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Abstract

Basal cell carcinoma (BCC) is the most common type of skin cancer. Due to multiple, poten-
tial underlying molecular tumor aberrations, clinical treatment protocols are not well-defined.
This study presents multisite molecular heterogeneity profiles of human BCC based on
RNA and proteome profiling. Three areas from lesions excised from 9 patients were ana-
lyzed. The focus was gene expression profiles based on proteome and RNA measurements
of intra-tumor heterogeneity from the same patient and inter-tumor heterogeneity in nodular,
infiltrative, and superficial BCC tumor subtypes from different patients. We observed signifi-
cant overlap in intra- and inter-tumor variability of proteome and RNA expression profiles,
showing significant multisite heterogeneity of protein expression in the BCC tumors. Inter-
subtype analysis has also identified unique proteins for each BCC subtype. This profiling
leads to a deeper understanding of BCC molecular heterogeneity and potentially contributes
to developing new sampling tools for personalized diagnostics therapeutic approaches to
BCC.

Introduction

Skin cancers are the most prevalent type of malignancy worldwide, with a substantial impact
and burden on public health [1-7]. Basal cell carcinoma (BCC) is the most common type of
skin cancer [1-3]. In sporadic cases of skin cancer, sun exposure is the major risk-factor for
induction of tumorigenesis. Originating from cells in the basal cell layer of the epidermis and
around hair follicles, the main histological subtypes of BCC are nodular, micronodular, super-
ficial, morpheaform, infiltrative and fibroepithelial [8]. BCC rarely metastasizes or causes
death; yet, it leads to extensive morbidity due to local tissue invasion and destruction [9, 10].
Surgical excision is the preferred method for treating BCCs and when not feasible, other
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modalities such as cryotherapy, radiation and targeted molecular therapy can be implemented
[11].

Molecular heterogeneity of tumors and of BCC specifically, is a well-known phenomenon
and presents a challenge when considering diagnosis and treatment options [12, 13]. Analysis
of genetic material, transcribed genes, metabolites and proteins can add important informa-
tion in the quest to understand the molecular malignant pathogenesis and to develop future
therapeutic targets [14-16]. Tumor specific genetic alterations are the major focus of the devel-
opment of novel therapies targeting specific pathways in BCC [12]. Personalized medicine,
where the proposed therapy is tailored according to patient characteristics, genetic features
and tumor specific properties, aims to offer patients more effective treatment with higher
safety profiles. This approach holds promise for improving treatment protocols and results,
while reducing costs [17].

The most frequent aberrancy encountered in BCC molecular genetics is a mutation in the
PTCH gene in the Hedgehog (HH) pathway [18-20]. Therefore, the HH pathway, which is
upregulated in BCC, is the current target of several approved molecular inhibition therapies
[18-21]. However, previous studies have described other signaling pathways and the heteroge-
neous nature of BCC [12, 22-28]. A large gap remains between understanding the relevance of
these pathways to the pathogenesis of BCC and their therapeutic potential. The molecular
diagnosis of BCC has been researched and various markers have been proposed for diagnosing
primary BCC or in rare cases metastatic BCC [29]. However, the molecular heterogeneity of
these tumors limits the utility of these markers [12]. While current therapies for BCC focus on
the HH pathway, additional possibilities and other targets for therapy and diagnosis are yet to
be elucidated.

This study investigated the multisite molecular heterogeneity profile of human BCC based
on RNA and proteome profiling, using 3 locations in lesions excised from 9 patients (one
lesion per patient). We focused on intra-patient (within a tumor excised from a single patient)
and inter-patient (between the tumors excised from different patients) heterogeneity of the
nodular, infiltrative, and superficial BCC subtypes.

This study adds to the current literature in the quest to elucidate BCC heterogeneity, and
compares multisite derived samples both within tumors and between patients.

