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Abstract

Prevention of Clostridium difficile infection is challenging worldwide owing to its high morbid-

ity and mortality rates. C. difficile is currently being classified as an urgent threat by the

CDC. Devising a new therapeutic strategy become indispensable against C. difficile infec-

tion due to its high rates of reinfection and increasing antimicrobial resistance. The current

study is based on core proteome data of C. difficile to identify promising vaccine and drug

candidates. Immunoinformatics and vaccinomics approaches were employed to construct

multi-epitope-based chimeric vaccine constructs from top-ranked T- and B-cell epitopes.

The efficacy of the designed vaccine was assessed by immunological analysis, immune

receptor binding potential and immune simulation analyses. Additionally, subtractive proteo-

mics and druggability analyses prioritized several promising and alternative drug targets

against C. difficile. These include FMN-dependent nitroreductase which was prioritized for

pharmacophore-based virtual screening of druggable molecule databases to predict potent

inhibitors. A MolPort-001-785-965 druggable molecule was found to exhibit significant bind-

ing affinity with the conserved residues of FMN-dependent nitroreductase. The experimen-

tal validation of the therapeutic targets prioritized in the current study may worthy to identify

new strategies to combat the drug-resistant C. difficile infection.

1.0. Introduction

Clostridium difficile is a gram-negative anaerobic bacterium causes pseudomembranous colitis

and life-threatening diarrhea [1, 2]. C. difficile is associated with hospital-acquired infections

with high rates of morbidity and mortality worldwide, leading to epidemic in certain parts of

the world [3]. C. difficile infections (CDIs) mainly develop in elderly individuals because of
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disruption of the protective colon microbiota after antimicrobial therapy [4, 5]. Multiple fac-

tors contribute to the increasing number and severity of CDIs. The main risk factors associated

with CDIs include prior antibiotic treatment, which leads to disrupted intestinal flora [6, 7].

Hospitalized patients are at maximum risk after the first month of antibiotic therapy [8].

Other risk factors include proton-pump inhibitors (PPIs), chemotherapy [9], and lack of

response to toxins, mostly in older individuals. Individuals colonized with C. difficile spores

are likely to serve as infection reservoirs that contaminate the environment with C. difficile
spores [8]. Bacteria with a pathogenic locus (Paloc) expressing a binary toxin (toxin

A = enterotoxin, toxin B = cytotoxin) are toxigenic strains, that cause colonic mucosal damage,

resulting in actin filament degradation [10, 11]. Mutations in the toxin repressor gene (tcdC)

have been reported to produce 15 times more toxin A and B hypervirulent strains i.e. BI/

NAP027 and ribotype 027, that exhibit resistance to fluoroquinolones [12–15]. Multi-compo-

nent biofilm development is also a substantial contributor to C. difficile drug resistance. The

multi-layered biofilm is a dense matrix composed of DNAs, proteins, and polysaccharides

[16].

The frequent occurrence of CDIs has increased the rate of emergence of multiple antibi-

otic-resistant (MAR) and hypervirulent strains during the last two decades [17, 18]. The rapid

increase in the MAR bacterial strains is a major global health concern in the 21st century. Cur-

rently, it is estimated that over 700,000 annual deaths are caused by MAR pathogens world-

wide, and death toll predicted to reach up to 10 million by 2050 [19]. C. difficile is classified as

an urgent threat according to 2019 Antibiotic Resistance Report of the Centers for Disease

Control and Prevention (CDC) [19, 20]. C. difficile resistant is reported to commonly pre-

scribed antibiotics, including erythromycin, penicillin, tetracycline, clindamycin, lincomycin,

cephalosporins, aminoglycosides, clindamycin, gentamicin, imipenem, moxifloxacin, rifampi-

cin, and fluoroquinolones [21, 22]. Multiple studies have reported an increase of up to 90% in

the antibiotic resistance of C. difficile in the past decade [23]. Worldwide surveillance reported

that the irrational use of antibiotics majorly contributes to the increase in C. difficile resistance

which led to the occurrence and reoccurrence of CDIs. The high rate of CDI recurrence is a

serious problem; approximately 25% of treated individuals develop recurrence, and approxi-

mately 40% to 60% of individuals experience subsequent recurrence after their first recurrence

of CDI [24, 25]. Antibiotic resistance of C. difficile results in suboptimal clinical outcomes,

leading to CDI treatment failure. Current preventive measures are insufficient to treat CDIs,

and there is no commercially available vaccine that provides protection against CDIs. There-

fore, novel therapeutic strategies are required to combat CDIs, and prevent its subsequent

recurrence.

Microbial pan-genomics has sparked the interest of the scientific community owing to the

availability of whole genome sequence data of pathogenic strains [26–28]. The core proteome

data of pathogenic strains provide primary information to identify novel therapeutic targets in

pathogenic species. Combined bioinformatics, chemo-informatics, and immunoinformatic

techniques have rapidly increased the identification of potential drug and vaccine targets

against pathogenic strains [29–31]. Advancements in genomics and proteomics have facili-

tated the identification of suitable targets for functional medicines. Subtractive proteomics and

vaccinomics is a novel approach that facilitates the identification of potential therapeutic tar-

gets against specific pathogenic strains [32]. The purpose of this work was to use comparative

proteomic techniques to identify therapeutic drug and vaccine candidate proteins by focusing

on the core proteome of C. difficile drug-resistant strains. Reverse vaccinology and immunoin-

formatic strategies were implemented for the prediction of immunodominant epitopes from

the prioritized vaccine candidates to design a highly immunogenic vaccine construct. The effi-

cacy of proposed vaccine construct was evaluated via immune-simulation analysis. Subtractive
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proteomics approach was utilized to predict potential drug target proteins. Further, pharmaco-

phore-based modeling, virtual screening, molecular docking, and molecular dynamic simula-

tion analyses were performed to identify novel inhibitors against the top-prioritized drug

targets. In silico ADME studies were done to investigate the pharmacokinetic properties of the

lead inhibitory compounds.

2.0. Methodology

All the steps and methodological layout of the current study is summarized in Fig 1.

2.1 Core proteome retrieval

The core proteome of C. difficile (NCBI Taxonomy ID: 1496) was retrieved from EDGAR ver-

sion 3 web resource (http://edgar3.computational.bio) [33]. The genome of the C. difficile
strain 630 was selected as a reference genome. Paralogous sequences were determined using

the standalone version of CD-HIT resource [34] with a similarity index of 60% [35]. Redun-

dant sequences were discarded to acquire non-paralogous sequences for further analysis.

