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Abstract

In this paper, we introduce a novel Maximum Power Point Tracking (MPPT) controller for

standalone Wind Energy Conversion Systems (WECS) with Permanent Magnet Synchro-

nous Generators (PMSG). The primary novelty of our controller lies in its implementation of

an Arbitrary Order Sliding Mode Control (AOSMC) to effectively overcome the challenges

caused by the measurement noise in the system. The considered model is transformed into

a control-convenient input-output form. Additionally, we enhance the control methodology

by simultaneously incorporating Feedforward Neural Networks (FFNN) and a high-gain dif-

ferentiator (HGO), further improving the system performance. The FFNN estimates critical

nonlinear functions, such as the drift term and input channel, whereas the HGO estimates

higher derivatives of the system outputs, which are subsequently fed back to the control

inputs. HGO reduces sensor noise sensitivity, rendering the control law more practical. To

validate the proposed novel control technique, we conduct comprehensive simulation exper-

iments compared against established literature results in a MATLAB environment, confirm-

ing its exceptional effectiveness in maximizing power extraction in standalone wind energy

applications.

1 Introduction

Increasing population, economic development, and energy demand have led to the establish-

ment of new power plants to meet growing needs. However, the limitations imposed by the

energy crisis, higher oil prices, and climate change have emphasized the importance of Renew-

able Energy Resources (RESs) [1]. Globally, governments have focused on effective and

environmentally friendly sustainable renewable energy systems. The power sector relies

heavily on hydro and gas power stations, but there is a need to diversify and catch up with the

growing demand. Rural and urban areas located far from the grid supply can benefit from

renewable energy sources. Fossil fuels used for electricity generation are becoming scarce,
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prompting governments to prioritize a secure and sustainable energy economy. Solar and

wind energy systems have witnessed substantial global growth with annual growth rates of 25–

30% over the past decade [2, 3]. These advancements in RESs are crucial for addressing energy

demand while considering environmental concerns and the finite nature of non-renewable

energy sources.

Wind energy is a green and environmentally friendly resource that offers a solution for

reducing dependence on fossil fuels and alleviating their adverse environmental effects, as

indicated by Dali et al. [4]. Wind power system efficiency has a significant impact on industrial

and commercial power sectors. As wind energy has rapidly emerged as a competitive renew-

able energy source, it has several advantages, including abundant availability and minimal

adverse environmental effects. Harnessing wind energy involves a mechanical-to-electrical

energy transformation using wind turbines (WTs).

In recent decades, the installed capacity of wind energy has grown exponentially, making it

a viable option for increasing the penetration of renewable energy. Technological advance-

ments have contributed significantly to various aspects of the wind energy industry, including

power electronic converters, aerodynamic design, mechanical systems, control theory, and

power system integration. Electric generators, control theory, and power electronic converters

play crucial roles in enabling a WECS to operate safely, reliably, and efficiently, while meeting

stringent grid code requirements. WECS holds high priority among renewable energy sources

due to its significant output energy potential. As a result, extracting the maximum power (MP)

from wind power systems (WPS) has become a prominent research area. Wind-speed-sensor-

less MPPT control has attracted considerable attention in academia. MPPT is a control tech-

nique employed in wind turbines to maximize power extraction under various climatic

conditions [5]. This is achieved without physically moving the wind turbine or the other sys-

tem components. Although MPPT can be used with a mechanical framework, the two systems

are distinct. The literature offers insights into MPPT techniques and design considerations for

WPS [6–8].

In most studies, robust controllers have been developed and studied (e.g., [9–19]) for the

extraction of maximum power Pmax from the wind. Majid and Yatim [20] studied a technique

for the extraction of reactive power and maximum inverter power using the variable-speed

WT modulation index (ma) and the terminal voltage power angle (δ) of an inverter without a

wind speed sensor. Francoise et al. [21] carried out an adaptive MPPT scheme while using var-

iable wind speed to a PMSG, which is further attached to a battery charging station. Nicholas

et al. in [22] investigate the performance of a full-variable wind turbine that a nonlinear back-

stepping controller controlled. Lyapunov analysis shows that this controller is stable while

achieving the desired generator rotational speed. Some drawbacks include a higher steady-

state error and a lower dynamic response. Lin and Chengpeng [23] investigated and designed

an improved sliding mode control for a WECS, a grid-connected offshore wind turbine

PMSG. By employing an aerodynamic torque observer, the performance of the MPPT system

can be significantly improved, effectively addressing the chattering issues arising from the vari-

able nature of the wind speed in wind energy systems. In [24, 25], the authors introduce a strat-

egy aimed at tackling this issue. Their approach integrates integral action to eliminate steady-

state errors and employs adaptive control to dynamically adjust control gains in real-time.

Janusz and Andrzej [26] performed a simulation study to analyze a variable-speed fixed-pitch

WECS equipped with a three-phase PMSG under diverse wind conditions. This study focused

on the utilization of a linear disturbance observer and feedforward control to compensate for

wind turbine aerodynamic torque estimation. This study offers valuable insights into the oper-

ational zones of a WECS MPPT system for different wind-speed profiles. However, it is impor-

tant to note that the simulation model did not account for electrical phenomena such as short
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circuits or voltage dips occurring in the WECS-grid connection. Consequently, the model may

not fully adhere to certain standard requirements.

In addition to the aforementioned techniques, numerous other MPPT control techniques

have been developed to maximize power extraction from wind energy systems, regardless of

the generator employed in the WECS. To enhance the efficiency, profitability, and reliability

of a WECS, these innovative control techniques have emerged as pivotal factors [27]. MPPT

techniques can be broadly classified into three categories: conventional, population-based, and

artificial intelligence (AI) techniques. For variable-speed generator systems, adjusting the opti-

mal tip ratio to its optimal value enables effective tracking of the MPP even under varying

wind speeds [28]. Maintaining the maximum power output across all wind speeds poses a

challenge because of the nonlinear characteristics inherent in wind turbines [29, 30]. Conse-

quently, various techniques have been employed to estimate the MP of wind-turbine systems.

