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Abstract

The COVID-19 pandemic’s uneven impact on subnational regions highlights the importance

of understanding its local-level mortality impact. Vital statistics are available for an increas-

ing number of countries for 2020, 2021, and 2022, facilitating the computation of subnational

excess mortality and a more comprehensive assessment of its burden. However, this calcu-

lation faces two important methodological challenges: it requires appropriate mortality pro-

jection models; and small populations imply considerable, though commonly neglected,

uncertainty in the estimates. We address both issues using a method to forecast mortality at

the subnational level, which incorporates uncertainty in the computation of mortality mea-

sures. We illustrate our approach by examining French départements (NUTS 3 regions, or

95 geographical units), and produce sex-specific estimates for 2020. This approach is highly

flexible, allowing one to estimate excess mortality during COVID-19 in most demographic

scenarios and for past pandemics.

1 Introduction

Estimating COVID-19 mortality has been the object of intense research, both to guide public

policies aimed at curbing the spread of the virus and to determine the pandemic’s global burden

in various countries. National health surveillance agencies were first mobilized to provide

weekly or even daily COVID-19 death tolls and thus establish a rapid indicator of the pandem-

ic’s impact [1, 2]. However, differences in data definitions among countries, time-varying col-

lection methods, reporting delays, and inconsistent coverage by place of death are known issues

that impede the use of health surveillance systems for reliably assessing the pandemic [3, 4].

Over the months, official statistics systems have provided information that complements

and/or corrects surveillance-system data, including deaths by age from all causes. These data

are the basis for constructing excess mortality measures to more comprehensively assess the

pandemic’s burden. Defined as “the difference between the number of deaths (from any cause)

that occur during the pandemic and the number of deaths that would have occurred in the

absence of the pandemic” [5, p. 85], excess mortality can also be applied to other indicators

like life expectancy and standardized death rates. Measures of excess mortality have been
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considered the gold standard for estimating the impact of COVID-19 [6, 7], and they have

been exten-sively adopted in the past years. Whereas some of these measures have used pre-

pandemic years as baseline mortality in the absence of COVID-19 [8, 9], others have

accounted for mortality changes over time [10–14].

However, all these studies have estimated excess mortality at the national level. This per-

spective generally obscures large regional differences that ought to be taken into account to

better inform policymakers. Hence, many recent studies have attempted to estimate excess

mortality at the regional level. For some of these, excess mortality is the difference between

regional mortality levels in 2020 or 2021 and pre-pandemic mortality. The countries thus ana-

lyzed have been Brazil [15], Italy [16, 17], Mexico [18], Portugal [19], Spain [20], Sweden [21],

Switzerland [22] and the United States [23]. More thoughtful accounting of the temporal

change in mortality via forecasting techniques have been also proposed for estimating excess

mortality at regional level. While various countries have been analyzed [24]studies focusing on

specific countries have used different methods and pursued distinct objectives. Examples

encompass Belgium, [25], Ecuador [26], England and Wales [27], Italy [28, 29], Latvia [30],

Thailand [31], and United States [32].

While the value of producing excess mortality measures at a fine geographic scale seems

clear and timely, the methodological challenges are numerous and often neglected. They are

essentially related to small populations that naturally display high stochastic variation in death

counts. Possible interpretations of regional differences are necessarily limited, but what

becomes crucial are robust, flexible, and efficient methods for forecasting mortality levels in

the theoretical absence of a pandemic, as well as for computing uncertainty in estimates. Con-

cerning the first issue, estimating baseline mortality in the absence of COVID-19 by extrapo-

lating pre-pandemic trends is crucial for two primary reasons. In general, assuming a static

pre-pandemic level as the counterfactual scenario can be overly restrictive. Moreover, at the

subnational level, pre-pandemic mortality may exhibit considerable volatility, making the sub-

jective decision of selecting the number of pre-pandemic years as the baseline particularly

challenging.

Our primary aim is thus to tackle all these challenges within a clear-cut and unified frame-

work. To achieve this, we present a novel approach for estimating subnational excess mortality

during pandemics. In essence, our approach is designed to handle all the mentioned issues and

provide estimates and uncertainty quantification of the pandemic’s burden, regardless of the

chosen metric for measuring excess mortality and the geographical granularity of the available

data.

