysis of complementary HRV measures from different signal-analytic

domains, allowing detection of FIRS [17]. That group selected five HRV indices but the param-

eter characteristics were not separately described. Our aim herein was to study each of the

main HRV indices during modeled FIRS.

SDNN, DFA α1, DFA α2, SD2, LTV, and APEN are altered after LPS injection in the sheep

fetus, even before fetal tachycardia onset. It has been shown that HRV increase can be concom-

itant with tachycardia [27,29,31]. In these studies, fetuses were premature, and fetal reactions

were stronger with strong hypotension. However, discrepancy between the occurrence of

tachycardia and changes in HRV parameters has already been reported in two studies in fetal

sheep at term after LPS injection [17,30]. First, Durosier et al found that discrimination

between LPS-injected animals and control group using HRV occurs between 2 h and 3 h post

injection. Whereas FHR was significantly higher in LPS group only at H6. Second, Kyozuka

et al., who studied short-term variability changes after LPS infusion into the amniotic cavity,

found significative change in short-term variability, with no tachycardia, at 6, 4, and 3 h before

intrauterine fetal death [30].

HRV indices can reflect sympathetic, parasympathetic, or global autonomic activities [19].

Activation of the adrenergic system in sepsis is critical for initiating a physiologic response to

pathogens but can become detrimental in excess [13]. The cholinergic anti-inflammatory path-

way can regulate the inflammatory response via the vagus nerve, providing negative feedback

on systemic inflammatory cytokine levels [11].

Table 2. (Continued)

H0 H1 H2 H3 H4 H5 H6 p(1)

FSI LPS 52.1(48.5;53.6) 46.7(44.9;53.2) 45.2(44.7;48.2) 48.0(43.7;51.1) 43.7(42.1;45.4) 45.6(42.3;50.0) 46.6(43.0;49.9) 0.60

Control 49.6(45.7;53.3) 48.3(47.4;55.2) 49.3(40.1;51.7) 44.0(39.6;55.6) 54.2(47.9;56.9) 47.5(42.9;49.8) 50.1(45.5;66.1) 0.54

p(2) 0.83 0.53 1.00 0.77 0.05 0.69 0.53

Data are presented on median (interquartile range).

Statistical analysis: (1) Comparison from H1 to H6 compared with stability (H0): Friedman nonparametric test; p < 0.05 was significant

*Wilcoxon test: P < 0.05 was significant.

(2) Comparison between LPS and control group: Mann-Whitney test: P < 0.05 was significant.

SDNN = standard deviation of normal to normal, R-R intervals, RMSSD = root mean square of successive differences, DFA = detrended fluctuation analysis,

SD1 = Standard Deviation 1, SD2 = Standard Deviation 2, FSI = fetal stress index, ApEn = Approximate Entropy,.

STV = short-term variability, LTV = long-term variability, LF = low frequencies, HF = high frequencies.

https://doi.org/10.1371/journal.pone.0293926.t002
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FSI, RMSSD, and HF has been associated with parasympathetic activity [19,22]. That we

failed to find any fluctuations in these indices after LPS injection, could suggest an absence of

change in parasympathetic activity. [11]. After LPS injection, SDNN increased from H2 to H4

in comparison to baseline. Both sympathetic activity and parasympathetic activity contribute

to SDNN. This increase of SDNN with no parasympathetic activation could suggest a sympa-

thetic activation. However, a sympathetic activation with no parasympathetic activation should

Fig 2. Evolution of Heart rate variability measures in LPS group and control group. Black LPS group (n = 8); Grey control group (n = 7) at baseline (H0), H1,

H2, H3, H4, H5, H6 after LPS (LPS group) or saline injection (control group). SDNN = standard deviation of normal to normal, DFA = detrended fluctuation
analysis, SD2 = Standard Deviation 2, LTV = long term variability, ApEn = Approximate Entropy Data are presented on median with interquartile rang.