By using a novel approach to evaluate heterogeneity, our study of genetic and molecular
BCC heterogeneity identified differences in the RNA and proteome components of each
unique BCC tumor and between the different parts of each lesion. These findings will influ-
ence future research for molecular sampling tools and will advance the development of person-
alized therapy.

Methods

From March 2020 to March 2021, transcriptomic and proteomic samples were collected from
BCC lesions from 9 patients who underwent surgical excision of a skin lesion suspected as
BCC, at Meir Medical Center, Israel (Table 1). RNA was extracted from 3 patients (9 samples,
3 per tumor, one tumor per patient) and proteomics were analyzed for 9 patients (27 samples,
3 per tumor, one tumor per patient), as described below. All lesions excised were at least 1 cm
in diameter.

Sample collection

Following excision of the lesion, a strip along the full length of the lesion was excised preserv-
ing the deep and lateral margins to prevent obscuring histological analysis. Each sample
included both tumor tissue and healthy margins. The strip was then split longitudinally into 2
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Table 1. Patient demographics and lesion characteristics.

Patient Sex
Female
Female
Male
Male
Male
Male
Male
Female
Male

https://doi.org/10.1371/journal.pone.0293744.t001

O |0 ([N N W N =

Age BCC subtype Lesion location Proteomics/RNA seq
66 Infiltrative Lower eyelid Proteomics + RNA seq
90 Infiltrative Right chin Proteomics
88 Infiltrative Left temple Proteomics
84 Superficial Right cheek Proteomics + RNA seq
68 Superficial Right shin Proteomics
70 Superficial Right shoulder Proteomics
85 Nodular Nose Proteomics + RNA seq
76 Nodular Upper lip Proteomics
80 Nodular Right chin Proteomics

parts. The orientation of the two pieces was marked and one was sent for molecular profiling
as a fresh sample on 0.9% saline-soaked gauze for tissue lysis within 30 minutes of excision.
The second sample was sent in formaldehyde for histopathological processing. The first tissue
strip was cut into 3 pieces representing 3 locations: 1 from each end and 1 in the center, yield-
ing a total of 27 samples for proteomics and 9 samples for RNA analysis. Patient data and
demographics were collected from electronic medical records. Histological characteristics of
each lesion were reviewed independently by two independent certified dermatopathologists.

Isolating total RNA from tissue using lysis buffer

RNA was extracted from cut tumor tissue, similar in orientation to the tumor. The EZ-RNA II
kit (Biological Industries, Beit Haemek Ltd., Beit Haemek, Israel) was used for the RNA isola-
tions. (The protocol is further described in Supplement S1 in S1 File. Isolating total RNA from
tissue using lysis buffer.)

RNA sequencing

The concentration and integrity of the RNA were determined and a cDNA was generated
(RNA sequencing protocol is further described in Supplement S1. RNA sequencing in S1 File).

Protein extraction

The samples were taken from a slice of tumor tissue, preserving the orientation of the samples
to the original tumor. The EZ-RNA II kit was used for protein isolation. The protein pellets
were air dried and taken for proteomic analysis. (Protein sample preparation protocol is fur-
ther described in Supplement S1. Protein extraction in S1 File).

Mass spectrometry analysis

Mass spectrometry was performed in a positive mode, using a repetitive full MS scan followed
by collision-induced dissociation of the 10 most dominant ions selected from the first MS
scan. In addition, one sample, not related to the dataset, was sent through the liquid chroma-
tography-mass spectrometer (LCMS) to measure the LCMS machine "noise". (The mass spec-
trometry sample preparation and analysis protocol are further described in Supplement S1.
Mass spectrometry analysis in S1 File).
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Statistics and reproducibility

A total of 9 RNA and 27 proteomic samples were used in this study. Data analysis was con-
ducted with python (ver. 3.7.4) using pandas and scipy packages. Statistical analysis included
the use of a heatmap approach based on Spearman and Pearson correlations. Histograms were
created for both the Pearson and Spearman correlations and a one-sided Wilcoxon Rank-Sum
test examined the differences between the distributions of correlations within different groups.
Inter-sample intersections of the observed tumor transcriptome and proteome were analyzed
and are presented using Venn diagrams.

