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Abstract

Universal and early recognition of pathogens occurs through recognition of evolutionarily

conserved pathogen associated molecular patterns (PAMPs) by innate immune receptors

and the consequent secretion of cytokines and chemokines. The intrinsic complexity of

innate immune signaling and associated signal transduction challenges our ability to obtain

physiologically relevant, reproducible and accurate data from experimental systems. One of

the reasons for the discrepancy in observed data is the choice of measurement strategy.

Immune signaling is regulated by the interplay between pathogen-derived molecules with

host cells resulting in cellular expression changes. However, these cellular processes are

often studied by the independent assessment of either the transcriptome or the proteome.

Correlation between transcription and protein analysis is lacking in a variety of studies. In

order to methodically evaluate the correlation between transcription and protein expression

profiles associated with innate immune signaling, we measured cytokine and chemokine

levels following exposure of human cells to the PAMP lipopolysaccharide (LPS) from the

Gram-negative pathogen Pseudomonas aeruginosa. Expression of 84 messenger RNA

(mRNA) transcripts and 69 proteins, including 35 overlapping targets, were measured in

human lung epithelial cells. We evaluated 50 biological replicates to determine reproducibil-

ity of outcomes. Following pairwise normalization, 16 mRNA transcripts and 6 proteins were

significantly upregulated following LPS exposure, while only five (CCL2, CSF3, CXCL5,

CXCL8/IL8, and IL6) were upregulated in both transcriptomic and proteomic analysis. This

lack of correlation between transcription and protein expression data may contribute to the

discrepancy in the immune profiles reported in various studies. The use of multiomic

assessments to achieve a systems-level understanding of immune signaling processes can
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result in the identification of host biomarker profiles for a variety of infectious diseases and

facilitate countermeasure design and development.

Introduction

The host innate immune response is the body’s first line of defense against pathogens [1, 2].

Human innate immune receptors recognize conserved signatures on pathogens known as

pathogen associated molecular patterns (PAMPs), which are important signaling molecules

released by pathogens during infection [3, 4]. These molecules bind host cell pattern recogni-

tion receptors (PRRs) typically found on endothelial, epithelial, or tissue-resident immune

cells such as macrophages and dendritic cells triggering a signal cascade that upregulates

expression of cytokines and chemokines. For example, Toll-Like-Receptor 4 (TLR4) recog-

nizes lipopolysaccharide (LPS), a PAMP found in Gram-negative bacteria [5]. The activation

of TLR4 triggers the nuclear factor κB (NF-κB) pathway and causes the release of cytokines

and chemokines [6]. Cytokines and chemokines signal and recruit specific immune cells to

the site of infection [7]. Cytokines include a wide array of molecules including interferons

(IFNs), interleukins (ILs), colony-stimulating factors (CSFs), tumor necrosis factors (TNFs),

and transforming growth factors (TGFs) [8]. Chemokines are divided into groups by the

positioning of their initial cysteine residues: XC, CC, CXC, and CX3C. CC chemokine

ligands (CCLs) have two adjoining cysteine residues, CXC ligands (CXCLs) have an amino

acid between the cysteine residues [9]. Neutrophils are among the first responders, stimulate

leukocyte signaling, phagocytosis, and degranulation [10]. Monocytes differentiate into

either macrophages for phagocytosis of extracellular pathogens or dendritic cells (DCs) for

antigen presentation [11].

Cultured human cell studies are often used as a model for generating biological insights

about specific aspects of a given disease [12]. Cell systems do not entirely replicate the physio-

logical complexity of innate immune recognition, but they provide a reliable and effective

model for controlled studies, including the ability to expose cells to individual pathogens or

molecules and measure responses over time. However, most cell studies are limited in scope

by focusing on a few key cytokine and chemokine targets and avoiding biological variation by

using a small number of replicates [13, 14]. Typically, these studies are designed to measure

either transcription (mRNA) or protein responses, not both, resulting in limited data sets

allowing for a direct comparison of potential mRNA and protein biomarkers of host responses

to specific stimuli [15, 16]. Cell regulation is determined by the interplay between mRNA, pro-

tein, metabolites and other components of the regulome [17]. Recent studies have highlighted

the poor correlation between mRNA and protein profiles in the same experimental system,

highlighting the role of other factors such as post-transcriptional machinery in modulating cel-

lular responses [18–21]. In order to begin to explore the correlation between transcriptomic

and proteomic profiles in innate immunity, we present a methodical comparison of transcrip-

tion and protein immune profiles in lung epithelial cells exposed to LPS derived from Pseudo-
monas aeruginosa, a common model for lung response to infection by Gram-negative bacteria