Comparisons between stability phase and H1 to H6 were performed, in LPS group and control group, using a Wilcoxon test if nonparametric Friedmans’ test found
a statistical significance. * = Statistical significance was assumed for p< 0.05 in comparison to baseline in LPS group. No significantly change was found in control
group. Comparisons between LPS and control group were performed using a Mann-Whitney test.▲ = Statistical significance was assumed for p< 0.05 between
LPS and control groups.

https://doi.org/10.1371/journal.pone.0293926.g002
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have increased the LF/HF ratio, what we did not highlight. It is also unexpected that the onset

of tachycardia from H5 was associated with a return to baseline of HRV markers. It has already

been shown that initial increase in HRV can be followed by suppression of time-domain mea-

sures [27,28,29,31]. However, with the onset of tachycardia, we might have expected an

increase of indices usually associated with sympathetic activity. We have no pathophysiological

explanation for this discrepancy. Altogether, inhibition or activation of autonomic activities

cannot be clearly established by our HRV indices changes. It must be noted that each parame-

ter does not strictly reflect direct sympathetic or parasympathetic individual changes [32] and

there is a substantial overlap in the sympathetic and parasympathetic spectrum [33].

Early HRV changes also appear to be mediated by a loss of signal complexity. After LPS

injection, DFA α1 and α2 decreased from H2 to H4 in comparison to baseline and was lower

at H3 in comparison to control group. ApEn was lower at H3 in comparison to control group.

DFA α1, DFA α2 and ApEn are nonlinear measurements [19]. Nonlinear measurements pro-

vide information about the unpredictability of a time series, which results from the complexity

of the mechanisms that regulate HRV. Stressors like infection are known to depress some non-

linear measurements [19]. DFA α1 (window width: 4� n� 16 beats) was previously applied

to clinical cardiovascular risk assessment, prognosis, and mortality prediction [21]. Applying

DFA to human adults, Brown et al. found that a loss of complexity in HRV with DFA changes

can predict, during severe sepsis or septic shock, early resuscitation success [34]. To our

knowledge, only Durosier et al. have studied DFA and entropy in a fetal sheep model of infec-

tion. In their study, DFA and entropy indices were tested but not selected to create a HRV

composite measure to monitor the inflammatory response. However, the HRV measures

selected increased and correlation with inflammation in the three days after initial LPS injec-

tion. Herein, these findings support DFA and ApEn, as nonlinears measures, as interesting

tools for detecting loss of signal complexity early in acute fetal infection.

Significant changes in SDNN, DFA α1, DFA α2, SD2, LTV and ApEn were detected before

tachycardia in our model. These changes seem related to sympathetic activation and a loss a

signal complexity. Thus, these indices may be valuable for early detection of acute fetal infec-

tion. FIRS is associated with severe morbidity and mortality, and new tools for its detection are

needed [3–7]. HRV may be promising for early detection of fetal infection. To date, no study

has evaluated HRV indices during FIRS in the human fetus. Few studies have evaluated fetal

HRV in FIRS with near-term fetal sheep [17,27,30], which share many similarities with human

gestation [35]. Our study is the first to present characteristics of 14 changed indices after LPS

injection. With the improvement of fetal ECG recording systems, and thus R–R signal quality,

HRV indices may soon be feasible for detecting fetal disturbances like FIRS.

This experiment was not without limitations. First, it focused specifically on acute onset

FIRS in the near-term fetus and the model does not therefore reflect the entire range of fetal

infections, which may be subacute or chronic with differing intensity. Further, we focused

only the fetal system; concomitant infections of the placenta, amniotic fluid, or maternal sys-

tem may alter these indices in different ways. For example Kyozuka et al., who studied short-

term variability changes after LPS infusion into the amniotic cavity, found different results

[30]. Specifically, no significant changes were found during the first 24 h post-injection, while

short-term variability at 6, 4, and 3 h before intrauterine fetal death increased significantly.

Nevertheless, only one HRV analysis was used in that study: short-term variability defined as

the average of differences between two intervals. The second study limitation is that although

we used an animal model of human gestation, generalizability of findings and their applica-

tions to human fetuses must be carefully established. Third, due to small number of fetal

sheep, it was not possible to research eventual differences in HRV modifications between sin-

gletons and twins.
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Conclusion

SDNN, DFA α1, DFA α2, SD2, LTV, and APEN are altered after LPS injection in the sheep

fetus, even before fetal tachycardia onset. These changes appear to be mediated by an increase

of global variability and a loss of signal complexity. Thus, these HRV indices may facilitate

early detection of acute FIRS.
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