Some methods utilize power generation changes to identify the maximum power point. How-

ever, these methods often rely on mechanical sensors to measure generator speed, which may

introduce vulnerabilities owing to modeling inaccuracies and insensitivity in certain scenarios

[31–34].

The present research work presents significant and prominent contributions, outlined as

follows:

1. The central focus of this study is the introduction of a control methodology tailored explic-

itly for standalone PMSG-WECS, addressing the presence of measurement noise. The pri-

mary goal of the finite-time concept in the proposed SMC is to achieve stability within a

predetermined time precisely and track the maximum power point for optimizing power

output.

2. The paper dedicates significant attention to transforming the dynamic model of the consid-

ered PMSG-WECS system into a control-convenient input-output format. This transfor-

mation forms the foundational basis for the subsequent design of the control methodology.

3. A significant advancement in this research involves the integration of advanced techniques

into the control methodology. Specifically, FFNN are employed for estimating crucial non-

linear functions, including the nonlinear drift term and the input channel. Concurrently,

HGO techniques are used to estimate the higher derivatives of system outputs. These esti-

mations are seamlessly incorporated into the control inputs, resulting in a reduced sensitiv-

ity to sensor noise. This enhancement substantially bolsters the practicality of the control

law, enabling it to effectively manage the inevitable measurement noise encountered in

real-world systems.

4. Finite-time techniques are designed to establish stability within a defined time frame,

enabling fast control responses. On the other hand, high-gain differentiators are employed

for accelerated state estimation, noise resilience, and disturbance tolerance. The integration

of these approaches synergistically elevates control system performance, particularly in crit-

ical applications such as wind energy systems, where the need for fast responses and noise

robustness is paramount.

5. To comprehensively validate the proposed control technique, extensive simulation experi-

ments are conducted within a MATLAB environment. The results of these simulations

undergo rigorous benchmarking against well-established literature results [35, 36], provid-

ing compelling evidence of the effectiveness and prowess of the proposed control design.

The remainder of this paper is organized as follows. Section 2 describes the equivalent

model of a PV array accompanied by underlying mathematical concepts. In Section 3, a
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control algorithm that synergizes with a feedforward neural network and high-gain differentia-

tor to attain optimal power extraction is formulated. The exposition of the simulation out-

comes, which vividly demonstrate the robustness of the introduced controller, is presented in

Section 4. Finally, Section 5 provides concluding remarks for this research endeavor.

2 Modeling of the wind turbine systems

To understand the behavior and optimize the performance of a wind turbine, it is crucial to

develop a mathematical model that describes its operation within a specific operating range.

Fig 1 illustrates the complete physical process of a WECS [37]. The generation of mechanical

power begins with airfoil lift, which creates a positive torque on the rotating shaft. The genera-

tor converts mechanical power into electrical power. The interaction between the rotor and

the wind at the core of this process is shown in Fig 2. The mean wind speed directly affects the

mean output power, emphasizing the importance of considering steady-state aerodynamics

while neglecting turbulence [38]. Understanding the key characteristics of wind turbine per-

formance, such as power production and loads influenced by wind, is essential.

Fig 1. The wind energy conversion system built around a PMSG.

https://doi.org/10.1371/journal.pone.0293878.g001

Fig 2. Turbine speed vs turbine output mechanical power.

https://doi.org/10.1371/journal.pone.0293878.g002
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In the following subsections, the dynamics of the rotor blade, and synchronous generators

are briefly discussed in order to design the control technique.

2.1 Dynamic model of the turbine’s rotor blade

Aerodynamic analysis and modeling of variable-speed wind turbines have been extensively

studied in the literature (see [39, 40] for further details). Betz conducted work on wind turbine

aerodynamics from the 1920s to the 1930s [39]. A review of an ideal wind-turbine configura-

tion is presented in [20], which considered a rotor with multiple blades capable of extracting a

maximum power of 59.26% under ideal conditions. However, in practical scenarios, this value

typically falls close to 50% owing to factors such as the number of blades and rapid changes in

the external environment.

The wind power generated by a wind turbine can be mathematically expressed as

PM ¼
1

2
rAV3

wind ð1Þ

where PM represents the mechanical power output of the turbine, A is the area swept by the

blades, ρ is the air density, and Vwind is the wind speed (m/s). The wind turbine rotor power-

conversion coefficient, denoted by Cp(λ, β), represents the ratio of extractable power to avail-

able power. It is modeled in [41] by the following equation

PM ¼
1

2
rpRt

2V3

windCpðl; bÞ ð2Þ

where Rt represents the blade radius (m), β is the blade pitch angle, and λ is the tip-speed ratio

(TSR). The TSR is defined as the ratio of the peripheral speed of the wind turbine blades to the

wind speed and can be defined as

l ¼
Rtot

Vwind
ð3Þ

where Vwind denotes the wind speed, ωt denotes the rotor speed, and Rt denotes the rotor

radius. Power coefficient CP is a function of λ and β. To maximize power extraction from the

wind, the tip speed ratio should operate at its optimum value, λopt = 7. At this optimal TSR, the

rotor shaft speed precisely follows the reference speed ωref calculated using the following for-

mula:

oref ¼
loptVwind

Rt
ð4Þ

For a variable-speed wind turbine, an approximation for Cp can be determined using the

coefficients a0, a1, a2, a3, a4, a5, a6, and a7 as follows [42]

