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Abstract

Machine learning methods and agent-based models enable the optimization of the opera-

tion of high-capacity facilities. In this paper, we propose a method for automatically extract-

ing and cleaning pedestrian traffic detector data for subsequent calibration of the ingress

pedestrian model. The data was obtained from the waiting room traffic of a vaccination cen-

ter. Walking speed distribution, the number of stops, the distribution of waiting times, and

the locations of waiting points were extracted. Of the 9 machine learning algorithms, the ran-

dom forest model achieved the highest accuracy in classifying valid data and noise. The pro-

posed microscopic calibration allows for more accurate capacity assessment testing,

procedural changes testing, and geometric modifications testing in parts of the facility adja-

cent to the calibrated parts. The results show that the proposed method achieves state-of-

the-art performance on a violent-flows dataset. The proposed method has the potential to

significantly improve the accuracy and efficiency of input model predictions and optimize the

operation of high-capacity facilities.

Introduction

The development of pedestrian modeling has been ongoing since the 1970s [1] and was origi-

nally motivated by the need to analyze the evacuation process of buildings more accurately.

Over the last few decades, dozens of evacuation models have been developed and used in per-

formance-based fire safety design [2]. In the field of microscopic models, agent-based models

are the most prevalent [3].

The demographic growth of the population has contributed to the need to model the opera-

tion of buildings not only in terms of safety but also in terms of comfort of use. Another moti-

vation is undoubtedly the need to optimize the operation of buildings with high attendance,

such as hospitals, airports or vaccination centers during pandemics.

One of the biggest challenges of pedestrian modeling is obtaining valid empirical calibra-

tion data that describes pedestrian characteristics (number of occupants, their location, walk-

ing speed distribution, gender and age distribution, etc.) and behavioral patterns (waiting

locations, waiting times, exit choice, etc.). The conventional approach to obtaining this
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access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data and code are

available on Zenodo server via this link: https://

zenodo.org/record/8325110.

Funding: The authors initials who received an

award are: MP, OU. Grant number awarded to each

author is FAST-S-23-8318. The full name of the

funder is Faculty of Civil Engineering, Brno

University of Technology, URL: https://www.fce.

vutbr.cz/. The funders had no role in the study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

https://orcid.org/0000-0002-8001-6349
https://orcid.org/0000-0001-9047-4784
https://doi.org/10.1371/journal.pone.0293679
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293679&domain=pdf&date_stamp=2024-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293679&domain=pdf&date_stamp=2024-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293679&domain=pdf&date_stamp=2024-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293679&domain=pdf&date_stamp=2024-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293679&domain=pdf&date_stamp=2024-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293679&domain=pdf&date_stamp=2024-01-18
https://doi.org/10.1371/journal.pone.0293679
https://doi.org/10.1371/journal.pone.0293679
http://creativecommons.org/licenses/by/4.0/
https://zenodo.org/record/8325110
https://zenodo.org/record/8325110
https://www.fce.vutbr.cz/
https://www.fce.vutbr.cz/


empirical data is to conduct an experiment and measure these quantities or use data from

experiments already carried out, such as [4]. For egress modeling tasks, it is necessary to con-

duct these experiments to obtain key quantities such as pre-evacuation times, densities, evacu-

ation times, etc. Ingress modeling tasks require calibration data from normal occupants’

movement in the object which allows researchers to use data from CCTV monitoring systems.

Ingress models can be used for non-evacuation tasks such as capacity assessment, operation

analysis and optimization, etc. Some evacuation models are being adapted for potential use in

non-evacuation scenarios, for example, the latest versions of Pathfinder [5]. Modern tech-

niques of computer vision, specifically pedestrian tracking algorithms (PTA), allow us to auto-

matically extract some ingress model inputs from mined trajectories without the need for

conducting an experiment. This process is called trajectory mining. The main advantages of

this approach, from a pedestrian modeling point of view, are:

• the use of unique anonymous data for a specific object and therefore considering local

conditions,

• spatiotemporal microscopic analysis of pedestrian trajectories and the possibility to analyze

a larger amount of model inputs or validation quantities (interpersonal or pedestrian-object

distances, density, flow, usage of space, etc.),

• aggregation of huge volumes of data.