Differential analysis was used to produce a list of genes whose expression was variable
intra-patiently. The list of genes was analyzed with the GOrilla web tool to identify overabun-
dant cellular processes.

Possible single nucleotide variations (SN'Vs) were compared in pairs of intra-patient sam-
ples and identified genome positions in which these samples were significantly different. The
significance of the identified positions was assessed with a Jensen-Shannon distance score.

Proteomics and transcriptomic data analysis

Data were analyzed based on python (ver. 3.7.4) using pandas and scipy packages. The visuali-
zations were generated using the matplotlib package.

RNA-seq alignment. We used STAR (version 2.7.3a) [30] to process FASTQ files and
produce BAM files (for mutation calling) and gene counts (for RNA-seq differential expression
analysis). Before the analysis gene expression data were normalized to counts per million
(CPM) and genes with less than 0.5 CPM in all samples were filtered out [31].

Heatmap of the heterogeneity. A heatmap approach was used to depict the heterogeneity
of the protein samples. In both axes of the heatmap, the sample names are ordered by patients
and their BCC subtypes for ease of visualization (same order in both axes). Spearman and
Pearson correlation coefficients were calculated for the proteomics profiles based on label-free
quantitation protein intensities of each pair of samples. Colors of the heatmap were adjusted
to maximize the visual differences in correlation values between the adjacent cells. Spearman
and Pearson correlations were used to measure monotonic and linear relationships,
respectively.

Correlations, histograms and distributions

Density histograms were created to summarize the values represented in the heatmaps. This
analysis was conducted separately for the Spearman and Pearson values for the protein
findings.

The correlations between samples were divided into two groups: the correlations between
different patients (i.e., inter-patient and inter-tumor) and the correlations between the samples
of the same patient (i.e., intra-patient and intra-tumor), further referred to as Group 1 and
Group 2, respectively. Low correlation values within Group 2, comparable to those of Group 1,
suggest high tumor heterogeneity. The Bayesian probability of misclassifying the correlation
value from Group 2 as sampled from Group 1 was estimated per each value bin separately and
then totaled, as described in Eq. 1 in Supplement S1 of S1 File.

This process was repeated both for the Pearson and Spearman correlations. We also used a
one-sided Wilcoxon Rank-Sum test examine the differences between the distributions of cor-
relations within different groups.

In addition, we show the distribution of correlations within the noise control group (Group
3), dedicated to evaluating the LC/MS/MS measurement noise and designed as 5 subsequent
LCMS measurements of the same sample not related to the dataset.
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Group-intersection heterogeneity analysis

We analyzed the inter-sample intersections of the observed tumor transcriptome and prote-
ome to alternatively quantify the heterogeneity of the gene expression of BCC tumors. This
analysis is presented using Venn diagrams and each figure is accompanied by a table showing
the sizes of each diagram slice on the patient level (row per each studied patient).

RNA-seq differential expression analysis

Gene expression data were normalized to counts per million. To retrieve a list of heteroge-
neous genes among the different locations of the tumor for each patient, we computed the
maximum absolute fold change (FC) for all pairwise comparisons of the patient samples for
each gene. Only genes that appeared in the lists of at least two patients were considered. The
final list consisted of 156 genes (p = 2.10e-152, see Supplementary material SO in S1 File [30,
32-35] for computational details and SO for the list of genes). The list was analyzed with the
Gorilla web tool [31, 36] to identify overabundant cellular processes.

Prediction of RNA mutations

To detect possible somatic single nucleotide variations (SNVs) we compared pairs of intra-
patient samples and identified genome positions in which these samples were significantly dif-
ferent. The base assumption was that the distribution of expressed alleles should be similar
across skin cells of the same individual [31]. The significance of the identified positions was
assessed with a Jensen-Shannon (JS) distance score. (Further described in Supplementary
material SO. RNA analysis in S1 File).