CpðlÞ ¼ a0 þ a1lþ a2l
2
þ a3l

3
þ a4l

4
þ a5l

5
þ a6l

6
þ a7l

7
ð5Þ

where a0 = 0, a1 = 0.0061, a2 = −0.0013, a3 = 0.0081, a4 = −0.000974, a5 = 0.0000654, a6 =

0.00000130, and a7 = −0.000000454. The power coefficient Cp versus TSR graph for different

pitch angles is shown in Fig 3 [43]. It is worth emphasising that wind speed can be represented

by the following expression:

Vwind ¼ RtoM
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Substituting this expression into Eq (2), we obtain

PM ¼
1

2
rpRt

2ðRoMÞ
3Cpðl; bÞ ð6Þ

where 1

2
rR2

t can be represented as a constant, denoted by Kcon. When β = 0, Eq (6) simplifies to

PM ¼ KconðoMÞ
3CpðlÞ ð7Þ

The aerodynamic power of a PMSG can be mathematically represented as follows

PM ¼ Gwindot ð8Þ

where ωt is defined as

ot ¼ lVwind=Rt ð9Þ

Table 1 lists all the necessary wind-turbine parameters used in this study.

In the following subsection, we will discuss the modeling of the mechanical subsystem.

Fig 3. Variation of power coefficient with tip speed ratio for different pitch angles.

https://doi.org/10.1371/journal.pone.0293878.g003
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2.2 Modeling of the mechanical subsystem

The mechanical torque of the turbine shaft can be defined as the ratio of the output mechanical

power to rotor speed.

Turbine mechanical torque ¼
Output Mechanical Power

Rotor Speed
ð10Þ

This relationship can be expressed as

PM ¼ Gwindot ð11Þ

The mechanical power of the shaft, denoted by Γwind, is expressed by

Gwind ¼ 0:5rpR3
t V

2
wCTðlÞ ð12Þ

where The turbine torque coefficient CT(λ) is defined as the ratio of the power coefficient

Cp(λ) to the tip speed ratio λ, ρ denotes the air density, Rt is the turbine radius, and Vw repre-

sents the wind velocity.

2.3 Modeling of the electrical subsystem

The dynamics of a three-phase permanent magnet synchronous generator can be simplified

using Park’s transformation to reduce complexity. The PMSG consists of three stator windings

denoted as a, b, and c. The d-axis corresponds to a winding parallel to the rotor, whereas the q-

axis represents a winding perpendicular to the rotor, as shown in Fig 4.

The d-axis current is obtained by summing the contributions from the stator windings pro-

jected onto the direct axis, as follows:

id ¼ kd½iacosðyÞ þ ibcosðy � 120Þ þ iccosðyþ 120Þ� ð13Þ

Similarly, the q-axis current is given by

iq ¼ kq½iasinðyÞ þ ibsinðy � 120Þ þ icsinðyþ 120Þ� ð14Þ

where kd and kq denote arbitrary constants, and θ represents the position of the rotor’s direct

axis relative to the phase a axis. To maintain dimensionality, the zero-sequence current is

defined based on Kirchhoff’s current law.

i0 ¼ k0½ia þ ib þ ic� ð15Þ

where kd ¼ kq ¼ 2

3
and k0 ¼

1

3
. Eqs (13), (14) and (15) can be compactly expressed in matrix

Table 1. Parameters of the wind turbine.

Parameters Symbol Value Units

Air density ρ 1.25 kg/m3

Gears Ratio /Transmission Ratio i 7

Blade Radius Rt 2.5 M

Maximum Power Coefficient Cpmax
0.47

Optimal Tip Speed Ratio λopt 7

High Speed Shaft Inertia jh 0.0552 kg.m2

https://doi.org/10.1371/journal.pone.0293878.t001
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form, as follows:

id
iq
i0

2

6
4

3

7
5 ¼

2

3

cosðyÞ cosðy � 120Þ cosðyþ 120Þ

sinðyÞ sinðy � 120Þ sinðyþ 120Þ

1=2 1=2 1=2

2

6
4

3

7
5

ia
ib
ic

2

6
4

3

7
5 ð16Þ

The application of Park’s transformation matrix P allows for the transformation of currents,

voltages, and fluxes. The resulting transformed dq0model currents, voltages, and fluxes are

expressed as

lidq0 ¼ Piabc

vdq0 ¼ Pvabc

cdq0 ¼ Pcabc

ð17Þ

and their inverse transformations are

iabc ¼ P� 1idq0

vabc ¼ P� 1vdq0

cabc ¼ P� 1cdq0

ð18Þ

The conventions of the source or generator are used to write Kirchhoff’s voltage-law equa-

tions for the a, b, and c stator windings. By applying Kirchhoff’s voltage law, the following

equations are obtained

vk ¼ Rkik þ
dck

dt
ð19Þ

Fig 4. Three phase PMSG with one pole pair permanent magnet.

https://doi.org/10.1371/journal.pone.0293878.g004
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where k = a, b, and c. Combining these equations gives

P� 1vdq0 ¼ RaP� 1idq0 þ
dðP� 1cdq0Þ

dt
ð20Þ

Pre-multiplying both sides of the equation by P results in

vdq0 ¼ Raidq0 þ P
dðP� 1cdq0Þ

dt
ð21Þ

After simplification, the equations for the q-axis and d-axis voltages become

vd ¼ Raid þ
dcd

dt
� cq

vq ¼ Raiq þ
dcq

dt
þ cd

ð22Þ

The fluxes ψd and ψq produced in the direct and quadrature axis windings, respectively, are

defined as

cd ¼ Ldid þ φm

cq ¼ Lqiq
ð23Þ

After simplification, the final dq-model equations for the PMSG are

vd ¼ Raid þ Ld
d
dt
id � Lqiq

vq ¼ Raiq þ Lq
d
dt
iq þ ðLdid þ φmÞ

9
>>>=

>>>;

ð24Þ

where vq and vd are the dq-axis voltages, Lq and Ld are the rotor inductances, ωm is the perma-

nent magnet flux, and Ra is stator resistance. Ld = Lq = L for a non-salient PMSG.