[22]. We examined expression of 84 mRNA transcripts and 69 secreted proteins, including 35

overlapping targets, from 5 biological replicates. Supernatants for protein measurements and

cell extracts for mRNA measurements were taken at the same time from the same cells, provid-

ing a paired examination of mRNA and protein levels. This is a first step towards developing a

multiomic approach to understanding innate immune signaling and identifying host bio-

marker profiles to diagnose and detect infectious diseases.
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Materials and methods

Cell culture and LPS exposure

Human lung epithelial A549 cells were obtained from American Type Culture Connection

(ATCC; CCL-185) and cultured in Kaighn’s Modified Ham’s Formulation F-12 Media (Ther-

moFisher Scientific; 21127022) with 10% fetal bovine serum (Sigma Aldrich; F2442-500ML)

and 1% v/v penicillin/streptomycin (ThermoFisher Scientific; 15140122). Two stocks (frozen

at passage #4) were grown separately for a single passage, then split into 6 separate cultures

each (total of 12). These 12 flasks, referred to as lineages, were grown for an additional passage

to increase biological variation. Over the course of 3 weeks, 5 passages of each cell line were

cultured in 24-well plates, with each of the 12 lineages cultured in 2 wells. The night before

adding to cells, LPS from P. aeruginosa suspended in water (Sigma Aldrich; L9143-25MG) was

sonicated and diluted to 10 μg/mL in fresh media and stored overnight at 4˚C. Once cells

reached >80% confluence, the media in one well of each lineage was replaced with media pre-

warmed to 37˚C containing 10 μg/mL LPS (treated), while the other well received fresh, pre-

warmed media without LPS (untreated). After 24 hours, the supernatant was removed and

stored at –80˚C until protein analysis and RNA was extracted from the cells using the Qiagen

RNeasy Mini Kit (Qiagen; 74106). Post-extraction, RNA concentration was measured using

the Qubit RNA Broad Range Assay Kit (ThermoFisher Scientific; Q10211) and stored at –

80˚C until further use.

Transcript expression analysis

500 ng RNA from each sample was used as input for first strand synthesis (Qiagen; 330404).

After first strand synthesis, samples were run on 96-well Human Cytokines and Chemokines

RT2 Profiler PCR Arrays (Qiagen; PAHS-150ZC-24) using the RT2 qPCR Master Mix (Qia-

gen; 330529). The Cytokine and Chemokine RT2 array measured RNA levels of 84 cytokines

and chemokines, 5 housekeeping genes, and included 7 control wells. mRNA expression was

measured for 100 replicates, 50 LPS-treated and 50 matching untreated controls from the

same lineage and plate. The plates were run on an Applied Biosystems StepOnePlus Real-

Time PCR Thermocycler (ThermoFisher Scientific; 4376600) using the following protocol:

95˚C for 10 min; 40 cycles: 95˚C for 15 sec; 60˚C for 1 min. Cycle threshold (CT) values were

used as input for data analysis and normalized to the housekeeping gene beta-2 microglobu-

lin (B2M). B2M was chosen as the housekeeping gene due to it having the least-significant

difference between treated and untreated samples (see S1 Fig). Fold change, also commonly

termed relative quantification or RQ, was calculated using pairwise 2-ΔΔCT for each tran-

script target T, which is the difference in normalized CT between the LPS-treated sample (+)

and its untreated control (-) from the same lineage l and plate p, then averaged across all N
samples,

