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Abstract

Recently, contrastive learning has gained popularity in the field of unsupervised image-to-

image (I2I) translation. In a previous study, a query-selected attention (QS-Attn) module,

which employed an attention matrix with a probability distribution, was used to maximize the

mutual information between the source and translated images. This module selected signifi-

cant queries using an entropy metric computed from the attention matrix. However, it often

selected many queries with equal significance measures, leading to an excessive focus on

the background. In this study, we proposed a dual-learning framework with QS-Attn and

convolutional block attention module (CBAM) called object-stable dual contrastive learning

generative adversarial network (OS-DCLGAN). In this paper, we utilize a CBAM, which

learns what and where to emphasize or suppress, thereby refining intermediate features

effectively. This CBAM was integrated before the QS-Attn module to capture significant

domain information for I2I translation tasks. The proposed framework outperformed recently

introduced approaches in various I2I translation tasks, showing its effectiveness and versa-

tility. The code is available at https://github.com/RedPotatoChip/OSUDL

1. Introduction

Image-to-Image (I2I) translation is a field in computer vision that aims to produce images

from a source domain to a target domain while preserving essential content. The emergence of

generative adversarial networks (GANs) [1] has led to great improvements in various I2I
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translation [2] tasks such as the translation of images of horses to zebras, low-resolution to

high-resolution images, [3], and aerial photos to maps [4].

Generally, I2I translations can be categorized into paired (supervised) [4–6] and unpaired

(unsupervised) task [2, 7–10]. Using paired training data, I2I translation models have shown

impressive results with conditional GANs [11]. However, it is difficult and expensive to collect

paired data with pixel-to-pixel mapping for training, which restricts the applicability of such

methods to existing datasets and domains [4]. Unsupervised I2I translation conducts a cross-

domain transfer without paired data, which is close to real-world scenarios. The main problem

encountered by GANs in unsupervised I2I translation is that the adversarial loss [1] is under-

constrained and there are multiple possible mappings between domains, leading to translated

images with poor quality [12].

To address these limitations, adversarial loss [1] can be employed to enforce the target

appearance and cycle consistency [2] to maintain content; this can be an overly restrictive

approach. The cycle consistency assumption adopted by models such as CycleGAN [2], Disco-

GAN [7], and DualGAN [8] can limit their ability to perform changes in geometry and forces

the relationship between two domains to be a bijection [13], which is not always ideal. Further-

more, the training cost associated with these methods is higher since two generators and two

discriminators are used.

Contrastive learning approaches that use multiple views of data have achieved state-of-the-

art performances in the field of self-supervised representation learning [14–18]. Contrastive

unpaired translation (CUT) [19] incorporates contrastive learning with a single embedding to

maximize the mutual information between input and output image patches. Recent I2I trans-

lation methods such as the dual contrastive learning generative adversarial network

(DCLGAN) [12] and query-selected attention (QS-Attn) [20] module have attempted to

improve its performance. Despite the superior performance of these techniques, we found that

they could not effectively capture objects corresponding to the background. When QS-Attn

obtains anchor features, the entropy distribution is calculated as a metric to measure the

importance of the features in reflecting the domain characteristics. Then, the smallest N points

on the image are selected by sorting the entropy. We analyzed this entropy metric, finding that

zero entropy points exceeded the number of samples, which resulted in important feature

selections being missed. As shown in Fig 1, zero-entropy points are concentrated at the tops of

the images, corresponding more to the background than the zebras.

Motivated by recent methods [12, 20], we propose an I2I translation model adapted from

DCLGAN and QS-Attn called object-stable-DCLGAN (OS-DCLGAN). In particular, we mod-

ified the QS-Attn module by inserting a convolutional block attention module (CBAM) [21] to

improve the stable feature representation of objects. This module was introduced for adaptive

feature refinement with channel attention and spatial attention modules that supported a

more efficient extraction of contextual information. The feature refinement process of CBAM

enabled the QS-Attn module to obtain significant positive, negative, and anchor features.

In summary, the main contributions of this paper are as follows:

• We propose a new framework called OS-DCLGAN for stable I2I object translation, which

can focus on important features. We enhanced attention module by adding CBAM blocks

and show that its incorporation in QS-Attn improves the results.