Besides, sequences with less than 100 amino acid residues were also discarded. The PSORTb

v3.0.2 web tool (http://www.psort.org/psortb) was used for determining the subcellular locali-

zation of non-paralogous pathogen proteins [36].

2.2 Reverse vaccinology

2.2.1 Vaccine candidates’ identification. Outer membrane and extracellular proteins

were further prioritized based on their allergenicity, antigenicity, and toxicity parameters. The

allergenicity assessment of human non-homologous pathogen proteins was performed by

AllerTOP v2.0 webserver (http://www.ddg-pharmfac.net/AllerTOP) [37]. VaxiJen v2.0 web-

server (http://www.jenner.ac.uk/VaxiJen) was used to evaluate the antigenicity level of the pri-

oritized bacterial proteins with a threshold of>0.4 [38]. ToxinPred2 webserver (https://webs.

iiitd.edu.in/raghava/toxinpred2/) was utilized to determine the toxicity of the prioritized bac-

terial proteins [39].

2.2.2 Assessment of B-cell, MHC-I, and MHC-II epitopes. The prioritized bacterial pro-

teins were further subjected to multiple immunoinformstics tools to predict the potential B-

and T-cell epitopes that can induce strong immune responses in the host immune system. T-

cell epitopes are represented by major histocompatibility complex (MHC) molecules. MHC

class I epitopes are recognized by CD8+ and MHC class-II epitopes are recognized by CD4+ T

cells [40]. The Immune Epitope Database (IEDB) analysis resource was used for the prediction

of T-cell epitopes in the prioritized pathogen proteins [41]. Stabilized Matrix Method (SMM)

prediction approach was utilized to identify 9-mer MHC-I epitopes [42] and the NetMHCII-

panEL 4.1 prediction algorithm was used to predict 15-mer MHC-II epitopes [43]. We used

the entire collection of human HLA reference set. Top binding overlapping epitopes were pri-

oritized with an IC50 value of<200 nM [35, 44]. ABCPred webserver (http://codes.bio/

abcpred/) was used to predict B-cell epitopes with a cut-off value of>0.5, and other default

parameters. The server detects linear B-cell epitopes that induce humoral immune responses

and stimulate B lymphocytes [45]. The effective synthesis of a vaccine construct is affected by

the variations in the distribution and expression of human HLA alleles among different ethnic

groups and various regions of the world [46]. The population coverage of the prioritized

MHC-I and MHC-II epitopes was determined by the IEDB population coverage tool. The tool

calculates population coverage based on the distribution of HLA-binding alleles of each priori-

tized epitope in multiple global regions [47]. The IEDB epitope conservancy tool was
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employed to assess the conservation of the prioritized MHC-I and MHC-II epitopes among

various C. difficile strains.

2.2.3 Multi-epitope-based vaccine engineering. Overlapping B- and T-cell epitopes were

prioritized and further examined for their allergenicity, antigenicity, and toxicity parameters.

The overlapping epitopes were also screened against human epitopes to avoid autoimmune

responses. The non-homology threshold was set at an E-value >0.05 [48]. The top-lead

Fig 1. The methodological layout to prioritize drug and vaccine targets in the core proteome of C. difficile via comparative and subtractive

proteogenomic analysis, immunoinformatics approaches, and druggability analyses.

https://doi.org/10.1371/journal.pone.0293731.g001
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overlapping epitopes were used to design a multi-epitope chimeric vaccine, using different

adjuvant and linker peptide sequences, to enhance the immunogenicity of the designed vac-

cine construct [49]. The Pan DR Helper T Epitope (PADRE) sequence was also incorporated

in the vaccine construct to avoid polymorphisms of HLA-DR molecules in case of different

populations [50]. The “HEYGAEALERAG” and “GGGS” linkers were used to conjugate the

prioritized overlapping epitopes [42]. The prioritized overlapping B- and T-cell epitopes in the

designed vaccine model ensure the generation of both cell-mediated and humoral immune

responses against the antigenic peptide vaccine construct [44]. EAAAK linker was used to con-

nect the adjuvant i.e., β-defensin at the N-terminus of the multi-epitope chimeric vaccine con-

struct. A strong immunostimulatory adjuvant enhances the immunogenicity of the designed

vaccine construct and activates long-term innate and adaptive immunity against pathogens

[51].

2.2.4 Immunological and physicochemical properties assessment. The designed multi-

epitope vaccine construct with various combinations of epitopes was subjected to immuno-

genic analysis. The AlgPred webserver (https://webs.iiitd.edu.in/raghava/algpred2/) was used

to assess the allergenic behavior of the designed vaccine construct [47]. The VaxiJen v2.0 [38]

and ANTIGENpro (http://scratch.proteomics.ics.uci.edu) [52] webservers were used for anti-

genicity assessment of the vaccine construct. These servers evaluate the antigenicity based on

the principal amino acid properties using auto cross covariance (ACC) transformation [38]

and 10 fold cross validation of the peptide sequence against known protein data files [53]. Like-

wise, the solubility of the vaccine construct was calculated by SOLpro webserver [54]. The

ProtParam program on the ExPASy server (https://web.expasy.org/protparam/) was used to

determine the various physicochemical parameters of the vaccine construct [55].

2.2.5 Secondary and tertiary structures prediction, refinement, and validation. Sec-

ondary structure prediction of the designed vaccine construct was performed using

PRISPRED 4.0 (http://globin.bio.warwick.ac.uk/psipred/) [56] and SOPMA (http://www.ibcp.

fr/predict.html) [57] servers. The servers use position-specific scoring matrices to predict the

transmembrane topology, transmembrane helix, and recognition of folds and domains in the

protein sequence. The tertiary structures of the multi-epitope vaccine constructs were gener-

ated by Phyre2 web tool (http://www.sbg.bio.ic.ac.uk/phyre2) [58] and further refined by the

GalaxyRefine web program (http://galaxy.seoklab.org/refine) [59]. Subsequently, the refined

tertiary structure was validated by the ERRAT tool, Ramachandran plot of PROCHECK suite

[60] (https://saves.mbi.ucla.edu/), and ProSA-Web [61] server (https://prosa.services.came.

sbg.ac.at).