Fold ChangeT ¼

X

p;l
2� DDCTT; p; l

N
ð1Þ

2� DDCTT; p; l ¼ 2
� DCTT;p;l;þ� DCTT;p;l;�ð Þ ð2Þ

DCTT;p;l;t ¼ CTT;p;l;t � CTB2M;p;l;t for t ¼ þ; � ð3Þ
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Protein analysis

Supernatants were analyzed for secreted proteins using the abcam FirePlex Discovery Human

Cytokine and Chemokine panel (abcam; ab243551), which measures protein levels of 69 cyto-

kines and chemokines and a negative control used for normalization. 35 of the proteins mea-

sured had their corresponding mRNA measured in transcript analysis above, providing direct

comparison between mRNA and protein levels. Prior to starting the FirePlex protocol, super-

natants were centrifuged at 2000 x g for 15 minutes to remove debris. Samples were processed

using the vacuum filtration plate option of the FirePlex protocol, vacuum filtration manifold

(abcam; ab204067), and analyzed on a Beckman Coulter CytoFLEX S Flow Cytometer (Beck-

man Coulter; C09766). The cytometer measured FITC (gain 70), PE (gain 50), and PC5.5

(gain 15), using a flow rate of 60 μL/min with samples run for 3 minutes or 5,000 events of

FITC signal�10,000. Raw output from the flow cytometer was analyzed using the Firefly

Analysis Workbench software from abcam (https://www.fireflybio.com), which generated

measurements of signal for each sample and protein. Known standards for each protein were

also run in the FirePlex assay and used to convert signal measurements to concentrations in

pg/mL. For comparative analysis, values above the maximum signal of the standard curve were

capped at the maximum value and values below the minimum signal of the standard curve

were capped at the minimum. Normalized protein concentrations �P½ � were obtained by divid-

ing each pg/mL value [P] by the control ratio value CR, which was the value of the negative

control [NC] for that sample divided by the average negative control value across all samples.

Fold-change for each protein target T was calculated by pairwise division of normalized pg/

mL treated values by untreated values, then pairwise-calculated fold-change was averaged

across plates p and lineages l.

Fold Change T ¼

X

p;l

�P½ �T;p; l;þ
�P½ �T;p; l;�

N
ð4Þ

�P½ �T;p;l;t ¼
P½ �T;p;l;t
CRp;l;t

for t ¼ þ; � ð5Þ

CRp; l;t ¼
NC½ �p; l;tX

p; l;t
NC½ �p; l;t

N

for t ¼ þ; � ð6Þ

Some protein samples detected no particles, meaning no FirePlex particles for a protein

were detected by the flow cytometer for that individual sample. As this non-detection does not

indicate absence of the protein in the sample but is the result of dropouts from random sam-

pling, these data cannot be considered true zeros. As a result, these samples were left out of the

analysis, as well as the analogous treated/untreated sample from the same lineage and plate for

pairwise comparisons.

Statistical analysis

Statistical analyses were performed using python 3.8.8 [23]. Significance of mRNA expression

was determined by pairwise Student’s t-test between B2M-normalized CT values (ΔCTT,p,l,t val-

ues in Eq 3 above) of LPS-treated samples and their corresponding untreated control. Signifi-

cance in protein expression was calculated by pairwise Student’s t-test between LPS-treated

samples and their corresponding untreated control using data normalized with negative con-

trol of each sample and converted to pg/mL. These values were chosen so that a pairwise
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Student’s t-test could be used, reflecting the paired treated/untreated sample of each plate and

lineage.