Specifically, we use CP-splines [33] to project mortality, since this approach exhibits two

relevant features when dealing with small area mortality analysis: high flexibility in modeling

diverse demographic scenarios comes along with robustness with respect variation due to

small populations at risk. To obtain reliable measures of uncertainty around estimates for the

numerous subpopulations at hands, we present an efficient analytic procedure that offers sig-

nificant advantages in terms of computational cost and time.

To illustrate this approach, we compute sex-specific excess mortality in 2020 for the 95

départements (departments) in metropolitan France, which correspond to the third level of

the Nomenclature of Territorial Units for Statistics (NUTS 3) used by Eurostat. In order to

make comparisons and emphasize the significance of the various sources of uncertainty, we

have conducted additional analysis at the NUTS 2 level (régions). This allows us to further

explore and highlight the differences in uncertainty across different geographical granularity.

While providing specific outcomes for France, the larger aim of this paper is to provide a gen-

eral framework for computing excess mortality and associated uncertainty at the subnational

level. Given this purpose, R routines [34] are publicly available to replicate our methodology
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for other countries and historical contexts. See the open source framework repository on this

link https://osf.io/zt2c8/.

2 Methods

To calculate excess mortality, we consider historical mortality trends and age-patterns in each

subnational population, and do so separately for males, females, and both sexes combined. We

also compute associated uncertainty using a simple, albeit rigorous, procedure, allowing us to

separate the main sources of variation before assessing any possible mortality shock in small

areas. For simplicity, we focus on 2020. However, the baseline mortality in the absence of the

pandemic for successive years can be estimated by extending the forecast horizon of the model

illustrated below. As a result, if subnational level data are accessible for 2021 and 2022, measur-

ing excess mortality and quantify its uncertainty for these years can be achieved by simply

adapting our approach.

For a given subpopulation and sex, we have D = (dij) and N = (nij),m × nmatrices of

deaths and exposures. We define exposures (N) as the mean of populations at 1st January for

two consecutive years which is a suitable approximation of population exposed to the risk of

death during a single age-time interval. Number of deaths dij at age i in year j are assumed to

be realizations from a Poisson distribution with mean μijnij [35], where μij is commonly

named force of mortality. To compute a theoretical level where the pandemic had not

occurred, we model observed mortality for pre-pandemic years (up to 2019) and forecast μij
for 2020. We adopt a CP-spline model [33] for forecasting mortality in 2020. This method

enables the simultaneous estimation and forecast of mortality within a regression setting. Its

main advantage lies in a single variance-covariance matrix that encompass uncertainty on

both past and future mortality. Let arrange the complete matrices as a column vector, that is,

d = vec(D) and n = vec(N). Mortality over all ages and years can thus be expressed as the

exponential of a linear combination of B-spline basis and coefficients:

μ ¼ expðBαÞ ; ð1Þ

where B a two-dimensional model matrix that combines B-splines over age and years. In

simple terms, B is the result of a (Kronecker) product of two sets of equidistant B-splines,

built separately over age and time. This construction gives rise to a dense pattern resembling

an “egg carton,” where each hill has an associated coefficient. The estimation process follows

a classic regression Poisson setting, but with an additional discrete penalty to ensure smooth-

ness of the coefficient vector α and, consequently, smoothness of mortality μ. In addition to

this framework, CP-splines impose constraints on α for future years to align future 2020

mortality within shapes estimated from pre-pandemic years. A comprehensive description

of CP-splines is provided in [33].

A crucial factor is the selection of the most appropriate period for applying the mortality

forecasting model. Rather than using all the accessible data or a uniform common year for all

regions, we optimize the time-window for each region. We apply CP-splines with a rolling

starting year up to 2010, then forecast 2019 and measure the distance between the observed

and forecasted 2019 mortality. Working in a Poisson setting, we opt to measure distance by

deviance [36, p. 34]. The starting year with the lowest deviance value was selected for the final

analysis.