• To achieve further improvement, we employ an existing state-of-the-art architecture of dual

setting called DCLGAN, which enables excellent training stability.
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• We present extensive experiments conducted to verify the performance of our model. The

qualitative and quantitative results obtained on the benchmark datasets show that proposed

method outperforms the existing state-of-the-art methods in I2I translation tasks.

2. Background and related work

2.1. Image-to-image translation

An I2I translation task refers to transforming an image from one domain to another. GANs

[1] have achieved success in these tasks due to their ability to model the high-dimensional dis-

tribution of images through the adversarial loss, which attempts to make the generated image

indistinguishable from the real image. As previously mentioned, I2I translation is categorized

as either paired (supervised) or unpaired (unsupervised). In the paired setting [4–6], each

image in the source domain has a corresponding image in the target domain. Pix2pix [4], a

supervised I2I method, uses a conditional GAN(CGAN) [11] to learn the mapping function

between input and output images. Regarding CGANs, they utilize supplementary details such

as classification labels [22–24] or text descriptions [25–28] to steer the process of image gener-

ation. This approach results in the formation of semantic images that fulfill specific require-

ments. Being supervised approaches, both pix2pix and pix2pixHD [5] need paired data and

the adversarial loss from a target domain discriminator for training. However, the requirement

of paired data during training can pose a challenge in real-world scenarios where collecting

such data is difficult. To overcome this, unpaired I2I methods [2, 7, 8, 19, 29–32] have been

proposed. Unpaired setting is often achieved through cycle-consistency [2], which involves

learning an inverse mapping from the output domain back to the input and ensuring the

reconstruction of the input. CycleGAN [2], DiscoGAN [7] and DualGAN [8] are examples of

methods that achieve I2I translation based on unpaired data by simultaneously training two

generators and using cycle-consistency. This idea has been extended by methods such as unsu-

pervised image-to-image translation (UNIT) [10] and multimodal unsupervised image-to-

image translation (MUNIT) [29], which propose learning a shared intermediate “content”

Fig 1. Differences in patch acquisition. The locations of 256 patches obtained proposed model (OS-DCLGAN) and

QS-Attn only. The yellow areas on the right show the locations of the patches obtained.

https://doi.org/10.1371/journal.pone.0293885.g001
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latent space. Diverse image-to-image translation (DRIT) [33, 34] preserves the source and tar-

get domain information during I2I translation by utilizing two discriminators. StarGAN [9,

31] employs a single discriminator to recognize the target domain while the generator tries to

translate an image to multiple target domains. The pixel2style2pixel framework [35] combines

the content of an image with the style of another image to generate a new image that has both

content and style information. There have been recent efforts to enhance the quality of results

by addressing challenges in multi-domain and multimodal synthesis [9, 36, 37]. In addition,

attempts have been made to create more realistic images using the attention mechanism [38–

42]. However, the assumption of cycle-consistency can sometimes be overly restrictive. Coun-

cil-GAN [43] uses multiple generators and discriminators to reduce cycle-consistency con-

straints; however, the strong constraint on pixels can still impact image quality. To tackle this,

some methods use feature-level perceptual loss or a foreground mask to guide the generator

[40, 44] at the cost of increased model complexity. Both CUT [19] and F-LSeSim [45] incorpo-

rate the self-supervised contrastive loss into I2I translation, which significantly increases the

translation quality. Our proposed framework, an effective two-sided I2I translation framework

based on the concept of contrastive learning, is inspired by this approach.

2.2. Contrastive learning

Contrastive learning is a field of unsupervised learning that aims to support a model in gather-

ing similar sample pairs while separating dissimilar pairs, enabling it to capture the valuable

features or representations of the underlying structures and patterns present in data [15]. It

has applications in various domains, including but not limited to image classification and style

translation [46, 47]. Recently, there has been a growing trend of incorporating contrastive

learning into graph domains [48, 49]. This is achieved by maximizing the mutual information

between the input and generated images. Furthermore, it is necessary to align closely related

patches at specific positions in the input and output images. The CUT [19] method uses noise-

contrastive estimation to learn the relationship between the input image patches and corre-

sponding generated image patches, resulting in a better performance. Another approach,