Results and discussion

Generation of reproducible transcription and protein expression profiles

following LPS exposure in lung epithelial cells

Human lung epithelial A549 cells were selected for this study. A549 cells are not a comprehen-

sive model for lung infection but have been used often for simple controlled studies of LPS

stress on cells [14, 24, 25]. Biological replicates of A549 cells in this study were derived from

twelve lineages, produced from two frozen stocks at the same passage number, then split into

six new flasks each and harvested at five time points (Fig 1a). At the five time points, cells were

Fig 1. Schematic of experimental workflow evaluating mRNA and protein expression of lung epithelial cells following LPS

exposure. a) Timeline of experiments. Two cell stocks at the same passage number were thawed and cultured. After one passage,

stocks were split into six flasks each (12 total lineages). At five timepoints over 11 passages, samples were collected from each

lineage. b) At each of the five time points, each lineage was seeded in two wells of a 24-well plate. One well was treated with

10 μg/mL LPS diluted in media, the other received fresh media without LPS (untreated), and all were incubated for 24 hours at

37˚C with 5% CO2 prior to harvesting of mRNA and supernatant. mRNA levels were evaluated using reverse-transcription

quantitative polymerase chain reaction (RT-qPCR) and protein levels were measured in supernatants using immunoassays.

Figure created with BioRender.com.

https://doi.org/10.1371/journal.pone.0293680.g001
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seeded in 24-well plates, with each of the twelve lineages receiving two wells (Fig 1b). Near

confluency, one of the wells of each lineage received media containing 10 μg/mL LPS (treated),

and the other well received fresh media (untreated), and then both were incubated for 24

hours prior to harvesting. 10 μg/mL LPS was found to be enough to stimulate an immune

response without reducing cell viability (S2 Fig and [24]). Incubation of 24 hours was chosen

to provide more consistent results, as dynamic changes in protein levels make the early time-

points more variable [26]. For harvesting, supernatant of each sample was used for protein

analysis and the cells were harvested for mRNA analysis (see S1 Methods in S1 File). Each bio-

logical replicate had two wells used for treated and untreated controls, so pairwise analysis was

used to compare LPS-treated expression profiles relative to the matched untreated control

prior to averaging across all samples. This was necessary to reduce bias caused by lineage and

plate (S3 Fig). In this study, 50 biological replicates with matched treated and untreated con-

trols were analyzed for mRNA and protein expression to identify biomarkers of LPS exposure.

Biomarkers of LPS exposure in lung epithelial cells include cytokines and

chemokines involved in cellular recruitment and pro-inflammatory

responses

Expression levels of human cytokines and chemokines were evaluated using commercial kits

including 84 mRNA and 69 protein targets. In response to LPS treatment, 16 cytokines and

chemokines showed significant upregulation in mRNA expression (Fig 2a). Four of them

(CXCL1, CXCL2, CXCL5, and CXCL8) are chemokines involved in neutrophil recruitment

[27]. Seven of them (CCL2, CCL5, CCL17, CCL20, CCL22, CXCL10, and IL7) are involved in

monocyte and T cell recruitment [28–34]. T cells are recruited to early sites of inflammation

including CD4+ T helper (TH) cells that produce cytokines to orchestrate coordinated immune

responses [35]. Different cell subsets target different types of pathogens, with TH1 cells target-

ing intracellular viruses and bacteria, TH2 cells targeting extracellular parasites, and TH17 cells

targeting extracellular bacteria. Naïve CD4+ T cells may also divide into regulatory T cells

(Treg) that suppress immune responses. CCL17 and CCL22 have high selectivity towards TH2

cells [36], which are known to be promoted in response to LPS [37]. CCL20 is primarily

involved in recruitment of TH17 effector T cells. CXCL10 primarily affects TH1 effector T cells

Fig 2. mRNA and protein expression profiles in response to LPS exposure. Each column represents an individual biological replicate for (a) mRNA and (b) protein

analysis. mRNA values are displayed as ΔCT values following normalization to the housekeeping gene B2M CT value (see S1 Methods in S1 File). Protein values are

displayed as log2 pg/mL following normalization to negative control (see S1 Methods in S1 File). Student’s paired t-tests were performed comparing LPS-treated to

untreated samples of the same plate and lineage (***p<0.001; **p<0.01; NS, not significant). IL, interleukin; CCL, chemokine ligand; CXCL, chemokine (C-X-C

motif) ligand; TNFα, tumor necrosis factor alpha; IFNγ, interferon gamma; LTβ, lymphotoxin beta; CSF, colony stimulating factor.

https://doi.org/10.1371/journal.pone.0293680.g002
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and has been more closely associated with viral infections [38]. CCL2 has been shown to have

a significant effect on monocytes, inducing chemotaxis, differentiation into macrophages, and

adhesion to endothelium.