A measure of excess mortality for 2020 is defined as the difference between the value of a

demographic indicator in a theoretical baseline mortality level and the value for the same indi-

cator obtained from the observed mortality. Whereas the former is obtained by CP-splines and
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solely dependent on the estimated coefficients α in (1), observed death rates m2020 = d2020/

n2020 are the bases for computing actual level of mortality in the pandemic year.

For simplicity, we illustrate the procedure for calculating excess mortality measured by life

expectancy at birth, e0, but the entire process can be customized and applied to other demo-

graphic indicators. The point estimate of excess mortality is obtained by subtracting the

observed life expectancy at birth from the forecasted value. In the following matrix formulation:

de0 ¼ e
F
0
ðαÞ � eO

0
ðm2020Þ ¼ 10m½expðCLμÞ � expðCm2020Þ� ; ð2Þ

where C is am ×m lower-triangular matrix with -1 entries for computing the cumulative sum-

mation of mortality, e.g. Cm2020 corresponds to the discrete counterpart of minus the cumula-

tive observed hazard function in 2020. The matrix L is constructed in order to select 2020

forecast mortality from (1). Its explicit form is presented in the S1 Appendix. Them × 1 matrix

of 1s, 1m, serves to sum up the exponential of minus the cumulative hazards over all ages. A sim-

ilar matrix approach for computing life expectancy has been proposed in the literature [37].

Furthermore, it is important to note that Eq (2) can be applied regardless of the forecasting

approach used to obtain rates μ (see comparative analysis in S2 Appendix).

Besides their estimated values, both observed and forecasted values for any mortality mea-

sure embody levels of uncertainty to be accounted for before drawing any conclusions about

their change. This consideration is particularly relevant in subnational analyses when examin-

ing relatively small populations at risk. Instead of following time-consuming simulation and

bootstrap procedures, we develop an analytic construction of the variance associated with both

observed and forecasted mortality indicators by using delta method.

Unlike other methods, using CP-splines offers the advantage of providing an analytical

expression for the variance–covariance matrix, covα [38 p. 32–33]. This matrix is dependent

on the estimated coefficients α and can be used to quantify the uncertainty associated with the

forecasted life expectancy at birth (eF
0
). However, the overall uncertainty related to Eq (2) also

relies on the observed mortality level and can be represented by a diagonal matrix consisting

of the inverse of observed deaths, cov(m2020) = diag(1/d2020).

The variance of de0 can then be calculated using the delta method with ease. We make the

assumption that eF
0
ðαÞ and eO

0
ðm2020Þ are independent variables that follow an asymptotic nor-

mal distribution. The variance in (2) can thus be determined by adding the variances associ-

ated with both the forecasted and observed life expectancy at birth in 2020:

V½eF
0
ðαÞ� ¼ reF

0
ðαÞ covðαÞ reF

0
ðαÞ0

V½eO
0
ðm2020Þ� ¼ reO

0
ðm2020Þ covðm2020Þ reO0 ðm2020Þ

0
;

ð3Þ

where symbolr denotes the vector differential operator, i.e. the partial derivatives of life

expectancy with respect to either α or m2020. Expressing the partial derivatives of the forecasted

and observed e0 without making excessive simplifications, we have the following formulations:

reF
0
ðαÞ ¼ 10m diagðexpðCL mÞÞCLdiagðmÞB

reO
0
ðm2020Þ ¼ 10m diagðexpðCm2020ÞÞC diagðm2020Þ :

ð4Þ

By employing this approach, we can effectively identify and separate the extent of uncer-

tainty attributed to the estimated baseline mortality (hereafter: “forecast uncertainty”) and the

uncertainty arising from the observed mortality level in 2020 (hereafter: “Poisson
uncertainty”).

In S1 Appendix, we provide derivations to obtain excess mortality estimates and their asso-

ciated uncertainty when measured by life expectancy at any given age x, age-standardized
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death rates, and death toll. Additionally, S2 Appendix includes a comparison between the

results obtained from the CP-splines and the more conventional Lee-Carter model [39]. This

additional analysis provides reassurance regarding the robustness of the majority of the out-

comes. When significant discrepancies between the two models were observed in estimating

excess mortality, the CP-splines demonstrated superior performance in both modeling and

forecasting mortality in small geographical units.