2.2.6 Vaccine-receptor docking analysis. ClusPro is a protein-protein docking server

(https://cluspro.org) that was used to study molecular interactions between the designed vac-

cine construct with human HLA and TLR receptors to determine receptor-vaccine interac-

tions [62]. The refined vaccine constructs were docked against HLA-A*11–01 (PDB ID:

5WJL), MHC-II allele HLA DRB1*04–01 (PDB ID: 5JLZ), TLR2 (PDB ID: 6NIG), and TLR4

(PDB ID: 3FXI) receptor molecules. The vaccine-receptor docked complex with the lowest

docking score was prioritized for immunological validation. The molecular interactions

between the residues in the vaccine-receptor complex were determined using the PDBsum

programme (https://www.ebi.ac.uk/thornton-srv/databases/pdbsum/) [63].

2.2.7 In Silico immune simulation. The C-ImmSim web program (http://www.cbs.dtu.

dk/services/C-ImmSim-10.1/) was used for the computational immune simulations of the

multi-epitope vaccine to assess the immunogenic potential of the designed vaccine [64]. The

server employs multiple machine learning methods to predict the potential stimuli of the host

immune system and provides information on humoral and cellular responses to the antigen

[65]. The standard clinical protocol calls for a four-week interval between two vaccine doses
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[66]. We followed the protocol previously used by Aslam et al., 2021 to carry out the immune

simulation of the designed chimeric vaccine construct [44]. The simulation was run for 1, 84,

and 168 hours with the default settings. The immune system was simulated for a thousand

times using the HLA-A*0101 and A*0201, HLA-B*0702 and B*3901, HLA-DRB1*0101, and

DRB1*0401 antigens.

2.2.8 In Silico codon optimization and in-silico restriction cloning. The prioritized

multi-epitope vaccine construct was subjected to codon optimization and in-silico restriction

cloning. Java Codon Adaptation Tool (JCAT) (http://www.prodoric.de/JCat) server was uti-

lized for reverse translation of the peptide sequence to cDNA. The codons were optimized to

achieve the maximum expression of vaccine in the bacterial expression system [67]. The maxi-

mum possible expression potential of the cloned vaccine gene was calculated by the codon

adaptation index (CAI) and percentage GC content. The optimal CAI value reported for favor-

able transcriptional and translational efficacy is 0.8–1, while the optimum GC content is 30%-

70% [42, 68]. The optimized prioritized vaccine gene was computationally cloned in the E. coli
vector using the Snapgene (https://www.snapgene.com/) software. The Addgene server

(https://www.addgene.org/) was used to retrieve the E. coli plasmid pET28a_TIAL1 for

computational restriction cloning [69].

2.3 Subtractive proteomics and druggability analysis. The human proteome (Taxonomy

ID: 9606) and the human-gut proteome (retrieved from TiD database [70]) were searched for

homologs of the non-paralogous pathogenic protein sequences using the standalone BLASTp

tool [71], with an E-value cut off of 10−4, bit score�100, query coverage�35%, and sequence

identity�35%. In-house python-based tool was used to filter out homolog protein sequences

based on set parameters. The pathogen-specific protein sequences were further screened

against DEG (Database of Essential Genes) [72] via BLASTp to identify the pathogen essential

proteins involved in different metabolic pathways. Human non-homologous pathogen essen-

tial proteins in the cytoplasmic regions were subjected to druggability analysis to identify

potential drug targets and further used to identify potent inhibitors against C. difficile infec-

tions. The DrugBank database was screened to identify novel drug target in the shortlisted pro-

teins via BLASTp parameters set at an E-value cut off of 10−4, Bit score <100, query coverage

�35%, and sequence identity�35%. At the threshold values, the non-hit proteins were

selected as potential drug targets. Protein Data Bank (PDB) database [73] was curated to deter-

mine experimentally validated 3D-structures of the shortlisted C. difficile proteins. The 3D-

structures of the shortlisted C. difficile proteins were predicted by the SWISS-MODEL web

tool [74] with<90% sequence homology with the PDB database entries. 3D-structural valida-

tion was carried out using the PROCHECK suite of programs [60]. Putative active sites in

these protein structures were determined using the PockDrug server [75]. STRING database

v10.5 [76] was used to determine the protein-protein interaction (PPI) and hub proteins iden-

tification. Proteins with a high average node degree (K�5) were considered as hub proteins.

The hub proteins are of critical importance for the survivability of pathogens.

2.3.1 Pharmacophore-based virtual screening. The Pharmit webserver [77] was utilized

for designing pharmacophore model, using the crustal structure of putative nitroreductase in

complex with fmn (Flavin Mononucleotide) (cd3205) acquired from C. difficile 630 at 1.35 Å
resolution (PDB: 3GFA). A pharmacophore is a spatial arrangement of essential features of an

interaction within a molecular structure. The server is based on state-of-the-art sub-linear

algorithm to screen millions of compounds in a large number of compound databases i.e.,

MolPort, ZINC, PubChem, and ChEMBL. Pharmit uses AutoDock Vina scoring function to

evaluate pharmacophore models, molecular structures, and energy minimization [77, 78]. The

pharmacophore model was constructed based on 8 pharmacophore features (2 hydrogen

donors, 5 hydrogen acceptors, and 1 hydrophobic). The resultant hit compounds list was
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further minimized to obtain the top most significant molecules among the millions of com-

pounds available in the Pharmit repository.

2.3.2 Molecular docking and ADME profiling. The drug-like behavior of the top 10 hit

compounds was evaluated by Lipinski’s rule of five [79]. Molecular docking analysis deter-

mines the binding orientations and affinities of the drug-like compound with the receptor pro-

tein [80]. The top 10 hit drug-like compounds were subjected to molecular docking analysis

with the target protein via CB-Dock server [81]. CB-Dock improves the accuracy of the pre-

dicted binding site of the target protein and binding poses of the query ligand using a novel

curvature-based cavity detection approach (CurPocket) and performs docking via the Auto-

Dock Vina program [81]. Protein-ligand interaction analysis and visualization were performed

by Discovery Studio Visualizer v.4.5 Client version (Accelrys, San Diego, CA, USA). The

ADME (Absorption, Distribution, Metabolism, and Excretion), physicochemical, and phar-

macokinetic properties were examined using SwissADME web resource [82].