Five pro-inflammatory cytokines (CSF3, IL1β, IL6, lymphotoxin β (LTβ), and TNFα) were

also significantly upregulated. CSF3 is a potent stimulator of myeloid cell proliferation and

preferentially directs myeloid progenitors into neutrophil differentiation [39]. LTβ signaling is

associated with tertiary development of lymphoid tissue [40] and has been linked with neutro-

phil inflammation [41]. IL6, TNFα, and IL1β are cytokines with systemic, wide-ranging effects,

and increased expression following LPS exposure has been shown previously [14]. Addition-

ally, increased levels of these cytokines have been associated with increased severity of respira-

tory distress [42].

Protein expression showed only six significantly upregulated proteins (Fig 2b). CXCL5 sig-

nal was saturated in the FirePlex assay, but enzyme-linked immunosorbent assay (ELISA)

results showed a significant increase from LPS treatment (See S1 Methods and S4 Fig). Five of

the six significantly upregulated proteins (CCL2, CSF3, CXCL5, CXCL8, and IL6) were upre-

gulated in both mRNA and protein levels. The other protein, CXCL3 [43], is involved in neu-

trophil recruitment. CXCL3 is part of a subset of chemokines known as Growth Related

Oncogene (GRO) chemokines, along with CXCL1 and CXCL2. In this study, CXCL1 and

CXCL2 were only investigated in mRNA while CXCL3 was only investigated in protein due to

the composition of the commercial panels used. All three were significantly upregulated indi-

cating the neutrophil recruitment pathway as a potential biomarker for LPS exposure at both

the transcript and protein expression levels.

Differences in cytokine and chemokine mRNA and protein expression

profiles can be used as biomarkers for LPS exposure

Of the 84 mRNA and 69 protein targets, 35 overlapped and were evaluated in both data sets

for differences in fold-change (Fig 3a) and significance (Fig 3b). Five cytokines and chemo-

kines were significantly upregulated in both mRNA and protein: CCL2 (Fig 3c), CSF3 (Fig

3d), CXCL5 (Fig 3e), CXCL8/IL8 (Fig 3f), and IL6 (Fig 3g). For all five cytokines and chemo-

kines, the average fold-change of mRNA and protein was identical. These cytokines and che-

mokines promote neutrophil differentiation (CSF3) and recruitment (CXCL5 and CXCL8),

monocyte recruitment (CCL2), and general inflammation (IL6). All five can be used as bio-

markers for LPS exposure at both the transcript and protein level.

Four cytokines and chemokines were significantly upregulated in mRNA measurements,

but not in protein (IL1β, TNFα, CXCL10, and CCL22). All four have regulatory mecha-

nisms with additional checkpoints between mRNA expression and mature protein secre-

tion. Two cytokines with mRNA and protein discrepancies, IL1β and TNFα, are two of the

most potent immune stimulators with systemic effects [44, 45]. As a result, both proteins

have several checkpoints before secretion. LPS-binding to TLR4 can initiate IL1β transcrip-

tion and translation into a pro-IL1β form that remains in the cytosol [46]. The cleavage of

pro-IL1β into its secreted form is dependent on the inflammasome signaling pathway [47].

Previous studies indicate that LPS at 10 μg/mL, the concentration used in this study, does

not induce inflammasome signaling [24], supporting the absence of IL1β protein upregula-

tion in our experiments. TNFα is produced in an inert, trimeric form that resides on the

cellular membrane. This form is cleaved by a disintegrin and metalloprotease 17

(ADAM17; also known as TNFα converting enzyme, TACE) [48]. Previous work in gastric

epithelial cells showed that ADAM17 cleavage of membrane-bound TNFα can be induced

by Epidermal Growth Factor Receptor (EGFR) activation by Helicobacter pylori or by
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exogenous TNFα [49]. Another study found that intestinal epithelial cells do not produce

TNFα following LPS exposure, however gut macrophages release TNFα and stimulate

secretion [50].