One of the challenges that must be dealt with is the pre-processing of huge volumes of data

extracted from video recordings. Raw data generated by PTA are largely noisy due to occlu-

sion, depending on the used PTA, the presence of static objects, height position and tilt of the

camera.

The purpose of this paper is to demonstrate the unique concept of using CCTV data for

more accurate model calibration. The method for automatic data cleaning of trajectories

tracked from video recordings of a COVID-19 vaccination center operation is proposed. A

dataset including 408 trajectories was analyzed. The first step was an automatic cluster analysis

based on start and end points of trajectories with the aim of distributing the trajectories

according to the direction of movement. In a follow-up step, a procedure was proposed to

identify noise in the trajectories caused by occlusions and to approximate the missing parts of

the trajectories by a straight line. In this task, 9 machine learning classification algorithms

were tested. Cleaned data are then processed into descriptive statistics, which can be used as a

direct ingress model calibration input. These statistics characterize the walking speed of occu-

pants, distribution of occupants’ waiting points and waiting times. An ingress model of a vacci-

nation center waiting room was designed in Pathfinder software for the purpose of validating

the proposed method.

State of the art

With the massive emergence of artificial intelligence in engineering fields in recent years, a

number of publications have emerged that implement machine learning and computer vision

methods in the field of pedestrian modeling. Bahamid et al. summarized most of them in his

review with conclusions that convolutional neural networks and recurrent neural networks

are effective in abnormality detection and prediction. In terms of this paper, the most relevant

publications will be mentioned [6]. Johansson et al. deal with the calibration of social force

model parameters based on video tracked trajectories [7]. Numerous publications deal with

occupant path planning. Yao et al. in [8] propose a reinforcement learning-based data-driven

crowd evacuation (RL-DCE) framework. The framework consists of a data-driven crowd
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evacuation (DCE) model, a cohesiveness-based K-means (C-K-means) algorithm, and a hier-

archical path planning mechanism. Wang et al. in [9] introduce the improved multi-agent

reinforcement learning method (IMARL algorithm) for path planning-based crowd simula-

tion. The IMARL algorithm improves the convergence speed and evacuation efficiency and

provides specific guidance schemes for crowd evacuation improvement and assists in decision

support for the prevention and management of large-scale group trampling incidents. A deep

deterministic policy gradient algorithm for path planning in crowd evacuation scenarios is

proposed by Li et al. in [10]. The algorithm utilizes reinforcement learning and deep neural

networks to find optimal evacuation paths that maximize the safety of evacuees. The authors

test their algorithm on various scenarios and compare its performance to other path planning

algorithms. The results show that the proposed algorithm outperforms other approaches in

terms of safety, efficiency, and scalability. In [11], Kim et al. propose a socially adaptive path

planning system for navigating robots in human crowds using inverse reinforcement learning.

The authors demonstrate the effectiveness of their approach through experiments with a

wheelchair robot in simulated environments.

Real-time anomaly detection is also studied. In [12], Alsalat et al. propose a system that uti-

lizes machine learning and internet of things (IoT) devices to detect and prevent mass panic.

Their system collects data from IoT devices, such as cameras and heart rate sensors to monitor

the behavior of individuals in a crowd. Machine learning algorithms are then used to analyze

this data and detect any signs of panic, such as increased heart rate and rapid movements.

Yuan et al. [13] propose a method for detecting anomalies based on the analysis of the struc-

ture of the crowd. They used computer vision techniques to extract features from the video

footage of the crowd, such as motion trajectories, spatial layout, and the relationships between

individuals in the crowd. The extracted features were then used to construct a graph represent-

ing the structure of the crowd. Anomalies were detected by analyzing the graph and identify-

ing nodes or edges that deviate significantly from the normal patterns of the crowd’s behavior.

The proposed method was tested on real-world video footage, and the results showed that it

outperformed other state-of-the-art anomaly detection methods. Marsden et al. [14] intro-

duces a new method for detecting crowd behavior anomalies using a combination of four

crowd features: crowd collectiveness, crowd conflict, mean walking speed, and crowd density.