2.3.3 Molecular dynamic simulation. The highly effective ligand prioritized after ADME

profiling was subjected to molecular dynamic (MD) simulations. MD simulation was per-

formed to evaluate the stability, flexibility, hydrogen bond interaction, and inhibitory potential

of small drug-like compounds. The GROMACS 2019.2 software was used for MD simulation

[83]. The parameters used for simulations were GROMOS96 43a1 force-field, solvation with

TIP4P water model, cubic boundary box type calculated through the buffer and NVT and

NPT ensemble for 100 ns trajectory at 1 bar pressure and 300K temperature [50]. Finally, the

trajectory analyses were calculated for root-mean-square distance (RMSD), root-mean-square

fluctuation (RMSF), radius of gyration (Rg), and hydrogen bonds to study the interaction pat-

tern of ligand and dynamic fluctuation in protein [84].

3.0 Results

3.1 Core proteome retrieval

The core proteome of C. difficile retrieved from EDGAR yielded a total of 42,700 protein

sequences. The removal of redundant or paralogous sequences resulted in 2,113 non-paralo-

gous pathogen core proteins (S1 File).

3.2 Subcellular localization

PSORTb categorized the non-paralogous pathogen proteins into their corresponding regions,

including the cytoplasm, periplasm, intermembrane space, outer membrane, and extracellular

spaces (Table 1). Cytoplasmic proteins were regarded as the best drug candidates, whereas sur-

face proteins were prioritized for model vaccine constructs prioritization.

3.3 Reverse vaccinology

3.3.1 Vaccines candidates identification. Core proteins located on the outer membrane

and extracellular regions of cells were prioritized for the vaccinomics study. The antigenicity

Table 1. Subcellular localization of C. difficile-specific non-redundant proteins.

S.No Cellular localization Number of Proteins

1. Cytoplasmic 1226

2. Cytoplasmic Membrane 502

3. Extracellular 17

4. Cell-wall 27

5. Unknown 341

https://doi.org/10.1371/journal.pone.0293731.t001
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of the prioritized proteins was predicted by the Vaxijen v2.0 webserver with 79–89% accuracy

[38]. Four proteins (CD630_18220, CD630_27870, CD630_16310, and CD630_10170) were

prioritized based on immunological parameters (Table 2). These proteins were subjected to B-

and T-cell epitopes prediction for in silico chimeric vaccine designing. Vaccine candidate pro-

teins were selected based on antigenicity, allergenicity, and toxicity parameters.

3.3.2 MHC-I, MHC-II, and B-cell epitopes prediction. The B- and T-cell epitopes were

predicted from vaccine candidate proteins to design potential multi-epitope vaccine constructs

against C. difficile. The lead MHC-I and MHC-II epitopes for the prioritized proteins were

selected based on an IC50 values<200 nM. BCpred scores greater than 0.8 and 75% specificity

were used to predict overlapping B-cell epitopes. Overlapping lead epitopes were selected from

each prioritized vaccine candidate protein based on non-allergenic, non-toxic, and high anti-

genic nature. Overall, 12 such epitopes were prioritized to design a highly immunogenic vac-

cine construct (S1 and S2 Tables). The main objective was to determine key overlapping

epitopes capable of eliciting cell-mediated and humoral immune responses. Overlapping epi-

topes were scanned against human peptides to eliminate homologous epitopes based on the E-

values. Conservation of the prioritized epitopes was ensured to be 100% in multiple C. difficile
strains. The conserved epitopes are assumed to provide broader protection against various C.

difficile strains [85]. The IEDB results revealed that the prioritized epitopes showed >97% cov-

erage of the worldwide populations; however, the population coverage of some epitopes was

high in various regions of the world (S1 Fig and S3 Table).

3.3.3 Multi-epitope chimeric vaccine designing. A multi-epitope-based chimeric vaccine

was designed using the prioritized human non-homologous overlapping immunodominant

epitopes. The GGGS and HEYGAEALERAG linkers were used to join the selected epitopes.

These linkers are responsible for the structural stability to the vaccine construct and allow each

epitope to independently perform its protective role in human body after the vaccine adminis-

tration [86]. The epitopes were linked to beta-defensin peptide sequence at the N-terminus

using EAAAK linkers to enhance immunogenic responses. The consequences of HLA-DR var-

iation in various groups have been countered by incorporating PADRE peptide sequences into

the vaccine design. It has been previously reported that PADRE peptide-containing vaccine

models provide enhanced immunity and robust cytotoxic T lymphocyte (CTL) responses

against antigens [87] (Fig 2A).

3.3.4 Immunogenicity and phycicochemical properties assessment. The immunological

properties determined a highly antigenic, non-allergenic, and non-toxic nature of the designed

vaccine construct. Antigenicity scores of 0.882658 and 1.0433 calculated using ANTIGENpro

and VaxiJen 2.0, respectively, indicate the substantial antigenic nature of the designed chimeric

vaccine construct. An AlgPed score of -0.47191405 indicated that the designed chimeric vac-

cine construct exhibited non-allergenic behavior. The solubility score of 0.619589 predicts

high solubility of the chimeric vaccine upon expression. The ProtParam web tool was

employed to predict various physiochemical properties of the chimeric vaccine. The optimal

molecular weight of the vaccine construct was calculated to be ~43 KDa which indicates easy

purification of the vaccine. The grand average of hydropathicity (GRAVY) value was -0.376

Table 2. Vaccine candidate proteins finalized based on antigenicity, allergenicity, and toxicity parameters.

Protein IDs Protein Names Allergenicity Antigenicity VaxiJen v2.0 (Threshold >0.4) Toxicity

CD630_18220 thiol peroxidase Non-Allergen 0.5455 Non-Toxin

CD630_27870 cell surface protein Non-Allergen 0.4669 Non-Toxin

CD630_16310 superoxide dismutase Non-Allergen 0.4338 Non-Toxin

CD630_10170 multidrug family ABC transporter ATP-binding protein/permease Non-Allergen 0.4630 Non-Toxin

https://doi.org/10.1371/journal.pone.0293731.t002
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and aliphatic index was 66.56, indicating hydrophilic nature of the chimeric vaccine construct.