3 Results

To illustrate, we present excess mortality measures by losses/gains in life expectancy at age 60

(e60) in 2020 for 95 départements of metropolitan France. The French Human Mortality Data-

base [40] provides annual deaths (D) and population on January 1 by single age at death (with

an open age interval 95+), sex, and département for each year between 1970 and 2020. In our

figures, we specifically highlight male excess mortality, as it was observed that males were

more significantly affected by the pandemic compared to females [41]. However, we have

included outcomes for females in the S3 Appendix. This allows for a more comprehensive

understanding of the gender-specific impact of the pandemic on mortality.

Fig 1 illustrates our methods and presents losses in male e60 for a single subpopulation, Ter-
ritoire de Belfort. This département was not chosen randomly. Strongly affected by the pan-

demic, it is a relatively small area (about 70,000 men in 2020) and therefore may show more

variability in mortality due to the smaller sample size.

The upper panels of Fig 1 reveal how the forecasts include uncertainty around estimates.

Whereas observed life expectancy at age 60 in 2020 was 21.41 years, our projected value lies

Fig 1. Illustrative figure of sources of uncertainty around excess mortality measure. Life expectancy at 60 (left panels) and associated losses (right

panels) for Territoire de Belfort, males, 2020. Upper panels: forecast uncertainty is accounted. Lower panel: both forecast and Poisson uncertainty are

reported. Texts refer to either point estimates or 95% confidence intervals. Dashed lines depict “simple” estimation of excess mortality.

https://doi.org/10.1371/journal.pone.0293752.g001
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between 22.95 and 23.45 years. Consequently, a loss in e60 is estimated between approximately

1.5 and 2 years. For comparison, Fig 1 presents what we labelled as the “simple” estimate of

excess mortality, used in many recent studies: the mortality level from the 5 pre-pandemic

years is used as the theoretical baseline level without the pandemic. Ignoring decreasing trends

in mortality, this approach biases the excess mortality estimate downward: here, the loss in e60

is only 1.4 years.

The lower part of Fig 1 presents the Poisson uncertainty associated with the observed mor-

tality level in 2020. Negligible when the population is large, this source of uncertainty becomes

relevant at the regional level. In our example, adding the Poisson uncertainty around our esti-

mates increases the confidence interval by 0.9 years. Thus, in 2020 and for Territoire de Belfort,
we measure a loss in male e60 between 1.1 and 2.5 years.

An often overlooked phenomenon deserves attention here. The uncertainty associated with

observed mortality is greater than the variability around the forecasted mortality in 2020 (see

bottom-left panel in Fig 1). While the former relies on the observed mortality for a particular

year, the forecasted mortality is determined by a model that factors in information over both

age and time, and prediction is done for a single year only. As the forecasting horizon extends,

the uncertainty associated with it will possibly surpass the uncertainty associated with the

eventual observed mortality. This phenomenon is independent of the specific forecasting

method used.

In S3 Appendix, we replicate Fig 1 for Seine-Saint-Denis. This département was also heavily

affected by the pandemic in 2020, but the male population is 13 times larger. Total uncertainty

is thus much lower (0.8 years), with an estimated loss in e60 between 2.4 and 3.2 years.

Interestingly, due to reduced gains in life expectancy since the beginning of the 2000s, the

time-window used to forecast male mortality in 2020 starts between 2005 and 2010 for 56 out

of 95 départements, and between 2000 and 2004 for 12 others.

Fig 2 presents point estimates of losses/gains in male e60 for each département with their

95% confidence interval as well as “simple” estimates. Both sources of uncertainty, forecast

and Poisson, are displayed. Fig 3 mirrors this information in a map of France: point estimates

are displayed and départements with non-significant result at the 5% level are highlighted. Fig

2 and 3 of S3 Appendix replicate these figures for females.

For mainland France, we estimate that e60 has decreased by 0.77 years, whereas “simple”

estimate is almost twice lower (0.42). The uncertainty around this value is 0.15 years and

mostly due to forecast; the Poisson uncertainty practically disappears when we deal with the

whole French male population (33 million). Loss in male e60 remarkably varies across subpop-

ulations: the maximum loss was in Seine-Saint-Denis (2.4 years) whereas the minimum was in

Gers (gain of 0.6 years). However, 95% confidence intervals around this point estimate are

wide (1.2 years), resulting in a non significant gain at the 5% level.