Two different anomaly detection approaches are tested, one using a Gaussian Mixture Model

(GMM) for outlier detection with only normal training data available, and the other using a

Support Vector Machine (SVM) for binary classification with both normal and abnormal

training data available. The method achieves state-of-the-art classification performance on a

violent-flows dataset. Guo et al. in [15] present a method for detecting and localizing anoma-

lies in crowded scenes using short-term trajectories. Their approach involved analyzing the

motion patterns of individuals in a crowd to identify abnormal behaviors that may indicate an

emergency situation. Chaker et al. in [16] propose a social network-based approach for detect-

ing and localizing anomalies in crowds. Their method utilized the connections between indi-

viduals in a crowd to build a social network. The authors evaluated their method on two

datasets and achieved high accuracy in both anomaly detection and localization.

Goldhammer et al. in [17] proposed the use of artificial neural networks (ANNs) for pre-

dicting pedestrian movements in public traffic. The authors developed an ANN-based model

that can accurately forecast the future short-time trajectories of pedestrians. Schulz et al. in

[18] proposed a method for pedestrian intention recognition and path prediction within driver

assistance systems, which utilizes a controlled interactive multiple model filter. This approach

integrates multiple sensor modalities and fuses their outputs to estimate the pedestrian’s posi-

tion and intention. The proposed method achieves high accuracy in predicting pedestrian

motion and intention.
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Trajectory mining. It is still a challenge to effectively calibrate and validate agent-based

models [19]. One option is to use trajectories and data of pedestrian movement in general.

These can now be easily obtained in many ways and in nearly real-time. This is facilitated, for

example, by GPS, Wi-Fi technologies or radio frequency identification (RFID) [20,21] as well

as the widespread use of security cameras in public areas. It is possible to obtain trajectories

from their records, for example, using machine learning methods. In this way, huge databases

of pedestrian movements can be obtained very quickly, but they must be effectively analyzed

in bulk. Trajectory mining deals with this issue. It includes, for example, clustering, classifica-

tion, prediction, pattern mining or outlier detection. In the field of pedestrian dynamics,

Karim used GPS data from pedestrians’ mobile devices for modeling risks to which pedestrians

are exposed [22]. Wei deals with the reconstruction of trajectories in urban areas with small

sampling frequency [23]. Drira tracked occupant trajectories using floor-vibration measure-

ments [24,25].

Trajectory clustering. Clustering is an effective way of sorting data into groups based on

their similarity. In the case of trajectories, it is possible to perform clustering for entire trajecto-

ries or their segments, where the input can be static characteristics (start/end, total time, etc.)

or spatiotemporal sequences of data of different lengths, which contain additional metadata,

such as the ID of a moving object or timestamp. In this procedure, it is crucial to choose a suit-

able method for calculating similarity (distance) [26]. Clustering algorithms can be divided

into 5 categories [27] according to what is the main criterion for calculating similarity. These

categories of algorithms are spatial-based, time-dependent, partition and group-based (for tra-

jectory division), uncertainty between data points and semantic trajectory clustering.

Noise detection. Trajectories often contain erroneous points due to the inaccuracy of

measuring instruments (GPS) or evaluation algorithms (convolutional neural network for

detecting a moving object). Anomalies are samples that differ significantly from the rest but

are real and may contain important information (medical diagnosis of an uncommon serious

illness). Noise, on the other hand, are samples that are not real and were caused by an error in

measuring or pre-processing of data. Noise can significantly negatively affect predictions and

skew the results. For these reasons, noise detection is an important topic in many fields.

There are different approaches to determining noise in trajectories. Some divide trajectories

into segments with similar properties, and these segments are further processed [28]. Others,

on the other hand, treat individual data points as separate elements and classify them. The clas-

sification of segments or points can then take place, for example by methods of supervised

learning—supervised learning (classification) [29], unsupervised learning (clustering) [30] or

semi-supervised [31].

Methods

The following subsections describe the data and methods used to filter and clean the

trajectories.

Data

The data was acquired by an automatic pedestrian traffic detector that uses a convolutional

neural network and a tracking algorithm to store anonymous trajectories of pedestrian move-

ments based on real-time monitoring. Data from one camera at the high-capacity vaccination

center waiting room in Brno, Czech Republic, was used for the analysis. Data includes trajecto-

ries taken between 7:00 AM and 7:30 AM, just after the center opened. Detection was con-

ducted through real-time monitoring using a Hikvision network camera with a 1080p

resolution and 25 fps frame rate. The camera’s attributes employed for the measurements align
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with those commonly utilized in practical applications. The trajectories were smoothed in a

post-processing phase. The dataset includes instantaneous and average walking speed, slope

(the angle between the horizontal line and the connecting line with the previous point), lateral

and tangential acceleration.