2.4 State-space representation of system dynamics

Our system comprises of three states: id, iq, and ωh =. To simplify the system state equations

for controller design, we express the equations of the PMSG in the form of nonlinear dynam-

ical equations as follows

_x1 ¼
� Rsx1 þ pðLq � LchÞx2x3 � Rinix1

ðLd þ LchÞ

_x2 ¼
� Rsx2 � pðLd þ LchÞx1x3 � Rinix2

ðLq þ LchÞ
þ pφmx3

_x3 ¼

d1vw2

i þ
d2vwx3

i3 þ
d3x3

2

i3 � pφmx2

Jh

9
>>>>>>>>>=

>>>>>>>>>;

ð25Þ

where x1, x2, and x3 are the states id, iq, and ωh, respectively; p is the pole pair number; Lq, Ld
and Lch are the quadrature-axis, direct-axis, and chopper inductances, respectively; Rini and Rs
represent the chopper equivalence and stator resistances, respectively; φm denotes the flux; d1,

d2, and d3 are constants; vw is the wind velocity; and Jh represents the moment of inertia.
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The state equations for the system (25) can also be written as

_x1

_x2

_x3

2

6
4

3

7
5 ¼

� Rsx1þpðLq � LchÞx2x3

ðLdþLchÞ

� Rsx2 � pðLdþLchÞx1x3

ðLqþLchÞ
þ pφmx3

d1vw2

i þ
d2vwx3

i3 þ
d3x3

2

i3 � pφmx2

Jh

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

þ

� x1

ðLdþLchÞ

� x2

ðLqþLchÞ

0

2

6
6
4

3

7
7
5u

y ¼ hðxÞ ¼ 0 0 1½ �

x1

x2

x3

2

6
4

3

7
5

ð26Þ

The parameters of the PMSG used in the system (26) are listed in Table 2.

2.5 Relative degree of the system

Before moving on to the next subsection, which is the input-output form transformation, we

need to determine the relative degree of the system to ensure that it meets the requirements for

controller design. The relative degree, denoted as r, of the PMSG-WECS, can be determined

by satisfying the following condition

LgLr� 1
f hðxÞ 6¼ 0 For values of r ¼ 1; 2; 3; . . . ð27Þ

where Lg and Lf represent the Lie derivatives with respect to vector fields g(x) and f (x), respec-

tively. According to the nonlinear system representation, the nonlinear functions f (x) and g(x)

can be obtained from Eq (26) as follow

f ðxÞ ¼

f1ðxÞ

f2ðxÞ

f3ðxÞ

2

6
4

3

7
5 ¼

� Rsx1þpðLq � LchÞx2x3

ðLdþLchÞ

� Rsx2 � pðLdþLchÞx1x3

ðLqþLchÞ
þ pφmx3

1

Jh
d1vw2

i þ
d2vwx3

i3 þ
d3x3

2

i3 � pφmx2

� �

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

gðxÞ ¼

g1ðxÞ

g2ðxÞ

g3ðxÞ

2

6
4

3

7
5 ¼

� x1

ðLdþLchÞ

� x2

ðLqþLchÞ

0

2

6
6
4

3

7
7
5; u ¼ Rini

ð28Þ

Table 2. Parameters of the PMSG.

Parameters Symbol Value Units

Stator Resistance Rs 3.3 Ohm

Direct-axis Inductance Ld 41.56 × 10−3 H

Quadrature-axis Inductance Lq 41.56 × 10−3 H

Chopper Inductance Lch 0.08 Henry

Pole Pair Number p 3 -

Flux φm 0.4382 Wb

Chopper Equivalence Resistance Rini 80 Ohm

https://doi.org/10.1371/journal.pone.0293878.t002

PLOS ONE High gain differentiator based neuro-adaptive arbitrary order SMC design for MPE of standalone WPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0293878 January 18, 2024 10 / 31

https://doi.org/10.1371/journal.pone.0293878.t002
https://doi.org/10.1371/journal.pone.0293878


To find the relative degree, we assume r = 1, and then the Lie derivative of h in the direction

of g can be calculated as follows

LgLr� 1
f hðxÞ ¼ LghðxÞ ¼

@hðxÞ
@ðxÞ

� gðxÞ ¼ 0 0 1½ �

� x1

ðLdþLchÞ

� x2

ðLqþLchÞ

0

2

6
6
4

3

7
7
5 ¼ 0 ð29Þ

Because the relative degree r = 1 of the system does not satisfy this condition, we proceed to

check for r = 2.

LgLf hðxÞ ¼
pφmx2

JhðLq þ LchÞ
6¼ 0 ð30Þ

Thus, the relative degree of the given PMSG-based WECS is 2.

The following subsection transforms the system into a convenient input-output control form.

2.6 Input-output form transformation

The mathematical model of a generalized nonlinear system with input u 2 Rm
, output

y ¼ hðxÞ 2 Rl
, and state vector x 2 Rn

is expressed as

_x ¼ f ðxÞ þ gðxÞu

y ¼ hðxÞ
ð31Þ

where f ðxÞ 2 Rn represents the nonlinear smooth state vector field and gðxÞ 2 Rn�m is a

matrix of smooth functions. In the given PMSG-WECS system, the state vector x is defined as

x ¼

x1

x2

x3

2

6
4

3

7
5 ¼

id
iq
oh

2

6
4

3

7
5 ð32Þ

The dynamics of the system can be written as

_x1 ¼ � k1x1 � k2x2x3 � k3ux1

_x2 ¼ � l1x2 � l2x1x3 þ l3x3 � l4ux2

_x3 ¼ � m1 � m2x3 � m3x2
3
� m4x2

ð33Þ

where the terms f(x) and g(x) are expressed as

f ðxÞ ¼

f1ðxÞ

f2ðxÞ

f3ðxÞ

2

6
6
6
4

3

7
7
7
5
¼

� k1x1 � k2x2x3

� l1x2 � l2x1x3 þ l3x3

� m1 � m2x3 � m3x2
3
� m4x2

2

6
6
6
4

3

7
7
7
5

gðxÞ ¼

g1ðxÞ

g2ðxÞ

g3ðxÞ

2

6
6
6
4

3

7
7
7
5
¼

� k3x1

� l4x2

0

2

6
6
6
4

3

7
7
7
5

ð34Þ
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Substituting Eqs (34) into (31), we obtain the following equations