The Instability Index score of 32.70 predicts the stability of the construct. Immunological and

physicochemical properties of the construct indicate the capabilities of the designed vaccine

construct to elicit significant immunogenic responses.

3.3.5 Secondary and tertiary structures prediction, refinement, and validation. The

secondary structure elements of the chimeric vaccine depicted 36.94% α-helices, 12.50% β-

sheets, 29.17% coils, and 21.39% extended strands (S2 Fig). The presence of α-helical coil-

coiled domains in the multi-epitope chimeric vaccine construct is critical in order to enable

proper protein folding based on standard protein structures, and confers an effective humoral

immunity in response to a specific pathogen [88]. The tertiary structures of the chimeric vac-

cine constructs were predicted by Phyre2 web tool, refined using the GalaxyRefine server (Fig

2B), and further validated by Ramachandran plot. The ERRAT quality score was calculated

100%, Ramachandran plot revealed that 94.7% of the residues appeared in the core region of

the plot (Fig 2C), and the z-sore of -4.57 of the refined vaccine constructs determined by

ProSA-web plot represented a high-quality 3D structure of the vaccine construct (Fig 2D). The

high structure validation scores of the proposed vaccine indicated a prediction with a topology

of greater accuracy.

3.3.6 Vaccine-receptor docking analysis. Molecular docking analysis was carried out to

evaluate the binding promiscuity of the designed vaccine with human HLA and TLR immune

receptors. ClusPro webserver was used for rigid body protein-protein docking based on bil-

lions of confirmations sampling, RMSD-based clustering, and structural refinement based on

energy minimization. The docking analysis revealed that the vaccine construct exhibited

Fig 2. Vaccine design, 3D-structure prediction, and validation. (A) Multi-epitope chimeric vaccine construct. (B) Refined 3D-structure of the vaccine

construct. (C) Ramachandran plot with 94.7% of residues in the favored region of the plot. (D) ProSA-web plot representing the z-sore (-4.57) of the refined

vaccine construct.

https://doi.org/10.1371/journal.pone.0293731.g002
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lowest binding energy of -780.2 kcal/mol with HLA-A*11–01 (PDB ID: 5WJL) and -1029.4

kcal/mol with MHC-II allele HLA DRB1*04–01 (PDB ID: 5JLZ), -949.6 kcal/mol with TLR2

(PDB ID: 6NIG), and -751.9 kcal/mol with TLR4 (PDB ID: 3FXI) (Fig 3). The docking results

demonstrated that the vaccine design was capable of developing several molecular interactions

with HLA and TLR receptors binding sites. The lowest docking energy scores showed the

highest binding affinity of vaccine construct with human immune receptors. These findings

speculate the capability of vaccine to trigger potent immune responses when administered to a

human host. The molecular interactions between the residues of the vaccine-MHC-I complex

demonstrated 12 hydrogen bonds, 5 salt bridges, and 146 non-bonded interactions. Vaccine-

MHC-II complex showed 7 hydrogen bonds, 3 salt bridges, and 148 non-bonded interactions.

The interactions between vaccine-TLR2 complex revealed 7 hydrogen bonds, 3 salt bridges,

Fig 3. Molecular docking of the multi-epitope chimeric vaccine construct with the human HLA and TLR immune receptors. The blue color represents

receptor molecule and the red color represents vaccine construct. (A) Vaccine construct and HLA (PDB ID: 5WJL) docking complex with a global energy of

-780.2 kcal/mol. (B) Vaccine construct and HLA (PDB ID: 5JLZ) docking complex with a global energy of -1029.4 kcal/mol. (C) Vaccine construct and TLR2

(PDB ID: 6NIG) docking complex with a global energy of -949.6 kcal/mol. (D) Vaccine construct and TLR4 (PDB ID: 3FXI) docking complex with a global

energy of -751.9 kcal/mol.

https://doi.org/10.1371/journal.pone.0293731.g003
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and 148 non-bonded contacts, whereas 9 hydrogen bonds, 1 salt bridge, and 117 non-bonded

interactions were observed between the residues of vaccine-TLR4 complex (S4 Table and S3 Fig).

3.3.7 Computational immune simulation. The immune simulation results predicted a

substantial increase in the primary and secondary responses caused by the prioritized multi-

epitope chimeric vaccine construct. Theoretically, this pattern is consistent with the generation

of a real-time immune response. The primary simulated responses showed elevated IgM levels.

The simulation of secondary and tertiary immune responses showed momentous escalation of

B-cells population and increase in the levels of IgG1, IgG2, IgM, and IgM+IgG antibodies were

observed, while antigen levels decreased (Fig 4A and 4B). These results suggest immunological

memory generation, as evidenced by an increase in memory B-cell population and isotype

switching. As a result, repeated exposures to chimeric antigen led to a precipitous drop in anti-

gen levels (Fig 4C). After repeated antigen exposure, the number of cytotoxic (TC) and helper

(TH) cells increased, and associated memory responses were predicted to initiate (Fig 4D and

4E). Additionally, macrophage, dendritic cell, and natural killer cell populations were

Fig 4. In-silico immune simulation of the chimeric vaccine peptide determined by C-ImmSim server. (A, B) A significant rise of the B-cell populations and

high levels of immunoglobin antibodies, with a reduction in antigen levels. (C) The rising B-cell population with repeated antigen exposure. (D, E) The increase

in helper and cytotoxic T-cell population with repeated antigen exposure. Dendritic cell, macrophage, and natural killer cell populations increase during

immunization period. (I) Increased cytokine concentrations following repeated antigen exposure.

https://doi.org/10.1371/journal.pone.0293731.g004
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stimulated and kept at high levels throughout the immunization period (Fig 4F–4H). More-

over, higher levels of an interleukin like IL-2 and a cytokine like IFN-y were observed (Fig 4I).

These results indicated that the proposed vaccine construct may elicit significant immune

responses against the pathogen.

3.3.8 Codon optimization and in-silico cloning. The top-ranked vaccine construct was

subjected to codon optimization and in silico restriction cloning to evaluate the expression

potential of the proposed vaccine model. JCAT revealed that the GC content of the optimized

cDNA sequence of the prioritized vaccine construct was predicted to be 67.96% with a signifi-

cant CAI value of 0.95 (S5 Table and S4 Fig). These values are in the optimum range i.e. GC

content 30%-70% and CAI index of 0.8–1.0 [67], suggesting that the vaccine construct had a

high expression potential. The codon sequence of the proposed vaccine was successfully

inserted into the pET28a_TIAL1 vector to ensure heterologous cloning and expression of the

vaccine in the E. coli expression system (S5 Fig).