Framework

The process of extracting pedestrian model parameters is shown in Fig 1. Based on the

extracted dataset, clustering analysis is performed to distinguish the trajectories of clients and

staff. At the same time, the number of waiting points, their distribution within the population,

the distribution of waiting times and the distribution of exit choices is calculated from the

ingested dataset. The next step is noise analysis and trajectory processing. Based on the cleaned

trajectories, the distribution of walking speed is further estimated.

Machine learning methods

The following subsections describe the machine learning methods and techniques used.

DBSCAN. Density-based spatial clustering of applications with noise (DBSCAN) was

introduced by Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu in 1996 [32]. The sam-

ples are understood as points of Euclidean space and clusters are areas of this space with a high

density of points. It is therefore not necessary to determine the number of clusters in advance.

Points in low-density areas are marked as noise. The advantage of this algorithm is its ability

to solve non-convex problems and noise detection [33].

It is necessary to determine two constants for this method—Eps and MinPts. Eps deter-

mines the maximum distance between two points (i.e., the larger the value, the smaller the

number of clusters). This parameter can be determined using the k-distance graph [34], which

shows the distance relationship and k = minPts-1 to the nearest neighbors. The optimal value

of Eps is located in the “elbow” of this curve. No procedure is specified for the MinPts option,

Fig 1. Trajectories processing procedure with their use in agent-based pedestrian model.

https://doi.org/10.1371/journal.pone.0293679.g001
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and this parameter must be estimated with respect to the number of dimensions and proper-

ties of the dataset.

T-SNE. The t-Distributed Stochastic Neighbor Embedding (t-SNE) method was used to

visually check the results of clustering analysis [35]. This method is commonly used to reduce

dimensionality (commonly to 2D). It uses a nonlinear transformation algorithm. It is usually

necessary to specify two parameters: the number of iteration steps and perplexity. Both con-

stants must be determined empirically. Perplexity can be seen as k in the k-nearest neighbor

method.

Random forest. Random forest is a supervised ensemble machine learning method used

for classification and regression problems. RF is made up of a group of decision trees trained

on training data subsets. These subsets are selected by bootstrapping (random selection with

replacement). A new training subset is created for each tree. This process is called bootstrap

aggregating, or bagging. The results of the individual trees are combined and the most fre-

quently predicted class is determined as the model output. This procedure significantly

reduces the generalization error and reduces overfitting. The properties of the model increase

with the number of decision trees. Unlike individual trees, the RF method is harder to interpret

and thus, as with artificial neural networks, there is a "black box problem"[36].

Handling an imbalanced dataset. Data that contains significantly higher proportions for

some classes than others is often referred to as unbalanced [37]. After training, an unreliable

model is created, which classifies the majority class with high accuracy and the minority class with

very little accuracy. In most cases, however, we need high reliability in determining the minority

class (tax fraud, disease detection, spam filtering). In our research, we compared two methods

used to balance a training dataset. On the other hand, the test dataset should capture the true

form of the data as best as possible. This is also one of the reasons why it is recommended to use

more complex metrics than the accuracy score, which can be misleading in such cases.

Undersampling. If there is a sufficient number of samples in the minority class, the usual

procedure is to select a random subset of the majority class that corresponds to the size of the

minority class. The disadvantage of this procedure is the possible loss of important informa-

tion about the relationship between the classes.

Data generation–SMOTE. SMOTE is a method of generating random synthetic data for

a minority class [38] to rebalance a training dataset. For random points of the minority class,

the k-Nearest Neighbors within the class are determined and a new synthetic point is placed

along the lines connecting these points. The main shortcomings of this method include minor-

ity overgeneralization [39] and noise oversampling [40].

Pseudo labelling. Pseudo Labelling is from the family of Semi-supervised learning meth-

ods that uses a small amount of labelled data and a large amount of unlabelled data. The

method is usually performed in five steps:

1. Training a regressor.

2. Predicting the output value for unlabelled data that was not used for training.

3. Compiling a new training set including newly tagged data that had an output value from

the model less than 0.00001 (for class 0) or higher than 0.99999.