Overall 26 départements show estimates that are not significant at the 5% level; only when

losses in e60 rise to about 0.4 years do we start to detect significant excess mortality, except for

highly populated areas such asHérault and Loire-Atlantique.
Fig 3 reveals the geography of the pandemic in 2020. Whereas Western France largely

spared by the pandemic, estimates were larger in the east and in the Ile-de-France (Greater

Paris region), with losses in life expectancy at age 60 about 1 and 1.5 years, respectively. These

results are consistent with those from the French national statistical office (INSEE) [42, 43],

which compared deaths observed in 2020 during the first two waves of the pandemic (March–

April 2020 and September–December 2020) with those observed during the same periods in

2019. The first wave of the pandemic had strongly affected Greater Paris region, as well as the

north and northeast of the country, probably due to the onset of the first outbreaks in main-

land France in these regions. One of the first outbreaks was detected in the Oise département,
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in the immediate surroundings of the Charles de Gaulle airport (23 km northeast of Paris).

Another outbreak was detected inHaut-Rhin and spread to the rest of northeastern France.

The INSEE studies also showed that the second wave of the pandemic was strong throughout

eastern France and particularly severe in the Auvergne-Rhône-Alpes region and neighboring

départements.
A comparison of these results with those for females highlights that the loss in e60 for

females is lower than for males. At national level, we estimate that the loss in e60 was 6 months,

compared with 9 months for males. In detail, no département suffered from a loss in e60 greater

than 1.5 years for females, while 8 départements suffered such a loss for males.

For completeness, Tabs 1–3 in S3 Appendix include values of excess mortality estimates

measured by e60 for males, females and both sexes combined.

Fig 2. Losses in male life expectancy at age 60 in 2020 for each French département. Colors of dots and texts depict the presence of significant

estimates at 95% level, and colors of the horizontal bars represent the two sources of uncertainty. Green dots identify “simple” estimates of losses.

https://doi.org/10.1371/journal.pone.0293752.g002
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A central aspect of this paper concerns the importance of measuring uncertainty around

excess mortality estimates when dealing with small areas. Fig 4 is a log–log plot of the amount

of uncertainty (measured by the range of the 95% confidence intervals) against population

size, i.e. we illustrate the proportional change in uncertainty in response to a proportional

change in population size. To broaden the view, we show both départements (NUTS 3) and

régions (NUTS 2) and, along with the total uncertainty (in green), we differentiate uncertainty

arising from the forecast procedure (in purple) and from Poisson on observed data (in

orange).

Fig 3. Map of France département by losses/gains in male life expectancy at age 60 in 2020. Slash symbol (/) denote areas with loss/gain in e60 not

significant at 5% level. On the upper-right corner zoom of a part of the map referring to Greater Paris (Ile-de-France).

https://doi.org/10.1371/journal.pone.0293752.g003
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With a linear fit to both departmental and regional values, we can estimate elasticity associ-

ated with source-specific uncertainty and gauge the percent change in uncertainty for a dou-

bling in population size. We estimate that uncertainty decreases by 24% when the population

doubles. This value combines two sources of uncertainty that decrease at an unequal pace

when population grows. Whereas Poisson uncertainty is higher than the forecast uncertainty

for almost all subnational populations, this source of uncertainty decreases at faster pace (26%)

than the forecast uncertainty (17%) when the population doubles.

We can also read Fig 4 from an alternative perspective. When excess mortality is measured

by e60, a loss greater than 0.75 years would be necessary to have a significant estimate at the

95% level if the population size is 50,000. This value decrease with larger populations: in a

region with 200,000 (one million) men, a loss in e60 equal to 0.4 (0.2) would be required to

obtain a significant excess mortality.

4 Discussion

Assessing excess mortality during a pandemic, such as COVID-19, is as crucial from a health

policy perspective as it challenging from a methodological standpoint. The challenges increase

when estimating excess mortality at subnational level. Specifically, we face two main issues.