DCLGAN [12], improves upon CUT by employing separate encoders and projection heads for

each domain and using dual learning to effectively bridge the domain gap and stabilize the

training. Then, the QS-Attn [20] module, which routes features in both domains while main-

taining source relations in the synthesis, selects relevant anchor points for contrastive learning,

improving the performance of CUT. In this study, we improved the performance of QS-Attn

by adding channel attention, using it in a dual mode to increase training stability and maxi-

mize mutual information. The proposed model effectively extracted meaningful 256 features

using the max-pooling of CBAM, which reduced the computational cost.

3. Methods

The proposed method is designed to translate images from the source domain X�R H × W × C

into images that resemble those from the target domain Y� R H × W × 3. First, a dataset of

unpaired samples from both domains X = {x 2 X} and Y = {y 2 Y} is obtained. Two transfor-

mation functions, with G1x!y converting images from X to Y and G2y!x converting images

from Y to X, are learnt, Two discriminators, Dx and Dy, are employed to validate whether the

translated images have been properly aligned with the correct image domain. Owing to the

dual-mode setting of the proposed approach, there are two separate encoders and decoders

from the two generators, with the first and second halves being defined as the encoder and

decoder, respectively. Then, CBAM [21] is applied to the features extracted by the encoder,

enabling the efficient extraction of contextual information from the images. The refined
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features are passed through the QS-Attn module and sent to a two-layer multilayer perceptron

(MLP) projection head (Hx and Hy). Regarding the attention mechanism, it involves compar-

ing a query with the keys and then selecting the query based on the comparison outcome. Fig 2

illustrates the overall structure of the proposed model, with Fig 3 showing its detailed working.

3.1. Adversarial loss

The adversarial loss [1] is utilized to push the generator to produce an output that resembles

the images from the target domain. In the study, we used two GANs and calculated their loss

functions as follows:

LGAN G1;Dy;X;Y
� �

¼ Ey�Y logDy yð Þ
h i

þ Ex�X log 1 � Dy G xð Þð Þ
� �h i

ð1Þ

LGAN G2;Dx;X;Yð Þ ¼ Ex�X logDx xð Þ½ � þ Ey�Y log 1 � Dx G yð Þð Þð Þ½ � ð2Þ

3.2. Patch-based multi-layer contrastive learning

3.2.1. Contrastive loss. We aimed to improve the mutual information between an input

and the output by employing a noise–contrast estimation framework [17]. To capture the

semantic similarities in the input space, a function that maps the input images to feature repre-

sentations in the feature space, denoted as z, is learnt. This function is optimized using a con-

trastive loss, which encourages the proximity of feature representations z and their respective

positive sample k+ in the feature space while simultaneously driving apart the representations

of other negative pairs. The query, positive, and N negatives are denoted as k, k+ 2 RK and k- 2

RN×K, respectively. The application of the Euclidean norm to these vectors allows for the crea-

tion of an (N + 1)-class classification problem, where the probability of choosing the positive is

Fig 2. Overall structure of the proposed model. The model learns dual mappings, G1: X!Y and G2: Y!X, through

dual learning, enabling I2I translation between unpaired image pairs. The CBAM and QS-Attn modules are used to

selectively extract 256 patches, and the PatchNCE loss is used to make the selected patches both resemble real images

and be distinguishable from fake images. Through this process, the model can perform high-quality image

transformations.

https://doi.org/10.1371/journal.pone.0293885.g002
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calculated. Specifically, the contrastive loss is established as follows:

ℓ k; kþ; k�ð Þ ¼ � log
es k;k

þð Þ=t

es k;kþð Þ=t þ

X

n
es k;k�ð Þ=t

ð3Þ

where τ is the temperature parameter (default value of 0.07), which was employed to scale the

distance between the query vector and other examples, and s(�) is the cosine similarity.