3.4 Subtractive proteomics and druggability analysis

The non-paralogous proteins were subjected to additional screening against proteins from the

human proteome and the human gut microbiome, which resulted in 610 non-homologous

hits (S2 File). The proteins homologous to human and human gut microbiome proteins were

discarded as they might cause immuno-metabolic disorders in humans. Screening of DEG

resource yielded 385 C. difficile core proteins, showing significant sequence similarity with the

essential proteins in the database (S3 File). These human non-homologous and C. difficile
essential proteins might be promising drug and vaccine targets against C. difficile-mediated

infection. Based on the subcellular localization (Table 1), the cytoplasmic proteins were priori-

tized as suitable drug targets. Finally, 184 proteins were prioritized as suitable drug candidate

proteins during downstream druggability analysis. These proteins showed no homology with

the DrugBank database entries. The PDB database was manually screened for the availability

of 3D structures of these proteins. Among the 184 proteins, the putative nitroreductase in

complex with fmn (cd3205) structural information was available (PDB: 3GFA). The PPI analy-

sis via STRING v10.5 database predicted the putative nitroreductase as a hub protein with the

node degree (K)�5 (Fig 5), representing the high number of molecular interactions. Among

the rest of the proteins targets the top 100 proteins were prioritized based on PockDrug proba-

bility scores > 0.5 and their 3D structures were designed using the SWISS-MODEL server

[74]. The 3D-structure evaluation indicated the high quality of these proteins based on the

ERRAT tool, QMEAN Z-scores [89], and RAMPAGE scores [60] (S6 Table). These top drug

targets were thought to have promising druggable pockets that could serve as anchors for

small drug-like compounds and play critical roles as hub proteins in C. difficile.
3.4.1 Pharmachophore modeling, virtual screening, and molecular docking. Among

the shortlisted drug-target candidate proteins, putative nitroreductase (PDB: 3GFA) was prior-

itized for pharmacophore-based virtual screening to identify small drug-like compounds. The

obtained pharmacophore model based on the 3D-structure of a putative nitroreductase from

Pharmit server showed 8 pharmacophore features i.e., two hydrogen donors, five hydrogen

acceptors and one hydrophobic feature as shown in Fig 6. The top ten screened molecules

were prioritized based on lowest binding energy after being docked repeatedly (S7 Table). The

scores and Root Mean Square Distance (RMSD) values of the selected compounds are shown

in Table 3. FMN- dependent nitroreductase is the member of a structurally homologous fam-

ily. The enzyme bounded FMN cofactor mediates the electron transfer from NAD(P)H to pro-

ceed the first step of the ping-pong Bi-Bi reaction pathway. The crystal structure of this

enzyme shows the binding position of the FMN cofactor is highly conserved i.e., residues 10–
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25 and 40–55. In the present investigation, this data was used in a pharmacophore-based

computational screening procedure. The top hit compound i.e. MolPort-001-785-965 showed

interactions with the residues in the conserved region, i.e. Asn17, Ser19, Thr50, Glu51, and

Lys54 of the nitroreductase. Besides, the top hit compound was involved in interactions with

the flexible region (residues 90–134) (Fig 6A), which is a part of cofactor and substrate binding

site [90]. Moreover, the docking analysis showed that all the top 10 compounds exhibited

interactions with the residue in the conserved region of the nitroreductase. The top 10 hit com-

pounds were further subjected to molecular docking analysis to re-evaluate the binding con-

formation of the lead compounds within the active site of the receptor molecule (Fig 6B).

These drug-like compounds might have a potential to combat the C. difficile-mediated infec-

tion and may be worthy of consideration in drug discovery and development [91].

3.4.2 Drug likeliness and ADME analysis. SwissADME provides detailed information on

the physicochemical properties, ADME, and medicinal potential of a compound. Drug likeli-

ness is an intricate balance between structural and molecular properties of a compound that

shows a certain degree of similarity with a known drug molecule. The drug likeliness of a com-

pound is calculated based on different molecular parameters, such as molecular weight, hydro-

phobicity, hydrogen bonding, reactivity, electron distribution, pharmacophore entity,

bioavailability, molecular stability, and toxicity [92]. Lipinski’s rule of 5 is the most commonly

Fig 5. Protein-protein interaction of pathogen protein CD630_32050 (putative nitroreductase) with PDB ID:

3GFA acquired from STRING database. Red color indicated the hub protein.

https://doi.org/10.1371/journal.pone.0293731.g005
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used models to evaluate a therapeutic drug-like compound based on its solubility and perme-

ability [79]. The four major pharmacokinetic parameters of a drug-like compound are absorp-

tion, distribution, metabolism, and excretion (ADME). The compound with the best

molecular interaction and binding energy with the receptor protein may not be the most suit-

able drug. A reliable drug should be completely and rapidly absorbed in the gastrointestinal

tract, directly distributed towards the respective target, metabolized in a way that does not

affect its activity, and ultimately be eliminated without causing any harm [93]. The pharmaco-

kinetic properties of a molecule can be calculated using chemical descriptors as there is a sig-

nificant relationship between the chemical structure and physicochemical properties.

The pharmacokinetics and pharmacological properties of the top ten Pharmit hits were cal-

culated to evaluate the efficacy of these compounds as drugs (S7 Table). The extremely hydro-

phobic compounds are poorly soluble in the gastrointestinal tract and solvate fat globules [94].

Fig 6. (A) The active site of the protein CD630_32050 was used to create a pharmacophore model. The characteristics are denoted by different colors. White

represents a hydrogen-bond donor, yellow represents a hydrogen acceptor, green represents hydrophobic properties, and aromatic represents aromatic features

(pink). (B) The molecular interactions of the top hit docked compound (CD630_32050) within the substrate-binding site. The nature of protein-ligand

interactions is shown in different colors.

https://doi.org/10.1371/journal.pone.0293731.g006

Table 3. Pharmit scores and RMSD values of the top 10 hit compounds obtained from pharmacophore-based vir-

tual screening using the Pharmit server.