_x1

_x2

_x3

2

6
6
6
4

3

7
7
7
5
¼

� k1x1 � k2x2x3

� l1x2 � l2x1x3 þ l3x3

� m1 � m2x3 � m3x2
3
� m4x2

2

6
6
6
4

3

7
7
7
5
þ

� k3x1

� l4x2

0

2

6
6
6
4

3

7
7
7
5
u

y ¼ hðxÞ ¼ 0 0 1½ �

x1

x2

x3

2

6
6
6
4

3

7
7
7
5

ð35Þ

In Eq (35), the control input u is given by

u ¼ Rini ð36Þ

The intermediate variables z in the inverse coordinate transformation are defined as

z ¼ ½z1; Lf hðxÞ; L2
f hðxÞ; . . . ; Lr� 1

f hðxÞ� ð37Þ

The terms z1, z2, and z3 are expressed as follows

z1 ¼ x3

z2 ¼ Lf hðxÞ ¼ 0 0 1½ �

� k1x1 � k2x2x3

� l1x2 � l2x1x3 þ l3x3

� m1 � m2x3 � m3x2
3
� m4x2

2

6
6
6
4

3

7
7
7
5

z3 ¼ L2
f hðxÞ ¼

x1

x2

ð38Þ

The inverse coordinate transformation is given by

x1 ¼ z3

ðm1 � z2 � m2z1 � m3z2
1
Þ

m4

x2 ¼
ðm1 � z2 � m2z1 � m3z2

1
Þ

m4

x3 ¼ z1

ð39Þ

Let us now examine system dynamics in the z-domain. The equations can be written as fol-

lows

_z1 ¼ _x3 ¼ z2

_z2 ¼ L2
f hðxÞ þ LgLf hðxÞu

ð40Þ

The Lie derivatives are expressed as

L2
f hðxÞ ¼ � m4 f2 � ðm2 þ 2m3x3Þf3

LgLf hðxÞ ¼ l4m4x2

ð41Þ
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Therefore, the linearized model of the system is

_z1

_z2

" #

¼
0 1

0 0

" # z1

z2

" #

þ
0

1

" #

u

y ¼ 1 0½ �
z1

z2

" # ð42Þ

The control input u will be designed using the “Arbitrary order based sliding mode

controller”.

In the next subsection, we investigate whether the third internal dynamic state of the system

is stable or not.

2.7 Zero-dynamic stability investigation of the system

After all the calculations and transformation into a z-coordinate system, we obtained the third

internal dynamic state of the system, which is given by

_z3 ¼
m4

m1

�
k1z3m1

m4

�
k2z1m1

m4

�
k3z3m1u
m4

� �

�
z3m1

m4

m2
4

m2
1

� �

�
l1m1

m4

�
l2m1z3z1

m4

þ l3z1 �
l4m1u
m4

� � ð43Þ

To prove the stability of the zero-dynamic state, the following variables must be assigned

zero: z1 = z2 = u = 0. By simplifying Eq (43), we can derive the following expression

_z3 ¼ � z3ðk1 � l1Þ

Since the design constant k1 > l1, we have

_z3 ¼ � k1z3 ð44Þ

where the zero-dynamic state is stable for all k1 > l1.

In the next step, we will design a control algorithm to adjust the duty cycle and maximize

power extraction from the wind turbine system.

3 Arbitrary order sliding mode control design

In this section, a neuro-adaptive arbitrary order sliding mode control technique is proposed

for Maximum Power Extraction (MPE) while handling external disturbances and parametric

uncertainties with high accuracy [44]. This technique introduces some nonlinear terms to the

sliding manifold, enabling the establishment of a sliding mode in finite time. Moreover, the

state convergence is independent of the initial conditions. The proposed law effectively reduces

undesirable fluctuations that can impact the rotor model. Fig 5 shows the block diagram of the

overall control system. To decrease the system sensitivity to uncertain disturbances, a neural

network and differentiator-based AOSMC are designed to track the wind reference speed and

consequently achieve the maximum power extraction from the wind turbine. For the control

design of the proposed AOSMC, we refer to the output equations presented in (42) and (44)

under the assumption that the internal (or zero dynamics) are stable.

The proposed neuroadaptive control design is described in the following subsection.
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3.1 Feedforward neural network architecture

In this subsection, we implement the approximation of the input channel LgLfh(x) and the

nonlinear drift term L2
f hðxÞ using a feedforward neural network. The specific approximation

functions used depend on system parameters.

We employed a three-layer feedforward neural network consisting of an input layer, an out-

put layer, and a hidden layer of N neurons [45]. Mapping of input data to output/target data to

train the network. The network inputs are the z-transform states (z1, z2, z3) and the wind speed

Vwind, while the network output is the approximation of the targeted values (i.e., the input

channel LgLfh(x) and the nonlinear drift term L2
f hðxÞ). The z states are input to the network

along with the wind speeds, as shown in Fig 6. The network outputs corresponding to the lie

derivatives are utilized in the AOSMC design.