Results

A total of 9 patients with excised, suspected BCC skin lesions were included in this study. The
average patient was 78.5 years old (range 66-90 years) and 6 were male. Histopathologic analy-
sis of the lesions was consistent with the diagnosis of BCC and determined to be 3 cases of nod-
ular, 3 infiltrative and 3 superficial (Table 1).

Proteomics analysis

In total, 27 samples were collected from 9 patients (3 samples per patient); 3 patients per each
histologically-confirmed BCC subtype (infiltrative, superficial, nodular). A total of 5,782 pro-
teins were identified in at least one sample after lysis and proteomic analysis.

Heatmap-based analysis for heterogeneity shows Spearman (upper-right triangle) and Pear-
son (lower-left triangle) correlations. The 9 x 9 squares with yellow boundaries (excluding 3 x
3 blue-boundary diagonal) represent the correlation values between different patients with
similar BCC subtype (Group 1, intra-subtype). The 9 x 9 squares with red boundaries represent
the correlations between samples from the different BCC subtypes (Group 1, inter-subtype).
The 3 x 3 squares with blue boundaries along the diagonal represent the correlations between
2 samples from the same patient (intra-patient, Group 2) (Fig 1).

Histograms of the observed densities were constructed for the distribution of correlations
in Groups 1 and 2. The histograms are displayed in Fig 2 in yellow-red and blue, respectively.
Although the correlations in Group 2 are significantly higher than those in Group 1 (Wilcoxon
one-sided test p = 3.256e-15), the meaningful intersection between the histograms implies sig-
nificant heterogeneity of specific tumors, clearly rebutting the hypothesis of lesion proteomic
homogeneity. In other words, in notably many cases, the difference between two proteomic
samples extracted from the same tumor of a single patient was as significant as the difference
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Fig 1. Proteomic heatmap-based heterogeneity analysis. The heatmap shows Spearman and Pearson correlations of
proteomic profiles based on LFQ-intensity measurements between each two different samples from our dataset
(overall, 5782 proteins were identified in at least 1 of all 27 samples). The table below the figure describes the groups of
empirical correlations and the color coding of blocks in the heatmap (also see text). All correlations were calculated on
the LFQ-intensity of values. Interpretation example: The Pearson correlation between the proteomic profile measured
in sample from Location I from Patient 1 (Infiltrative subtype) to proteomic profile measured in sample from Location
II from Patient 4 (Superficial subtype) is 0.80, while the Spearman correlation for these samples is 0.83.

https://doi.org/10.1371/journal.pone.0293744.9001

between two proteomic samples extracted from two different patients, sometimes even from
two different BCC subtypes. Quantitively, the Bayesian probability of misclassifying the corre-
lation (Group 1 vs. Group 2) was 40.7% and 48.1% for Spearman and Pearson tests, respec-
tively. Moreover, the observed correlations within Group 3 (grey histogram in Fig 2)
representing random measurement noise are significantly higher (Group 3>Group 2 and
Group 3>Group 1). The Wilcoxon one-sided test p-value based on Pearson correlations were
1.948e-06 and 3.592e-08, respectively, implying that all observed correlations differ more sig-
nificantly from each other than expected from the noise of the measurement process.
Group-intersection heterogeneity analysis of the proteomic data (Fig 3) provides additional
information on intra-patient heterogeneity. The diagram shows 1760 proteins (“all samples”
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Fig 2. Group correlations and distribution histograms. (a) Spearman and (b) Pearson histograms summarizing the
values in the heatmap presented in Fig 4. The values are summarized as normalized, observed densities separately for
the inter-patient (Group 1) and intra-patient (Group 2) correlations, displayed respectively as red (upper) and blue
(lower) bars. The correlations measured within the noise control group (Group 3) are presented as grey bars.