3.2.2. PatchNCE loss. We aim to match the corresponding patches of the input and out-

put images by leveraging other patches within the input as negatives. L layers are selected from

G1enc(X) and sent to Hx, embedding one image into a stack of features, zlf gL ¼
Hl

X G1lenc xð Þ
� �� �

L where G1lenc represents the output of the l-th selected layer. In a stack of fea-

tures, each feature corresponds to a specific patch in an image, enabling the patch-based nature

of the features to be leveraged. Sl represents the total spatial locations of each layer and is

assigned using the notation. At each iteration, a query is chosen, and the corresponding feature

is considered the “positive” and represented as zsi 2 R
Ci while all the other features are consid-

ered “negatives” and represented as ZS=sl 2 R
Si � 1ð Þ�Ci , where Ci indicate the channel count for

each layer. Similarly, another stack of features ẑ lf gL ¼ Hl
Y G2l

enc xð Þ
� �� �

L is obtained. The

multi-layer patch NCE loss, which maps G1: X! Y, can be represented as follows:

L Xð Þ
PN G1;Hx;Hy;X
� �

¼ Ex�X
XL

l

XSl

s
ℓ ẑ sl ; zsl ; z

Sns
l

� �
ð4Þ

A similar loss can also be introduced for the reverse mapping G2: Y! X.

L Yð Þ
PN G2;Hx;Hy;Y
� �

¼ Ey�Y
XL

l

XSl

s
ℓ ẑ sl ; zsl ; z

Sns
l

� �
ð5Þ

Fig 3. Detailed working of the proposed model. The embedding process of the model involves using the encoder E to

extract features Fx and Fy from the source and target images, respectively. Using the CBAM module, the feature Fx of

the source image is transformed into F0x, which indicates where the focus of the input image should be. Then, the

QS-Attn module is used to sort the attention matrix based on the entropy and obtain the final attention matrix with

the selected N rows. The red and green patches represent the positive and negative features, respectively.

https://doi.org/10.1371/journal.pone.0293885.g003
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3.3. Identity loss

To maintain the integrity of the outputs of the generator, an identity loss is implemented as

follows [2]:

Lidentity G1;G2ð Þ ¼ Ex�X kG2 G1 xð Þð Þ � xk
1

½ � þ Ey�Y kG1 G2 yð Þð Þ � yk
1

½ � ð6Þ

This helps to ensure consistency in the color compositions between the input and output.

3.4. CBAM

The CBAM module [21] emphasizes the meaningful features along the two principal dimen-

sions of the channel and spatial axes. Regarding its working, the channel and spatial modules

are placed sequentially, and the CBAM effectively refines the intermediate features by learning

the type of information that is highly relevant in terms of both content and location.

3.4.1. Channel attention. Regarding the channel attention process in the CBAM, each

channel of the feature map extracts meaningful features from provided input data. A channel

attention map is produced to model the interdependencies between the channels and empha-

size the interdependent feature maps, improving the feature representations of specific seman-

tics. In this study, only max-pooled features were used to extract features that gathered

valuable information regarding distinct object features. Channel attention can be computed as

follows:

Mc Fð Þ ¼ s MLP MaxPool Fð Þð Þð Þ ð7Þ

3.4.2. Spatial attention. The spatial attention mechanism differs from the channel atten-

tion mechanism in that it focuses on the location of important information instead of its

meaning in the feature map. It encodes a wider range of contextual information into local fea-

tures to enhance the representational capabilities. For instance, when predicting an object in

an image, only the regions containing the object are useful. Therefore, the spatial attention

mechanism prioritizes semantically related regions. Similar to channel attention, only max-

pooling operations are used in spatial attention, which can be computed as follows:

Ms Fð Þ ¼ s f
7∗7 MaxPool Fð Þð Þð Þ ð8Þ

where f7*7 represents a convolution operation with a filter size of 7×7, and σ denotes the sig-

moid function.

3.5. QS-Attn

The QS-Attn module [20] selects the anchor q based on the significance of each feature, which

was determined by its entropy. Only the most significant features that contain more domain-

specific information are selected and subjected to the constraints imposed by Lcon.