Fig 5. Block diagram of overall control system.

https://doi.org/10.1371/journal.pone.0293878.g005

Fig 6. Neural network for the approximation of L2
f hðxÞ and LgLfh(x).

https://doi.org/10.1371/journal.pone.0293878.g006
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The FFNN can be represented as follows

QN ¼ f 1
N

 
XN

n¼1

U1

N;nY þ c1

N

!

¼ f 1

N

�
U1T

N þ c1

N

�

L̂2
f hðxÞ ¼ f 2

m

 
Xm

N¼1

U2

L2
f hðxÞ;N

QN

!

¼ U2T

L2
f hðxÞ;N

QN

L̂gLf hðxÞ ¼ f 2
m

 
Xm

N¼1

U2

LgLf hðxÞ;N
QN

!

¼ U2T

LgLf hðxÞ;N
QN

ð45Þ

where m denotes the number of network outputs, n the number of network inputs, M the

number of output layer neurons, and N the number of hidden layer neurons. The input vector

Y ¼ ½z1; z2; z3;Vwind�
T
2 Rn

is fed into the network. The target outputs of the network, L̂2
f hðxÞ

and L̂gLf hðxÞ, are obtained. The hidden layer output vector is denoted as QN 2 R
N , while

U2
L2

f hðxÞ;N
2 RN

and U2
LgLf hðxÞ;N

2 RN
represent the weight vectors of output-layer. The bias term

c1 2 RN
enhances the learning speed during the training of network.

In the next section, we describe the design of a high-gain differentiator to approximate

higher-order derivatives of the system.

3.2 State estimator design using high gain differentiator

This section introduces the High Gain Observer (HGO) as a state estimator. HGO estimates

the higher derivatives of the system states, which are not directly measurable and are required

in the controller as known data. The motivation for using HGO is twofold: first, it provides

fast convergence to the actual values; second, it has been used in the existing literature, making

it a suitable choice for our work.

Consider a general nonlinear system represented by the equations

_Z i ¼ Ziþ1

_Zn ¼ WðZ; z; tÞ
ð46Þ

where i = 1, 2, . . ., n − 1, η denotes the measurable state vector, z represents the controlled

input, and ϑ(η, z, t) represents a nonlinear (or possibly linear) function involving these vari-

ables. It is assumed that ϑ(η, z, t) is locally Lipschitz if there exists L� 0 satisfying the condi-

tion

jWðZ; z; tÞ � Wðx; z; tÞj � LjZ � xj

uniformly, with respect to η and x, where x denotes the observer state. The parameter L is typi-

cally dependent on the radii of the neighborhoods (refer to [46] for further information).
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In our study, we assume that only η1 is accessible, whereas higher derivatives require esti-

mation. To fulfil this requirement, we employ an observer of the following structure

_x1 ¼ x2þ
a1

�
ðZ1 � x1Þ

_x2 ¼ x3þ
a2

�2
ðZ1 � x1Þ

..

.

_xn� 1 ¼ xnþ
an� 1

�n� 1
ðZ1 � x1Þ

_xn ¼ Wðx; v; tÞ þ
an
�n
ðZ1 � x1Þ

ð47Þ

In a compact and abstract form, the observer can be expressed as [46]

_x ¼ Enxþ að�ÞðZ1 � x1Þ þ DnWðx; v; tÞ ð48Þ

where að�Þ ¼
a1

�
;
a2

�2
; . . . ;

an
�n

� �
and � is a bounded high gain, i.e., 0 < � < ��. In general, � is cho-

sen to be extremely small, approaching zero. As � approaches zero, the gains of the injection

terms in the observer become higher and higher, thus earning the term “high gain”. The matri-

ces En ¼
Pðn� 1Þ�1 Iðn� 1Þ�ðn� 1Þ

P1�1 P1�ðn� 1Þ

� �

and Dn ¼
Pðn� 1Þ�1

I1�1

� �

have special structures.

In the next section, we will design the proposed AOSM control technique for tracking the

wind power system’s Maximum Power Point (MPP).

3.3 Control law design

Firstly, we define the tracking error as follows to fulfil the main objective of tracking the refer-

ence speed

e ¼ z1 � zref ð49Þ

To determine the control input, the double time derivative of the error is

_e ¼ z2 � _z ref

€e ¼ _z2 � €z ref
ð50Þ

The novelty of this study lies in the sliding surface design, which provides the aforemen-

tioned benefits. Thus, the proposed sliding surface [44] is expressed as follows

s ¼ _e þ leþ
Z t

0

Idt ð51Þ

with

I ¼ c2j _ej
a2signð _eÞ þ c1jej

a1signðeÞ þ b2j _ej
b2signð _eÞ þ b1jej

b1signðeÞ ð52Þ

where α2, α1, β2, β1, c2, c1, b2, and b1 are positive design constants. Taking the derivative of the
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sliding surface Eq (51), one can get

_s ¼ €e þ l _e þ I

_s ¼ _z2 � €z ref þ lðz2 � _z refÞ þ I

_s ¼ L2
f hðxÞ þ LgLf hðxÞuþ D � €z ref þ lðz2 � _z refÞ þ I

ð53Þ

After performing the necessary calculations and assuming _s ¼ 0 in Eq (53), the equivalent

controller uequ is as follows

uequ ¼
1

LgLf hðxÞ
� L2

f hðxÞ þ €zd � l _e � I
� �

ð54Þ

The conventional reachability term is given by

udis ¼ � k1s � k2signðsÞ ð55Þ

The overall controller equation is

u ¼ uequ þ udis ð56Þ

Thus, the final design of the controller is as follows

u ¼
1

LgLf hðxÞ
� L2

f hðxÞ þ €zd � l _e � I
� �

� k1s � k2signðsÞ ð57Þ

where I ¼ c2j _ej
a2signð _eÞ þ c1jej

a1signðeÞ þ b2j _ej
b2signð _eÞ þ b1jej

b1signðeÞ.