https://doi.org/10.1371/journal.pone.0293744.9002

slice) measured with a positive label-free quantitation intensity in all BCC samples, which is
only about 30% of all 5782 observed genes. Per BCC subtype (“all sub-type samples” slice), we
observed 2509 proteins shared among infiltrative BCC samples, 2099 among superficial and
2504 among nodular subtypes. The number of uniquely identified proteins per patient sample
ranged from 44 to 413 (1-12% of the proteins identified overall in the dataset) per sample (ran-
dom expectation is 10.6 unique proteins per location), implying high potential heterogeneity
in BCC proteomics.

The hypothesis of high heterogeneity in BCC proteomics is also supported by the number
of proteins always observed in each BCC subtype with partial multisite profile. We identified
130, 104 and 107 proteins (for Infiltrative, Superficial and Nodular sub-types respectively) that
appear in each patient but not in all patient’s locations (Table 2).

Analyzing inter-subtype heterogeneity, we identified 11 proteins observed in each Infiltra-
tive patient, but not in Superficial patients; 6 proteins observed in each Infiltrative patient, but
not in Nodular patients; 3 proteins observed in each Superficial patient, but not in Nodular
patients; 4 proteins observed in each Nodular patient, but not in Infiltrative patients; and 14
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patient2| Infiltrative 2,509 3,439 3,592 3,832 3,585 150 252 102
(+749) (+930) (+153) (+393) (+146) (4% of 4,135) | (6% of 3,990) | (3% of 4,080)

patient 3 3,468 3,700 3,560 3,743 89 265 122
(+959) (+232) (+92) (+275) (2% of 3,881) | (6% of4,240) | (3% of 3,957)

patient4 3,709 3,884 3,850 3,789 104 62 a4
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Patients| Superficial 1,760 2,099 2,450 2,580 2,681 2,755 113 222 413
(+339) (+351) (+130) (+231) (+305) (4% of 2,924) | (7% of 3,107) | (12% of 3,399)

patient 6 2,970 3087 3,082 3,481 116 331 148
(+871) (+117) (+112) (+511) (3% of 3,315) | (8% of 3,929) | (4% of 3,741)

patient 7 2,942 3,156 3,290 3,026 180 60 258
(+438) (+214) (+348) (+84) (5% of 3,684) | (2% of 3,300) | (7% of 3,632)

2 2,504 3,739 3,808 3,952 3,911 151 89 127

Patient 8 Nodular

(+744) (+1,235) (+69) (+213) (+172) (4% of 4,172) | (2% of4,069) | (3% of 4,251)

patient 9 3,486 3,649 3,693 3830 160 129 121
(+982) (+163) (+207) (+344) (4% of 4,016) | (3% of4,122) | (3% of4,158)

Fig 3. Group-intersection analysis of proteomic data heterogeneity. The Venn diagram schematically depicts the inter-group
interactions. The table below the figure presents the sizes of various groups of proteins per each patient. Interpretation example: 1760
proteins are shared among all 27 samples from all 9 patients. Additional 749 proteins, which is in total 2509 proteins are shared among
all 9 samples from all 3 Infiltrative patients. Patient 1 has the Infiltrative subtype, and it has 3200 proteins shared among all its samples,
which is 691 proteins in addition to the intersection of its sub-type. An additional 118 proteins are shared between the samples from
Location 1 and Location 2, resulting in 3318 proteins shared between these two locations. Finally, Location 1 has 85 proteins uniquely
identified in this location, which is about 2% of the total 3656 proteins in the sample from this location. Note, that some of these 85
proteins may be observed in a different patient.

https://doi.org/10.1371/journal.pone.0293744.g003
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Table 2. BCC subtype proteomic data heterogeneity.