First, mortality levels that would have been observed had pandemic not occurred need to be

estimated. Thus, forecasting methods are necessary to extrapolate temporal mortality

Fig 4. Log-log plot of the amount of uncertainty against population size by source of uncertainty: Total, associated to the forecast process and

due to Poisson randomness in observed data. Uncertainty is measured by the width of the 95% confidence intervals around estimated loss in male e60.

Values for both départements (NUTS 3) and régions (NUTS 2) are depicted. Linear fits are provided for illustrative purposes and for obtaining an

approximated value of the elasticity associated to each source of uncertainty.

https://doi.org/10.1371/journal.pone.0293752.g004
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variations. In this paper, we use CP-splines [33] and illustrate our approach with a reproduc-

ible example by examining French NUTS 3 regions. If data on deaths and exposure popula-

tions are available by age and year, this flexible approach is adaptable to a large variety of

current and historical scenarios, and is robust for dealing with very small populations.

Second, when examining sparsely populated areas, the level of uncertainty increases signifi-

cantly. In this paper, we calculate the uncertainty surrounding point estimates and differenti-

ate between the uncertainty arising from the forecasting process and the inherent uncertainty

stemming from the Poisson random nature of observed mortality data. We show that overall

uncertainty in excess mortality decreases by 24% when the population doubles, though Poisson

uncertainty tends to decrease more rapidly when the population grows. Consequently, while it

is possible to safely ignore uncertainty in the observed data and focus solely on forecasting

errors for large populations, it is crucial to consider the Poisson component of uncertainty

when analyzing excess mortality in small areas. Before drawing any conclusions, one must

account for the Poisson component to accurately assess the uncertainty associated with excess

mortality.

One way to reduce uncertainty, namely the Poisson component, is to either gather popula-

tions spatially by aggregating smaller administrative divisions into larger ones, or estimate

excess mortality for both sexes. Still, these choices must be made with caution because associ-

ated outcomes might hide strong heterogeneity.

To illustrate these concepts Fig 5 shows the densities of losses in male e60 for two specific

French régions (lower panel) and associated lower-level administrative divisions, départe-
ments (upper panel). In this example, Ile-de-France or Greater Paris is the région that suffered

from the highest loss in life expectancy at age 60, with a 95% confidence interval loss in e60 of

Fig 5. Illustrative figure on the effects of spatial aggregation in excess mortality estimation. Densities of losses/gains in life expectancy at 60 for two

NUTS 2 populations (Ile-de-France and Bretagne, lower panel) and their associated NUTS 3 populations (upper panel).

https://doi.org/10.1371/journal.pone.0293752.g005
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[1.57 − 1.85]. Still, this result hides strong heterogeneity between the least and the hardest-

hit département in this région: Esonne with [0.98 − 1.68] and Seine-Saint-Denis with

[2.10 − 2.70]. Even before 2020, Seine-Saint-Denis had one of the highest mortality levels in

France. Concealing its further pandemic-related deterioration through spatial aggregation to

reduce uncertainty would be inappropriate from a health policy perspective. In contrast, esti-

mates for Bretagne (Brittany) do not mask significant spatial heterogeneity, and aggregation

within this region considerably reduces the confidence interval around the excess mortality

estimates without much loss of information.

An alternative method to reduce uncertainty while maintaining the same administrative

division would be to combine men and women. This strategy would practically double the

population sizes and reduce the associated 95% confidence intervals by 24%. However, esti-

mates for both sexes will obscure the heterogeneity between men and women, especially con-

sidering the substantial sex differences in COVID-19 morbidity and mortality highlighted in

the literature [44, 45]. To ensure comprehensive coverage, S3 Appendix presents figures that

depict estimates and their corresponding uncertainties, taking into account spatial aggregation

at the NUTS-2 level and aggregation across both sexes.

Unlike previous methods for estimating excess mortality, ours effectively addresses all chal-

lenges associated with small populations. Its robustness, flexibility, and low computational cost

make it highly suitable for mapping the impact of COVID-19 at the international level. We

encourage national statistical offices to expedite the publication of regional-level mortality

data, which, coupled with our available routines, would enable a more accurate and timely

assessment of the burden of any ongoing pandemic.
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(PDF)
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