The chemokine CXCL10 has been shown to require signals from TH1 effector T cells for

secretion by epithelial cells [51]. CCL22 secretion by intestinal epithelial cells has been shown

to be stimulated by TNFα [52] and has been shown to promote recruitment of TH2 cells [53]

and Treg cells [54] when secreted by immune cells.

To confirm that the four proteins were not upregulated from LPS treatment, ELISA was

performed for these genes and CXCL8 as a positive control in both cell supernatant and cell

extract (S4 Fig). ELISA was also performed on CXCL5 using diluted samples, since CXCL5

had saturated signal in the FirePlex assay. Supernatants were used for proteomic analysis

because cytokines and chemokines are signaling molecules that must typically be secreted to

have an effect. However, intracellular protein levels may provide additional information of

cytokines and chemokines not yet secreted or that have been taken up by cells, and so they

were examined by ELISA as well. The ELISA results confirmed four proteins were not upregu-

lated in supernatant or cell extract. ELISA analysis of intracellular and extracellular protein

Fig 3. LPS exposure results in discrepancies in mRNA and protein expression profiles of key cytokines and chemokines. (a) Fold-

changes in mRNA (x-axis) versus protein (y-axis) expression comparing LPS-treated to untreated controls. Dashed line indicates

equivalent RNA and protein fold-changes. (b) p-values from pairwise Student’s t-test for RNA (x-axis) versus protein (y-axis) fold-

changes. Dashed lines indicate p = 0.05. Cytokines and chemokines without significant changes in expression of mRNA and/or protein

were not displayed. Significance was calculated using paired Student’s t-test comparing LPS-treated cells to untreated controls from the

same lineage and plate. Individual plots comparing fold-changes in cytokines and chemokines significantly upregulated in both mRNA

and protein expression for (c) CCL2, (d) CSF3, (e) CXCL5, (f) CXCL8, and (g) IL6. Values represent median signal and bars represent

95% confidence interval. Significance was calculated using pairwise-Student’s t-test matching mRNA and protein fold changes from the

same lineage and plate. CXCL5 values represent values obtained via ELISA data (see S1 Methods and S4 Fig). No significant difference

was found between mRNA and protein levels. IL, interleukin; CCL, chemokine ligand; CXCL, chemokine (C-X-C motif) ligand; TNF,

tumor necrosis factor alpha; CX3CL, (C-X3-C) chemokine ligand; CSF, colony stimulating factor.

https://doi.org/10.1371/journal.pone.0293680.g003
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levels on six selected genes also suggested that intracellular protein behavior in response to

LPS mirrored that of secreted protein behavior.

There is a significant discrepancy between mRNA and protein profiles of cytokines and

chemokines at a single time point, as evidenced by our findings. As described above, additional

regulation mechanisms may prevent increased mRNA levels from translating to increased

secreted protein levels for the five genes with discrepancies in this study. These discrepancies

can shed light into mechanisms of LPS action in different cell systems. In particular, the four

genes noted above have been shown to be secreted following signaling by immune cells. For

biomarker discovery, this indicates that mRNA expression may be more sensitive to patho-

gens, as protein regulation has additional checkpoints before secretion. This indicates mRNA

analysis in early infection can yield a more comprehensive expression profile supporting dis-

ease-specific diagnostics.

Conclusion

Immune responses are a complex interaction of many cell types. Identifying host biomarkers

of PAMP or pathogen exposure can be difficult due to this complexity. In this work, we devel-

oped a large-scale experimental protocol with 50 biological replicates to investigate the repro-

ducibility of resolution phase immune responses from human lung epithelial cells in response

to LPS exposure. We compared expression profiles of cytokines and chemokines for 84

mRNA transcripts and 69 secreted proteins, with 35 overlapping. We found that LPS expo-

sure results in the statistically significant upregulation of 16 mRNA transcripts and only 6

proteins. Furthermore, our work demonstrated four examples of genes whose mRNA expres-

sion was significantly upregulated without a corresponding increase in protein. This finding

highlights the caution that works should use in assuming that protein upregulation matches

mRNA expression upregulation and vice versa. Multiomics approaches can address this prob-

lem, as can single omics experiments that focus on biomarkers specific to that omics. In this

experiment, we found that transcription analysis provided the more promising means for

identifying a unique expression profile for P. aeruginosa LPS exposure in lung epithelial cells.