3.4 Stability analysis

The main objective is to demonstrate the stability of the PMSG-WECS under Neuro-adaptive

AOSMC. To achieve this, we utilized Lyapunov-based stability analysis. We define the Lyapu-

nov function, which will be used to prove the enforcement of the sliding mode, as

V ¼
1

2
s2 ð58Þ

Taking the time derivative of V, we have

_V ¼ s_s

_V ¼ � LgLf hðxÞk1s2 � LgLf hðxÞk2signðsÞsþ Ds
ð59Þ

To verify whether the Lyapunov function satisfies the condition of finite and bounded

states, the identity sign(s)s = |s| is used. Therefore, Eq (59) becomes

_V � � LgLf hðxÞk1s2 � LgLf hðxÞk2jsj þ jDjjsj

_V � � LgLf hðxÞk1s2 � jsjðLgLf hðxÞk2 � jDjÞ

ð60Þ

We introduce the uncertainty term η into the above equation as

LgLf hðxÞk2 � jDj � Z ð61Þ
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Now, Eq (60) can be rewritten as

_V � � LgLf hðxÞk1s2 � jsjZ ð62Þ

By substituting jsj ¼
ffiffiffi
2
p

V1
2 in Eq (62), we get

_V � � LgLf hðxÞk12V � Z
ffiffiffi
2
p

V
1

2

_V þ LgLf hðxÞk12V þ Z
ffiffiffi
2
p

V
1

2 � 0

_V þ x1V þ x2V
1

2 � 0

ð63Þ

where ξ1 = 2LgLfh(x)k1 and x2 ¼ Z
ffiffiffi
2
p

. The above inequality clearly illustrates the achievement

of rapid finite-time convergence as V approaches zero, indicating the simultaneous approach

of both s and sliding mode to zero. To elaborate further, the determination of the finite-time

upper bound depends on specific control parameters, system dynamics, and the desired con-

vergence time, as expressed follows

Tf �
1

2x1

ln
x1

ffiffiffiffi
V
p
ðsð0ÞÞ þ x2

x2

� �

ð64Þ

The primary advantage of structuring the sliding mode surface with finite-time conver-

gence, as presented in this research, lies in its capacity to achieve swifter and more predictable

convergence compared to traditional SMC methods. Traditional SMC techniques often

require more time to reach a stable state, which may not align with the demands of applica-

tions requiring rapid responses, such as those in wind energy systems.

4 Simulation results and discussion

This section discusses the simulation results of the proposed neuro-adaptive AOSMC algo-

rithm for the maximum power extraction in a wind energy conversion system. Comparative

investigations are conducted to evaluate the performance of the proposed technique in com-

parison to feedback linearization control (FBLC) [35] and generalized global sliding mode

control (GGSMC) [36]. The simulations are performed on a standalone, fixed-pitch, variable-

speed, 3 kW PMSG-based WECS. The wind profile consists of 100 seconds of data within the

2.0-10.4 m/s speed range, with an average speed of 7.0 m/s in Region 2.

In the following subsection, the figure illustrating the neural-network layers are presented,

followed by the feedforward neural-network simulation results.

4.1 Simulation results of FFNN

This subsection presents the simulation results of the feedforward neural network used to esti-

mate the Lie derivatives L2
f hðxÞ and LgLfh(x). The performance in terms of mean squared error

(MSE) during the estimation of L2
f hðxÞ and LgLfh(x) is evaluated and illustrated in Fig 7.

Initially, there is a significant error; however, as the number of training epochs increased,

the error gradually decreased. The estimation errors for L2
f hðxÞ and LgLfh(x) are analyzed

using the error histogram shown in Fig 8.

The regression plots of the estimated values against the goal values are presented in Fig 9.

The success rate of the estimation is determined using the regression parameter R. A value of

R = 1 indicates reasonable estimates, whereas lower values of R signify lower estimation

accuracy.
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4.2 Simulation results of state estimator

The fast convergence of the proposed observer to zero ensures the stability of the closed-loop

control system, as reflected in the boundedness of the high gain � (see [46] and references

related to HGO). It is worth noting that a high-gain observer is used throughout the simula-

tion. The main distinction between the two is that the gain parameter � in the high-gain

observer does not always approach zero, unlike in the classical observer. The adoption of a

high-gain observer is motivated by the need for asymptotic stability of the entire closed-loop

system. The missing states are accurately calculated using the proposed differentiator, as illus-

trated in Fig 10.

In the following subsection, the results and comparisons between the AOSMC and

GGSMC controllers are discussed in detail.

4.3 Result comparison of proposed controller

In this subsection, we compare the proposed AOSMC controller with the FBLC [35] and

GGSMC [36] from the existing literature through graphical analyses. First, we generated the

output of the AOSMC controller and compared it with that of GGSMC. The purpose of these

comparisons is to highlight the superior performance of the proposed AOSMC law.

Fig 11 compares the PMSG wind–shaft speed tracking performance. The results indicate

that the AOSMC outperforms the GGSMC, particularly in zoomed-in areas, demonstrating

its superior wind-speed tracking capability. In addition, the AOSMC controller exhibited

Fig 7. Performance function of feedforward back propagation neural network.

https://doi.org/10.1371/journal.pone.0293878.g007
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finite-time convergence, underscoring its effectiveness in achieving stable and accurate

tracking.