Compounds (MolPort IDs) Pharmit Score RMSD Values

C1 MolPort-044-559-927 -8.57 1.1096

C2 MolPort-044-724-190 -8.57 1.065

C3 MolPort-003-939-021 -8.50 0.843

C4 MolPort-021-783-318 -8.00 0.803

C5 MolPort-039-136-733 -7.72 1.364

C6 MolPort-003-934-329 -7.36 0.807

C7 MolPort-001-785-965 -7.34 0.898

C8 MolPort-004-964-255 -6.92 1.135

C9 MolPort-003-666-643 -6.83 0.955

C10 MolPort-044-561-302 -6.68 0.941

https://doi.org/10.1371/journal.pone.0293731.t003
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Based on physicochemical properties, all the compounds exhibited drug-like properties i.e.,

holding high solubility with the molecular weight of less than 500 Da. According to the ADME

results, these compounds showed low gastrointestinal absorption and did not penetrate the

blood-brain barrier (BBB). Compounds C3, C4, C5, and C8 are substrates for the p-glycopro-

tein, which is associated with pumping xenobiotics and detrimental components back into the

gut lumen, hence pharmacokinetically decreasing the efficacy of being a potential drug [95].

ADME profiling ensured no mutagenicity or toxicity for all these drug-like compounds.

Among these compounds, C1, C2, C3, C4, C5, C8, and C10 showed Lipinski violations,

whereas C6, C7, and C9 did not show any Lipinski’s rule violation, making them ideal drug-

like molecules based on C. difficile nitroreductase inhibition. However, the rest of the lead

compounds may require extra chemical transformation to have potential drug-like nature

(S8 Table).

3.4.3 Molecular dynamic simulations. The MD simulation analyses were performed for

the prioritized nitroreductase-C7 complex docked models to validate the stability of molecular

interactions and flexibility of the complex [96]. The RMSD values putative nitroreductase-C7

complex rapidly increased from 0.9 nm in the starting and maintained the equilibrium at 0.6

nm between 25 to 45 ns. The system was observed to gain stability at 0.6 nm after 48 ns which

remained constant throughout the remaining simulation time (Fig 7A). In this analysis, it was

observed that the complex had some fluctuations in ligand up to 45 ns, while it was observed

to be completely stable after 50 ns. According to the RMSF calculations, the complex fluctuated

maximally up to 0.62 nm and did not exceed further because of the rigidity of the structure

(Fig 7B). Most of the residues in the protein exhibited an RMSF value less than 0.4 nm, indicat-

ing that the ligand does not undergo any significant conformational change over the simula-

tion time. Hydrogen bonding between a ligand and receptor is essential for stabilizing the

ligand-protein complex. Fig 7C displays the total number of hydrogen bonds formed in the

complex, calculated after 100 ns of simulation time. Analysis of the H-bonds revealed that the

ligand in the complex had established up to 6 H-bonds. It can be concluded that the ligand

bound effectively and tightly to the putative nitroreductase. The Rg enables the measurement

of the compactness fluctuations of a ligand-protein complex [42]. The average Rg value of

putative nitroreductase was calculated as approximately 1.7 most of the time during the simu-

lation (Fig 7D). This result indicated that the value of Rg remained steady throughout the MD

simulation, suggesting stable protein folding. Compared to the MD simulation results of the

protein and the protein-ligand complex, the RMSF values indicated that the residues from 90–

100 interacting with the C7 were showing lower and smoother fluctuations as compared to the

corresponding part of the monomer protein (S6 Fig). The results are in good agreement with

the binding modes of the complex structure, ensuring the stability of the complex.

4.0 Discussion

The emergence of antibiotic-resistant strains and the recurrence of CDIs represent an urgent

threat to the clinical challenges in public health. The treatment options for moderate to severe

cases are extremely limited. No commercial vaccine is available, and a limited number of

drugs have been proven effective against CDIs. New therapeutic strategies are required to

tackle multi-drug resistant strains of C. difficile. Active vaccination provides the best opportu-

nity to prevent CDIs in high-risk individual. In the recent years, intense research led to the

development of experimental vaccines against CDIs, which are currently in clinical trials.

Recombinant peptide vaccines and toxoid-based vaccines have been proven promising in

healthy adults; however, challenges associated with such vaccination strategy remained in

elderly and immunocompromised individuals [97]. Moreover, the peptide sequence variability
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from different C. difficile isolates raised the question of their ability to provide broader protec-

tion against CDIs. Therefore, more efforts are required to optimize the immunization strate-

gies to enhance the efficacy of vaccines against CDIs. Core genome-mediated analysis is a

promising approach for the identification of potential therapeutic targets in C. difficile as the

core genome is conserved specie-wise. In this study, we utilized comparative genome analysis

to identify pathogen-specific core drugs and vaccine target proteins. Furthermore, we used

immunoinformatics and vaccinomics approaches to design a multi-epitope chimeric vaccine

construct that can generate specific immunogenic responses against C. difficile.
We prioritized four proteins located in the outer membrane and extracellular regions as

potent vaccine targets, based on high immunological properties. Highly conserved B-cell,

MHC-I, and MHC-II epitopes were determined from the prioritized proteins to design a

highly immunogenic vaccine construct against C. difficile following the reverse vaccinology

techniques. Immune enhancers and adaptable adjuvant peptides were used to bind together

overlapping B- and T-cell epitopes. To induce a targeted immune response against the patho-

gen while limiting negative responses towards the host, multi-epitope-based vaccine designing

is a unique therapeutic method [98]. Immunological properties unveiled high antigenicity,

Fig 7. Molecular dynamics (MD) simulation results A) C7-putative nitroreductase RMSD analysis B) RMSF analysis of Cα atoms C) H-bond estimation

during 100 ns simulation D) Radius of gyration (Rg) analysis.

https://doi.org/10.1371/journal.pone.0293731.g007
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non-allergenic behavior, and non-toxic properties of the designed vaccine construct. The

small molecular weight and hydrophilicity score of the vaccine construct determined highly

solubility of the vaccine upon expression. Moreover, the stability score indicates that the

expressed vaccine construct will be of high quality and ready for use. The tertiary structural

analysis demonstrated a maximum number of residues in the favorable region of the Rama-

chandran plot, confirming the structural stability of the design vaccine construct. Immune

simulation results validated the resemblance to actual cellular immune responses [29]. Strong

immunogenic responses were triggered by repeated exposure to the same antigen. The clear

development of memory B cells and T cells would last for several months, with the memory in

the B cells. After repeated antigen exposure, the consistent high level of Ig production, T-cyto-

toxic, and T-helper cells indicated a humoral response. The molecular docking investigation

further indicated that the design vaccine construct exhibited strong molecular interaction with

human HLA and TLR immune receptors. These results indicate that the designed vaccine has

the capability of inducing strong immunogenic responses against C. difficile infections and

might be worthy of in vitro and in vivo investigations to confirm the findings of the current

study.