Future work will determine the feasibility of using human cytokine and chemokine expres-

sion levels to distinguish exposure to different PAMPs or pathogens as a means for diagnosing

any infection. The complexity of these responses is not readily amenable to manual decoding.

Machine learning algorithms can be a powerful tool to analyze these types of datasets and

identify immune response expression profiles associated with specific PAMPs or pathogen

infections [2, 55, 56].

Supporting information

S1 Fig. Evaluation of mRNA expression of housekeeping genes. Housekeeping genes CT val-

ues across all samples for LPS+ and LPS- samples. Effect of LPS treatment (mean difference)

and its corresponding p-value were determined for each housekeeping gene. B2M showed the

smallest effect size from LPS (mean difference = -0.0897) and largest p-value (p-value = 0.552),

indicating it as the best gene to use for normalization.

(TIF)

S2 Fig. Cell viability across LPS concentrations. Cell viability, measured as the increase in

NucBlue ReadyProbe stain (Hoechst 33342) over a 24-hour period for cells incubated with

varying concentrations of LPS. All samples are normalized to the increase seen in cells incu-

bated with no LPS. Error bars represent standard deviation of 3 bioreplicates, which were each

determined as the average of 4 technical replicates (4 different wells on a 96 well plate). Line
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represents best fit using log-scale concentration.

(TIF)

S3 Fig. Paired normalization of samples reduces bias caused by date of experiment. Princi-

pal component analysis (PCA) of mRNA expression data. (a) Percentage of variance explained

by each principal component in mRNA expression data normalized by that sample’s B2M

housekeeping gene expression. (b) Pearson r correlation of each principal component of nor-

malized mRNA data with three main variables of experiment, LPS treatment, date of experi-

ment (Plate), and lineage. Principal component (PC) 1 correlates most closely with plate

(Pearson r = 0.54) while PC 2 correlates most closely with LPS treatment (Pearson r = 0.61).

(c-f) Each dot represents principal component values of (c, d) expression data normalized to

that sample’s B2M housekeeping gene expression, (e, f) or pairwise-normalized data of one

treated/untreated pair for a given lineage and date. (c) PC 1 and PC 2 of normalized expression

data, with colors/numbers indicating date of experiment, with “1” being the first date and “5”

being the last date. (d) PC 1 and PC 2 of normalized expression data, with colors indicating

LPS treatment of sample. Pairwise-normalized data does not correlate well in PC 1 (13.6% of

variance) or PC 2 (11.2% of variance) with either (e) experiment date or (f) lineage. (g) Per-

centage of variance explained by each principal component in protein data normalized by that

sample’s negative control (see S1 Methods in S1 File). (h) Pearson r correlation of each princi-

pal component of normalized protein expression data with three main variables of experiment,

LPS treatment, date of experiment (Plate), and lineage. PC 5 is the first principal component

for which LPS treatment is the strongest correlated category.

(TIF)

S4 Fig. ELISA measurements of supernatant and cell extracts. Measured concentrations in

pg/mL from matching cell supernatant and cell extract for LPS-treated and untreated A549

cells. Error bars represent standard deviations of 4 biological replicates for supernatants (cir-

cles) or cell extracts (triangles). Biological replicate values are the average of three technical

replicates, separate wells of a 24-well plate cultured with cells from the same source flask. Stu-

dent’s paired t-test was performed comparing biological replicates of LPS-treated and

untreated samples (*p<0.05; ***p<0.001). IL, interleukin; CCL, chemokine ligand; CXCL,

chemokine (C-X-C motif) ligand; TNF, tumor necrosis factor alpha.

(TIF)

S1 Methods. Supplemental methods. Explanation of methods used in generating supplemen-

tal figures.

(DOCX)
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