Protein Group Description Infiltrative Superficial Nodular
Proteins that appear in each patient, in all 3 locations 2509 2099 2504
Proteins that appear in each patient, in at least 1 location 3602 3301 3573
Proteins that appear in each patient, in I or 2 locations only 130 104 107

https://doi.org/10.1371/journal.pone.0293744.t1002

proteins observed in each Nodular patient, but not in Superficial patients (Table 3). Moreover,
proteins CYP2W1 (Cytochrome P450) and NTRK3 (Neurotrophic Receptor Tyrosine Kinase
3) were never observed in Infiltrative and Superficial samples, yet always identified in Nodular
patients (Table 3).

Finally, high inter-patient heterogeneity in BCC proteomics can be also observed from
PCA decomposition of protein data (Fig 4). Even though most samples of the same patient are
located in proximity to each other (as expected), we do observe many cases when this is true
only for the single sample.

Transcriptomic analysis

To further explore the multisite heterogeneity of the human BCC, we performed a transcrip-
tomic analysis. One patient with each of 3 histologically confirmed BCC subtypes (infiltrative,
superficial, nodular) was selected for the transcriptomics analysis. The total transcriptomics
dataset consisted of 9 samples (3 per patient). A total of 32,397 genes were identified. The gene
count matrix is available at the GitHub repository (https://github.com/GolbergLab/BCC_
Heterogeneity, hosted at GitHub (GitHub 2022).

Group-intersection heterogeneity analysis of the transcriptomics data (Fig 5) provides addi-
tional information on the intra-patient heterogeneity. The diagram shows that 20,099 genes
(“all samples” slice) expressed in all BCC samples, which is about 62% of all 32,397 observed
genes. On the per-patient level, we observed 26,976 genes (“all patient loci”) shared among all
samples of the infiltrative BCC subject, 22,068 among samples of superficial and 27,373 among
samples of nodular subjects. The number of uniquely identified genes per each sample ranged
from 253 to 1763 (1-6% of total genes measured in that sample), implying high potential het-
erogeneity of the BCC transcriptomic landscape.

Differential expression analysis yielded 156 genes with significant intra-patient heterogene-
ity (Group 2) for at least 2 of the 3 patients (p = 2.10e-152). GO-term analysis (Supplements
$4, S5 in S1 File) of these genes shows statistical enrichment in cornification (GO:0070268,
hypergeometric test p = 3.2e-40, corresponding to FDR of 4.3e-36) and keratinization
(GO:0031424, hypergeometric test p = 3.2e-25, corresponding to FDR of 2.1e-21) and several
additional biological processes, which is in agreement with previous BCC studies [37, 38].

Study of RNA mutations

Somatic SNVs were studied by comparing the sequencing data of intra-patient locations under
the assumption that the distribution of expressed alleles should be similar across skin cells of
the same individual [39]. Following this approach, we found 22, 30, and 6 genome locations
with JS distance above 0.6 for patients 1, 4 and 7 respectively (Supplement S2 in S1 File). For
example, genome position 70452749 in chromosome X of patient 7 with JS score of 0.77 sug-
gests a possible point mutation in the DLG3 gene. DLG3 was previously shown to have a role
in oral squamous cell carcinoma [40], glioblastoma [41] and breast cancer [42].
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Table 3. Comparison of the different BCC sub-types.

Protein Group Description
Each patient in Infiltrative subtype, at least I location

Each patient in Infiltrative subtype, at least 1 location and do not appear in
Superficial

Each patient in Infiltrative subtype, at least 1 location and do not appear in
Nodular

Each patient in Infiltrative subtype, at least I location and do not appear in other
subtypes

Each patient in Superficial subtype, at least 1 location

Each patient in Superficial subtype, at least 1 location and do not appear in
Infiltrative

Each patient in Superficial subtype, at least 1 location and do not appear in
Nodular

Each patient in Superficial subtype, at least 1 location and do not appear in other
subtypes

Each patient in Nodular subtype, at least 1 location

Each patient in Nodular subtype, at least 1 location and do not appear in
Infiltrative