The attention module assigns scores to potential positions to determine similarity to all

positions and to each feature. When considering a feature Fx 2 RH×W×C, the initial step

involves reshaping it into a 2D matrix Q 2 RHW×C. Subsequently, this matrix is multiplied by

its transposed counterpart K 2 RC×HW. Next, every row in the resulting matrix is passed

through the softmax function, resulting in Ag 2 RHW×HW. The entropy Hg of Ag can be used

to determine the significance of the features, as calculated using Eq (9):

Hg ið Þ ¼ �
XHW

j¼1
Ag i; jð ÞlogAg i; jð Þ ð9Þ
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where i and j represent the indices of the query and key, respectively, which correspond to the

row and column positions, respectively, within Ag.

4. Experiments

4.1. Datasets. We conducted experiments on three datasets: Cat!Dog, Horse!Zebra,

and Cityscapes. The Cat$Dog dataset contained 5,153 training images for cats and 4,739

training images for dogs, as well as 1000 validation images from the animal faces HQ (AFHQ)

dataset [31]. The Horse$Zebra dataset included 1,067 horse images and 1,344 zebra images

for training and 260 test images from ImageNet [50]. The Cityscapes dataset consisted of street

scenes from German cities, including 2,975 training and 1,000 validation images for each

domain. The models were trained and evaluated at a resolution of 256×256.

4.2. Training details

To train proposed model, we mostly followed the setting of DCLGAN. Our training methodol-

ogy for the generator architecture involved using a ResNet-based [51] generator based on

CycleGAN [2] and CUT [19] that comprised nine residual blocks, two downsampling and

upsampling blocks. Both the down-sampling and up-sampling blocks followed the pattern of

two-stride convolution/deconvolution, normalization, and a rectified linear unit (ReLU).

Then, residual blocks contained convolution, normalization, a ReLU, and a residual connec-

tion. To compute PatchNCE loss, features from four layers of the encoder were extracted.

These four layers provided patches with resolutions of 9×9, 15×15, 35×35, and 99×99, respec-

tively. For the first two layers, 256 random patches were extracted, whereas for the remaining

two layers, CBAM and QS-Attn [20] were applied to obtain the patches. Then, the final

256-dimensional features were obtained using a 2-layer MLP (projection head Hx, Hy).

In our approach, we utilized a PatchGAN [4] discriminator with an architecture resembling

those of CycleGAN and pix2pix [4]. In terms of how the discriminator works, it evaluates local

70 × 70 patches and assigns results to each patch. The steps of this approach can be summa-

rized as manually cutting an image into 70×70 overlapping patches, subjecting each patch to a

regular discriminator, and then computing the average results. Specifically, the discriminator

receives images from each domain, passes through downsampling blocks, and generates a

30 × 30 matrix. This matrix shows the results of each element classification for the patch. Reli-

ability is ensured by using techniques similar to CycleGAN and pix2pix, where buffers are

maintained to store the last 50 images generated.

Our model used Hinge GAN loss [52], and an Adam optimizer [53] with parameters β1 =

0.5 and β2 = 0.999. Our training process include 400 epochs with a learning rate of 0.0001,

which decayed linearly after the halfway point. For the generator, the ResNet-based architec-

ture and PatchGAN was used as discriminator. Additionally, we used a batch size of 1 and

instance normalization, with weights initialized using Xavier initialization [54]. During train-

ing, all images were loaded at a resolution of 286 × 286 and randomly cropped into 256×256

patches. Conversely, for testing, the images were loaded at a resolution of 256 × 256 and all the

images from the test set were used for evaluation. The proposed method and existing baselines

were trained on a Tesla A100-PCIE-40GB GPU using GPU driver version 450.119.04 and

CUDA version 11.0.

4.3. Metrics

The Fréchet Inception Distance (FID) [55] is a metric widely used to evaluate the quality of

generated images. Among the evaluation metrics available [56–58], we adopted the commonly

used FID in the comparison experiment because most translation methods employ the FID as
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the quantitative measurement. It calculates the divergence between the distributions of real

and generated images in deep network space and is closely related to human perception.

Lower FID values suggest that generated images are more realistic and have summary statistics

comparable to those of the real images in any feature space. Regarding the Cityscapes dataset,

semantic segmentation was applied to the generated images using a dilated residual network

(DRN) [59], and the mean average precision (mAP) metric was used to evaluate the quality of

the generated images.