In addition, we employed subtractive genome analysis, druggability analysis, and virtual

screening approaches to identify novel inhibitors of C. difficile drug targets. Cytoplasmic pro-

teins were prioritized as suitable drug candidates and were further scanned against the entries

of DrugBank database for potential therapeutic drug targets identification. Non-hit proteins

indicate that they have not yet been established as drug targets for C. difficile. According to the

centrality-lethality law, inhibiting the activity of such proteins may be critical for the survival

of pathogens [99, 100]. The prioritized druggable proteins were non-homologous to both

human and human gut proteomes. In addition, objectives were set using rigorous threshold

criteria for fundamental druggability characteristics. Drug designing for such specific targets

will only affect the pathogen without disrupting the biological mechanism of the host. Among

the prioritized druggable targets, the crystal structure of nitroreductase (i.e. CD630_07560) is

available in the PDB database (PDB: 3GFA). Therefore, it was prioritized for the virtual screen-

ing of a drug-like molecule to identify novel drug-like compounds that inhibit the activity of

this enzyme. FMN- dependent nitroreductases belong to a group of flavoenzymes, that are

oxygen-insensitive and are essential for the reduction of nitro compounds in the presence of

NAD(P)H [101]. Numerous bacterial species have been shown to contain nitroreductases. The

physiological functions of these enzymes are unclear, although nitroreductases are believed to

play an important role in the responses to a variety of antibiotics, specific oxidative stress con-

ditions, and environmental chemical threats [102]. The expression of nitroreductase genes

might be controlled by the MarRA and SoxRS regulatory systems. Studies have reported that

nitroreductases have conserved domains for FMN binding, NAD(P)H electron transfer, and

nitroaromatic-substrate interactions. Moreover, nitroreductases are consistent with the

enzyme’s ping–pong bi–bi catalytic mechanism, which explains the broader substrate specific-

ity of these enzymes and establishes the groundwork for improving their activity for medicinal

applications [103]. Nitroreductase is also involved in antibiotic resistance and bacterial patho-

genesis [104]. For instance, nitroreductase has previously been reported in Enterobacter cloa-
cae and salmonella enterica to be involved in resistance against chloramphenicol [104];

however, no such reports are available concerning C. difficile.
The top ten hit compounds in this study were riboflavin derivatives, among which C6, C7,

and C9 followed all the Lipinski’s rule of five. The results of virtual screening against the Mol-

Prot database were refined based on RMSD and energy minimization. Based on the docking

scores and ADME-profiling, these compounds showed effective hydrogen-bond interactions

with the receptor in the conserved region. Riboflavin is a chemical analog of flavin
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mononucleotide (FMN) that shows antimicrobial activity against gram-positive bacteria. Ribo-

flavin directly binds to the peptides of the FMN riboswitch and suppresses FMN riboswitch-

lacZ receptor gene expression in Bacillus subtilis. Targeting the FMN riboswitch to disrupt the

expression of receptor genes with riboflavin results in antimicrobial activity against resistant

bacteria and may lead to the development of novel antimicrobial drugs [105, 106]. These

inhibitors showed strong binding interactions and safe drug profiles. Furthermore, the con-

stant binding free energy along the MD trajectories implies the possibility of antibacterial med-

ication [107]. However, additional in vivo and in vitro validation experiments should be

conducted to determine their pharmacological efficacy, biocompatibility, and role as effective

inhibitors.

Antibiotic resistance in bacteria has reached to an extremely dangerous level, and strains

resistant to most of the commonly used antibiotics are now reported at alarming rates in many

countries around the world [108]. Core genome-mediated analysis in combination with com-

parative and subtractive genome and/or proteome analysis identifies pathogen specific novel

therapeutic drug and vaccine targets against such resistant pathogens. Reverse vaccinology

approaches are novel strategies for the designing and developing broad-spectrum potential

vaccines with better safety and increased potency. Druggability and virtual screening analyses

serve as a starting point for the development of novel inhibitors, targeting pathogen-specific

proteins. The in silico approaches used in this study could pave the way for identifying novel

therapeutic targets among different pathogens and the development of specie-specific potent

vaccines and drugs that aid in the elimination of diseases caused by multidrug-resistant patho-

gens. Experimental and clinical assays are required for further validation of the results

acquired in this study.

5.0. Conclusions

In this study, the core genome of C. difficile was utilized to identify potential drug and vaccine tar-

gets against C. difficile infections. Subtractive proteomic analysis was performed to select patho-

gen-essential proteins that were non-homologous to the human and human gut proteomes. A

multi-epitope vaccine was designed utilizing lead overlapping B- and T-cell epitopes from the pri-

oritized four vaccine targets via reverse vaccinology. Highly immunogenic adjuvant and linker

peptides were used to conjugate the prioritized epitopes in a vaccine construct that can generate

strong host immunogenic response. The in silico restriction cloning analysis predicted effective

expression potential of the proposed vaccine construct in an E. coli system. Furthermore, molecu-

lar docking and immune simulation analyses revealed that the vaccine has the capability to gener-

ate strong cell-mediated and humoral immune responses against C. difficile through significant

binding affinities towards human immune receptors. Comparative genome analysis and multiple

in silico druggability methods have prioritized several potential drug targets in C. difficile which

have not been previously reported. FMN-dependent nitroreductases was prioritized for pharma-

cophore-based virtual screening to identify small drug-like compounds. The pharmacokinetic

properties based on ADME profiling identified the top hit compounds. Docking studies and

molecular dynamic simulation analysis identified potential binding affinities and stable interac-

tions between drug-like compounds and putative nitroreductase which may lead to new strategies

in drug development against multidrug-resistant C. difficile strains. Experimental and clinical

assays pursual are required to validate the finding of this study.
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