When comparing the tracking performance of the PMSG wind shaft speed, Fig 12 reveals

that the AOSMC controller surpasses the GGSMC controller in terms of accuracy, showcasing

AOSMC’s robustness against initial fluctuations and its ability to achieve finite-time conver-

gence. Additionally, the AOSMC controller exhibits exceptional precision in tracking the TSR

of the variable-speed wind turbine (VSWT), as illustrated in Fig 13, with minimal oscillations

around the optimal TSR (λopt). This characteristic makes the AOSMC controller the preferred

choice for MPPT. Furthermore, Fig 14 provides a comparative analysis of the power-conver-

sion coefficients (Cp) of the controllers. Throughout the specified wind speed profile, the

AOSMC approach consistently tracked the optimal Cp value (Cp = 0.4762), thereby ensuring

efficient power extraction. Specifically, under AOSMC, the zoomed-in areas of the aforemen-

tioned figures demonstrate minimal initial fluctuations, signifying its robustness against the

uncertain disturbances. This robustness stems from AOSMC’s inherent ability of the AOSMC

to rapidly counteract disturbances while maintaining oscillations to a minimum during the

initial control actions. In contrast, GGSMC and FBLC may exhibit more pronounced fluctua-

tions during these initial moments due to their susceptibility to disturbances and slower

response times.

Figs 15 and 16 show comparisons of the mechanical power of the high-speed and low-speed

shafts in relation to the tip speed ratio. The AOSMC controller maintains mechanical power

close to the optimal tip speed ratio, ensuring optimal performance. Conversely, the GGSMC

controller exhibited inadequate performance with substantial power variations.

Fig 8. Error histogram.

https://doi.org/10.1371/journal.pone.0293878.g008
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The relationship between the low-speed shaft rotational speed and the low-speed shaft

mechanical power is shown in Fig 17. Evidently, the designed MPPT controllers effectively

maintain the VSWT’s rotational speed within the optimal regime characteristic zone, thereby

maximizing power extraction. In contrast, the GGSMC controller exhibits significant speed

and power variations, indicating inferior performance compared to the other controllers. Fig

18 shows the electromagnetic torque performance of a PMSG with respect to its tip speed ratio

(TSR). The magnified area highlights the ability of the AOSMC controller to effectively main-

tain the electromagnetic torque at the optimal TSR, resulting in maximum power extraction.

Fig 9. Regression plot of feedforward neural network.

https://doi.org/10.1371/journal.pone.0293878.g009
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The AOSMC controller demonstrated the best performance among all controllers, whereas

the GGSMC controller exhibited frequent torque fluctuations. Furthermore, the dynamic per-

formance of the MPPT approach is evaluated using four performance metrics: the integral of

the time absolute error, the integral of the absolute error, the integral of the time squared

error, and the integral of the squared error.

Fig 10. Actual and observed state.

https://doi.org/10.1371/journal.pone.0293878.g010

Fig 11. The tracking performance of high-speed shaft angular speed.

https://doi.org/10.1371/journal.pone.0293878.g011
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Figs 19, 20, 21 and 22 illustrate that the accumulative error of the MPPT controllers

decreases over time, indicating their superior performance compared to the GGSMC control-

ler. These metrics provide further evidence of the effectiveness of the AOSMC controller in

achieving accurate and stable maximum power point tracking (MPPT).

The comparative analysis strongly supports the superior performance of the AOSMC law

compared to the existing approaches, GGSMC, and FBLC. The AOSMC controller accurately

Fig 12. The tracking mismatch of high-speed shaft angular speed.

https://doi.org/10.1371/journal.pone.0293878.g012

Fig 13. Tip speed ratio performance.

https://doi.org/10.1371/journal.pone.0293878.g013
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and precisely tracked the wind speed, resulting in effective control. It minimizes power fluctu-

ations, efficiently converts, and maintains precise control torque. In addition, the AOSMC

outperforms the other controllers in crucial MPPT performance metrics, such as Cp tracking,

low-speed shaft mechanical power, high-speed shaft mechanical power, low-speed shaft rota-

tional speed, and electromagnetic torque control. Overall, the proposed AOSMC establishes a

Fig 14. Power conversion coefficient.

https://doi.org/10.1371/journal.pone.0293878.g014

Fig 15. Mechanical power of the high-speed shaft in relation to the tip speed ratio.

https://doi.org/10.1371/journal.pone.0293878.g015
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new standard for MPPT performance and is a superior choice for wind-energy conversion

systems.

5 Conclusion

This study used a nonlinear MPPT controller for a standalone 3 kW PMSG-WECS with vari-

able-speed and fixed-pitch configurations. The proposed control strategy combines an

Fig 16. Mechanical power of the low-speed shaft in relation to the tip speed ratio.

https://doi.org/10.1371/journal.pone.0293878.g016

Fig 17. Power variation with respect to the rotational speed of the low-speed shaft.

https://doi.org/10.1371/journal.pone.0293878.g017
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arbitrary order sliding mode control design with a high gain differentiator and a feedforward

neural network estimator to mitigate chattering phenomena and external disturbances and

accurately track the maximum power point. A comparison of the simulation results confirms

the superior performance of the proposed control algorithm compared with the conventional

feedback linearization and generalized global sliding mode control methods. The integrated

components enhance robustness and make the controller more suitable for practical

Fig 18. Torque variation with respect to the tip speed ratio.

https://doi.org/10.1371/journal.pone.0293878.g018

Fig 19. The comparison of integral squared mismatches.

https://doi.org/10.1371/journal.pone.0293878.g019
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applications, demonstrating its potential for improved MPPT in PMSG-WECS systems. While

AOSMC provides substantial advantages in terms of stability and control efficiency, it does

come with limitations. These include sensitivity to parameter tuning, complexity, challenges in

real-world implementation, potential susceptibility to measurement noise, and the require-

ment for real-world validation.

Fig 20. The comparison of integral of time squared mismatch.

https://doi.org/10.1371/journal.pone.0293878.g020

Fig 21. The comparison of integral absolute mismatch.

https://doi.org/10.1371/journal.pone.0293878.g021
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