5. Results

5.1. Quantitative results

We quantitatively compared the performances of CUT, CycleGAN, MUNIT, DRIT, QS-Attn,

DCLGAN, and the proposed method. Among these, MUNIT, DRIT, and DCLGAN are two-

sided methods, whereas CUT, CycleGAN, and QS-Attn are one-sided. The experimental

results are listed in Table 1, which shows that our model outperformed the other methods on

the experimental datasets in terms of the FID Score. For example, for Horse!Zebra, our

model showed the best FID score of 36.47. For Cityscapes, both the mAP (26.33) and FID

(45.0) scores of our model were much better than those of the baselines. Our model demon-

strated a superior performance not only in the original task, but also in the inverse task, as

shown in Table 2.

5.2. Qualitative results

We also qualitatively compared the performance of the model with those of the baselines. Fig 4

shows the detailed visual results of the experimental datasets. Utilizing the CBAM, our model

performed well, successfully generating realistic images, particularly those emphasizing impor-

tant feature maps in the target domain [21]. Additionally, our model exhibited an excellent

performance in terms of geometric transformation and background consistency. Fig 5 shows

the visual results of the performance of different models on the Zebra!Horse and Dog!Cat

datasets, confirming the ability of the proposed model to perform well in various tasks [60].

5.3. Ablation experiments

We experimentally demonstrated that the QS-Attn module performed better when the CBAM

had been applied. We conducted ablation experiments on the Horse!Zebra dataset to analyze

Table 1. Comparison of the performances of the proposed and baseline models on the Horse!Zebra, Cat!Dog, and CityScapes datasets in terms of FID and

mAP.

Method CityScapes Cat!Dog Horse!Zebra

mAP" FID# FID# FID# sec/iter#

CUT 24.7 56.4 76.2 45.5 0.24

QS-Attn 25.5 53.5 72.8 41.1 0.30

CycleGAN 20.4 68.6 85.9 66.8 0.40

MUNIT 16.9 91.4 104.4 133.8 0.39

DRIT 17.0 155.3 123.4 140.0 0.70

DCLGAN 22.9 49.4 60.7 43.2 0.41

OS-DCLGAN 26.3 45.0 60.4 36.4 0.50

Our model is slower than others but produces higher quality images.

https://doi.org/10.1371/journal.pone.0293885.t001
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the isolated contributions of its components. The results of the quantitative analysis of the

ablation studies are presented in Table 3.

5.3.1. Number of CBAM applied layers. The number of layers to which the CBAM was

applied was varied and examined to assess the proper extent of its application. In model (A), it

was applied to two of the four layers mapped to the encoder using QS-Attn, and in model (B),

it was applied to all the four layers. Model (B) was slower with sec/iter 0.03 than model (A),

and the result of model (B) was even worse than model (A). In addition, removing CBAM

decreased training speed lightly with sec/iter 0.002, which shows the CBAM applied layers of

Model (A) can learn better with acceptable speed.

5.3.2. Average-pooling and max-pooling. We also conducted experiments to compare

the effectiveness of the following two models for the CBAM module: model (C), which used

only max pooling, and model (D), which used both average and max pooling. These experi-

ments were designed to provide insight into the optimal design of CBAM modules for image

classification tasks. As shown in Table 3, the difference in performance between the method

that used both average pooling and max pooling and the one that used only max pooling was

Table 2. Comparison of the performances of the proposed and CycleGAN, CUT, and DCLGAN models on the

Dog!Cat and Zebra!Horse datasets in terms of FID.

Method Zebra!Horse Dog!Cat

FID# FID#

CycleGAN 154.3 107.7

CUT 170.5 26.8

DCLGAN 139.5 22.2

OS-DCLGAN 135.4 23.1

Lower FID and higher mAP scores indicated a better performance. The highest scores are highlighted in bold; the

proposed model demonstrated a competitive performance compared with those of the other methods.

https://doi.org/10.1371/journal.pone.0293885.t002

Fig 4. Comparison of the visual results of the proposed and baseline methods. Compared to the performance of the

other methods on the Horse!Zebra, Cat!Dog, and CityScapes datasets, the performance of the proposed method is

satisfactory. The last row image is an example of an uncommon pose and a failure; the model cannot distinguish the

clouds and the texture of the horse.

https://doi.org/10.1371/journal.pone.0293885.g004
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not significant with the increase in the number of epochs. Fig 6 shows the visual image results

of the ablation study.