Each patient in Nodular subtype, af least 1 location and do not appear in
Superficial

Each patient in Nodular subtype, at least 1 location and do not appear in other
subtypes

https://doi.org/10.1371/journal.pone.0293744.1003
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This study of transcriptome and proteome BCC heterogeneity suggests a more complex struc-

ture of cancer-related genes in the same lesion and between patients with similar diagnostics,
further supporting previous reports on the tissue bulk [8, 9, 12]. Our finding on multisite
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Fig 4. 3D data representation based on PCA decomposition. Red, green and blue marker colors correspond to
samples from Infiltrative, Superficial and Nodular BCC sub-types respectively. Markers of the same color and shape
correspond to samples obtained from the same patient.

https://doi.org/10.1371/journal.pone.0293744.9004

sampling also further corroborate recent single cells studies on heterogeneity from the same
site [43-45]. Differences identified in the RNA and proteome components of each unique
BCC and between the different parts of each lesion may explain the different responses to
pharmacological treatments [8, 12, 21, 24, 26, 27].

We observed the heterogeneous nature of BCC tumors when comparing RNA and proteins
between 3 different sites extracted from a single lesion and proposed several approach to study
inter- and intra- tumor heterogeneity.

To test the heterogeneity on the level of the entire genomic and proteomic profiles, we esti-
mated and compared the Spearman and Pearson correlation values of Group 2 (correlations
within the samples of the same patient) with the Group 1 (correlations within the samples of
different patients) acting as a reference. The distribution of Group 2 correlations (Fig 2) con-
sists of clearly higher values; yet, with a large overlap with Group 1. The latter implies that in
many cases the difference between two samples originating from the same lesion of a single
patient can be as large as the difference between samples excised from different patients. Fur-
thermore, the correlations within both groups were significantly lower than the LC/MS/MS
process noise control group, strengthening the hypothesis that the difference between samples
was not due to noise.

To assess the heterogeneity among the observed expressed genes and proteins extracted
from different samples, we analyzed the presence and absence of specific genes and proteins
across these samples. The results, presented in Figs 3 and 5, demonstrate the existence of doz-
ens to hundreds of unique genes and proteins that were identified in only 1 of 3 samples
extracted from 1 patients’ lesion. Moreover, we also observed a similar number of proteins
uniquely absent from only 1 of 3 samples from 1 patient, suggesting high sub-clonality of each
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Loc1 & Loc 2
not LOC 3

All samples

All patient loci

Loc2 & Loc 3
not LOC 1

Lloc1 & loc3
not LOC 2

Genes shared among Genes unique to
All
All . Loc1&Lloc2 |Locl&Lloc3(Loc2 &Lloc3 Unique Unique Unique
SubType patient
samples - not Loc 3 not Loc 2 not Loc 1 @Lloc1 @Loc 2 @Loc 3
: : : 26,976 29,113 28,818 27,945 368 707 203
Patient 1 | Infiltrative
(+6,877) | (+2,137) (+752) (+969) (1% of 29,905) | (2% of 30,789) | (1% of 28,572)
- 2 22,068 23,940 22:714. 24,268 654 1,763 956
Patient 4 | Superficial | 20,099
(+1,969) |  (+1,872) (+643) (#2,200) | (3% of 25,237) | (6% of 27,903) | (4% of 25,867)
. 27,373 28,558 28,492 27,776 669 253 506
Patient 7 Nodular
(+7,274) (+1,185) (+1,119) (+403) (2% of 30,346) | (1% of 29,214) | (2% of 29,401)