4. Training a new model for classification using a new training set.

5. Classifying new data.

Perspective transformation. The dataset contained 408 trajectories of several types: occu-

pants passing from entrance to exit, occupants going in the opposite direction, occupants
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entering, turning and leaving. Raw trajectories were transformed from 3D pixel coordinates to

a local 2D coordinate system. Results are presented in Fig 2. A transformation matrix and a

polygon bounded by 4 points were used for transformation (red area in Fig 2).

Clustering analysis. To validate agent simulations, it is necessary to select only those tra-

jectories that belong to persons who are going in the right direction. For these reasons, clusters

were analyzed according to the start and end point of each trajectory. The length or similarity

of trajectories was not considered because we also need to capture occupants who are waiting

and walking around the room. The optimal value of Eps was determined using a k-distance

graph. The result can be seen in Fig 3; the value was determined to be 1,605. MinPts was esti-

mated as 10 samples.

The data were divided into four groups and outliers that did not belong to any group were

marked as noise (class -1). The classification of start and end points into clusters is shown in

Fig 4. The trajectories belonging to individual classes can be seen in Fig 5. Class 0 indicates

occupants walking in the opposite direction (outwards from the vaccination center). Class 1

represents persons staying at the exit, mostly medical staff who check the validity of the cen-

ter’s client documents. Classes 2 and 3 are occupants who come through one of the two

entrances and continue on to the vaccination center. These are the occupants of our interest.

There were 144 trajectories in class 2, 82 in class 3, and 128 trajectories were marked as noise.

For visual inspection, the results of the clustering analysis were displayed using the t-SNE

method, which reduced the four-dimensional point space to two-dimensional. The t-SNE

graph is shown in Fig 6.

Training and testing dataset design. Trajectories from classes 2 and 3 that correspond to

occupants walking in the direction of the vaccination process are subsequently analyzed and

cleaned using machine learning methods (226 trajectories in total). The training set was com-

piled in such a way that four trajectories from group 2 and four trajectories from group 3 were

randomly selected. Each point of these trajectories was visually marked according to camera

records, whether it is wrong or not. A training set was compiled from the points marked in

Fig 2. Raw trajectories of vaccination center waiting room with red polygon for transformation matrix estimation (left) and perspective transformation of

trajectories (right).

https://doi.org/10.1371/journal.pone.0293679.g002
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Fig 3. K-distance graph for estimation of optimal value of Eps.

https://doi.org/10.1371/journal.pone.0293679.g003

Fig 4. Clustering of start (dot) and end points (cross) of all 408 trajectories.

https://doi.org/10.1371/journal.pone.0293679.g004
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this way (Fig 7). However, because this set can be expected to contain fewer erroneous points

(3597 correct points in class 0 (negative) and 712 erroneous in class 1 (positive)), the resulting

training dataset was compiled to be balanced.

In the first case, undersampling was performed, so the number of correct points was chosen

according to the number of erroneous ones. In this case, the balanced training dataset con-

tained a total of 1424 points, which evenly represented both classes (Fig 8). In the second case,

synthetic data for the minority class were generated by the SMOTE method. The training data-

set thus contained 7194 points (Fig 9). The sensitivity analysis shows that the class is most

affected by coordinates and speed. In an effort to create the most general classifier possible,

only speed and both accelerations entered training because error points are more common at

exits due to crowding of occupants. However, error points around entrances are just as serious

and the model needs to classify them with the same importance as those at exits. The covari-

ance matrix of training set is shown on Fig 10.

Three more trajectories were selected for the test dataset. The dataset contained 1171 points,

of which 258 were incorrect (class 1). Unlabeled data then formed another 93172 points.

Fig 5. Data visualization for individual classes.

https://doi.org/10.1371/journal.pone.0293679.g005
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Comparison of classification methods. To select the most suitable ML algorithm, several

methods were compared using a ten-fold cross-validation without any tuning of their hyperpara-

meters. Accuracy was chosen as a metric for comparing models; results are shown in Table 1.

The Random Forest algorithm is then applied based on the Table 1. After performing

hyperparameter tuning, the final model consisted of 120 trees. Additional parameters are

described in Table 2 and the training process is shown in Fig 11.

Undersampling train set with pseudo labelling. In this case, the model was trained on a

US dataset and used to classify unlabelled data. If the model determined a class with more than

90% (or 99%) probability, the sample was actually classified and added to the training dataset.