Fig 5. Conversions of the images of a zebra to a horse and a dog to a cat under the DCLGAN, CUT, CycleGAN, and proposed methods.

https://doi.org/10.1371/journal.pone.0293885.g005

Table 3. Results of the ablation study.

Ablation Training Settings Horse!Zebra

Layer Layerpooling FID#

(A) 2 41.7

(B) 4 43.2

(C) Max 44.0

(D) Average & Max 44.6

Layer: number of layers to which the CBAM is applied. Layerpooling: type of pooling used in the CBAM.

https://doi.org/10.1371/journal.pone.0293885.t003
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6. Discussion

In this paper, we have proposed OS-DCLGAN to ensure stable feature representation by mod-

ifying the QS-Attn module with an inserted CBAM. Additionally, its dual learning setting

enhances the training stability and enables superior feature focus, resulting in high-quality

image translations. However, our approach involves a dual structure with the inclusion of the

CBAM module to achieve high performance, which results in a notable increase in training

time compared to those of the existing models. Therefore, OS-DCLGAN is suitable when

higher accuracy and precision are expected, even though it requires more time.

To evaluate whether our proposed model performs well even on images with complex back-

grounds, we conducted additional experiments using the Apple!Orange dataset. For repro-

ducibility, we repeated the experiments 10 times, resulting in an average FID of 102.63 with a

standard deviation of 4.71. More training details regarding these experiments can be found in

S3 Appendix. As shown in Fig 7, our model generally performed well on the additional dataset;

Fig 6. Results of the ablation studies on the Horse!Zebra dataset.

https://doi.org/10.1371/journal.pone.0293885.g006
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however, failure occurred in some cases. We observed limitations in the achievement of geo-

metric changes and instances in which the presence of red, the same color as an object (apple),

in the background led to an orange shift. The challenge with geometric changes arises from the

fact that the Apple!Orange dataset, unlike the Cat!Dog dataset, contains training data

where the objects to be changed occupy smaller portions of the images.

Although OS-DCLGAN achieved the best performance in terms of FID, some issues remain

that must be addressed. First, further efforts are needed to be directed towards considering reli-

able metrics for quantifying the performance of I2I translation models, such as the interception

score and perceptual distance. Second, we could perform further research on the attention mod-

ule to enable the model to capture features more accurately by exploring alternative attention

models such as AttentionGAN [40], ATAGAN [61], SAGAN [62], and AGGAN [41].

The OS-DCLGAN has an architecture capable of translating between two image domains.

To extend it to multi-domain tasks, an encoder that takes labels as input to generate style

codes is required, and the generator needs to be modified to generate images by reflecting the

style code generated by the encoder. Therefore, another interesting direction would be

Fig 7. Visual translation results and some failure cases of our model between images translated from Apple!Orange dataset.

https://doi.org/10.1371/journal.pone.0293885.g007
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extending our method to multi-domain image translation by applying domain classification

loss [9] and similar techniques [63–65].

Another direction for future work is to perform a comparative study by applying diffusion-

based models, which are generative models that have been gaining attention recently, in an I2I

task [66]. Diffusion models progressively add noise to images and then generate new data

through a reverse diffusion process. Palette [67] presents conditional diffusion model for I2I

translation. SRDiff [68] proposes a diffusion model for single image super resolution. The

latent diffusion model (LDM) [69] improves the noise removal performance by training a dif-

fusion model in the learned latent space. In this study, we compared GAN-based models, but

as with previous work [70], future diffusion-based I2I translation methods can be compared

and analyzed.

7. Conclusion

We propose a new framework that can outperform existing methods in terms of image extrac-

tion in the I2I field. The proposed model refines feature maps by assigning different values to

points with the same entropy and extracted more meaningful point selections in the target

domain. Then, it calculates the entropy of each row in the attention matrix and selects the fea-

tures with the smallest N points. Additionally, the dual-wise QS-Attn module is applied to a

refined feature map to increase the learning stability. The effectiveness of the proposed model

was clearly shown through the experiments and ablation studies.
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