Fig 5. Group-intersection analysis of RNA heterogeneity. The Venn diagram schematically depicts the inter-group interactions. The table below
the figure presents the sizes of various groups of genes per each patient. Interpretation example: 20,099 genes are shared among all 9 samples from all
3 patients. Patient 1 is of Infiltrative subtype, and it has 26,976 genes shared among all its samples, which is +6,877 genes more than the global
intersection of all samples. An additional +2,137 genes are shared between the samples from Location 1 and Location 2, resulting in 29,113 genes
shared between these two locations. Finally, Location 1 has 368 genes unique to this location, which is about 1% of all 29,905 genes observed at this
location. Note, that some of these 368 genes may be identified in a different patient.

https://doi.org/10.1371/journal.pone.0293744.9005

lesion. It is important to mention, that the analysis we done on the bulk tissue, thus, the ratio
of tumor and healthy cells sampled may play a role in the observed heterogeneity.

Analysis of inter-subtype heterogeneity identified proteins which were observed in the dif-
ferent BCC subtypes but not in others, suggesting a high inter-sample heterogeneity.
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The protein analysis yielded 2 proteins, CYP2W1 (Cytochrome P450) and NTRK3 (Neuro-
trophic Receptor Tyrosine Kinase 3) which were unique to the nodular BCC subtype.

CYP2W1 is a monooxygenase enzyme that has been shown to be expressed specifically in
tumor tissues and during fetal life. A high expression of this enzyme was observed in colorectal
cancers and its expression has been correlated with poor survival in a subset of colorectal can-
cer patients [43, 46]. This enzyme could be of prognostic and future therapeutic value NTRK
gene fusions (encoding the neurotrophin receptors) are known oncogenic drivers of various
tumors and the treatment of NTRK fusion-positive cancers includes the use of tyrosine kinase
receptor inhibitors [44, 45]. A study by Dai et al. has shown this fusion gene to be upregulated
in BCC when compared to normal skin [47].

Finally, on the single-gene level, we identified 156 genes that tend to be expressed heteroge-
neously in all BCC subtypes. Moreover, for 3 patients with transcriptomic data, we identified
6, 22 and 30 genome locations (SNVs) with high intra-patient variability in frequencies of the
expressed nucleotides. In genome locations with expression of more than 2 alleles, these find-
ings suggest the emergence of a somatic SNV. Alternative causes for the 2 heterozygous cases
are that both copy number variations and mutations in one chromosome regulatory site can
cause 1 of the alleles to be expressed more compared to the other allele.

Our results confirm the hypothesis that BCC tumors of infiltrative, superficial and nodular
subtypes are heterogeneous and that different parts of the lesion express various molecular char-
acteristics. This observation is in accordance with previous studies that demonstrated the hetero-
geneous nature of BCC tumors [26]. Moreover, BCC patients may present with several malignant
skin lesions at the same time and the tumor heterogeneity observed in this study implies that
lesions on the same patient might differ from those that are adjacent. This heterogeneity can have
profound implications when considering targeted molecular therapy for BCC as this may be
impeded by the inherent resistance of tumors. This conclusion is supported by reported cases of
sporadic BCCs with lower response rates and increased therapy resistance [43-47].

The heterogeneous nature of tumors, as observed in our results, indicates that the location
of the tissue analyzed from the biopsy specimen is of utmost importance. Thus, sampled by
standard biopsies tissue does not present the full genetic profile of the tumor, but rather a
small fraction of a complex genetic and molecular tumor topography. Thus, novel technologies
that will support molecular sampling of multiple locations from a tumor during the same pro-
cedure are needed.

The findings from this study could provide the initial concept for research and development
of novel diagnostic methods and novel targeted therapies informed by the genetic composition
of several locations in a tumor.

Conclusions

This study shows that intra-patient and inter-patient proteome and RNA expression variability
are comparable, which implies the inherent heterogeneity of BCC lesions. The novel approach
to the analysis of the transcriptome and proteome heterogeneity in a single BCC tumor pre-
sented here paves the way to better understanding of treatment resistance and tumor recur-
rence, which are the major limitations of cancer therapy. This knowledge will influence future
research for diagnostic tools and will advance the development of personalized therapy.
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