The resulting dataset was rebalanced by the undersampling method and 14,830 samples were

used for further training. When the probability limit was increased, the new training dataset

contained only 3,766 samples. The Fig 12 depicts a confusion matrix of the classifier.

It can be seen from Fig 13 that the accuracy of the model on test data decreases when using

pseudo-labelled data, but the recall value increases and stabilizes; on the contrary, the accuracy

of training data (determined by ten-fold cross-validation) increases. This phenomenon is a

form of overfitting and is called confirmation bias [41]. The model is essentially consolidating

its truth, reducing its ability to generalize; this is even more apparent when increasing the

probability (to 99%) limit for classifying a sample.

Fig 6. Visualization of cluster analysis results with t-SNE.

https://doi.org/10.1371/journal.pone.0293679.g006
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SMOTE. The use of the SMOTE method increased the accuracy of the model on test data,

but at the same time reduced the Recall score; this phenomenon is probably due to oversam-

pling of non-informative samples; this is evident, for example, in changes in speed distribu-

tion, see Fig 14. The Fig 15 illustrates the relationship between accuracy and recall based on

the size of the training set.

Comparison of models. For purposes of our research, it is more important to correctly

determine error points; thus, a type one error is not as significant as a type two error; for this

reason, Recall (Sensitivity) metric was chosen to compare resulting models, which describes

model’s ability to predict positive output; according to this metric, most suitable model is com-

bination of US and PS datasets. The results of the comparison can be seen in Table 3.

Results and discussion

The following subsections describe the results obtained using the above methods.

Trajectories cleaning

The following Fig 16 shows the trajectories from the test set. New points are created by linear

interpolation because the analysis shows that noise segments are areas where the straight seg-

ment is replaced by a deflection. These new segments could be replaced in a more complex

way, such as predicting them using an LSTM neural network.

Agent-based model calibration

The model of the vaccination center waiting room was designed in Pathfinder software (ver-

sion 2022.2.0803) [5] in two settings:

Fig 7. Trajectories from training dataset.

https://doi.org/10.1371/journal.pone.0293679.g007
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• Model A—basic, where input flow and walking speed are calibrated and other settings of

agents’ behavior correspond to default Pathfinder settings; this setup corresponds to a situa-

tion when there is no data about occupants’ behavior in the waiting room.

• Model B—advanced, where walking speed, location and distribution of waiting points, wait-

ing time, and exit selection are calibrated; this setting corresponds to use of calibration

parameters extracted from trajectories detected by pedestrian traffic detector.

Table 4 describes parameters used for model calibration in Pathfinder. Waiting was defined

as when instantaneous walking speed is less than 0.4 m.s-1 or 0.4 m.s-1 and distance from posi-

tion one second ago is less than 0.4 m. Analysis shows that 40% of occupants (90 occupants)

walked straight through waiting room and 60% (136 occupants) stopped at least once. Based

on a 2D kernel Gaussian probability density function, four waiting points were estimated (see

Fig 18). 78.8% of occupants (107 occupants) made one stop and 21.2% of occupants (29 occu-

pants) made two stops while passing through waiting room. For all waiting points, distribution

of their use by persons and waiting time is also determined. Results of walking speed analysis

showed normal distribution with parameters mu: 1.17 m.s-1 and sigma: 0.21 m.s-1.

Waiting times at particular waiting points is described by histograms at Fig 17. Most of

waiting times lies between 0–10 seconds.

Fig 8. Pairplot of downsampled training dataset.

https://doi.org/10.1371/journal.pone.0293679.g008
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Based on the stochasticity of the Pathfinder model, the number of simulations run for both

settings was set to 20 runs. The number of runs was determined based on Ronchi’s method

[42].

Agent-based model validation

To demonstrate the use of the proposed calibration procedure, only one qualitative validation

was used to visually compare the trajectory bundle. Other quantitative metrics implemented

are not mentioned in this paper. A visual comparison of the shape of the trajectories was per-

formed based on the Fig 18. Data from one simulation per each model was used for this pur-

pose. The figure shows that the introduction of behavioral parameters into the model led to an

overall refinement of the shape of the trajectories according to the trajectories from the pedes-

trian traffic detector.

Conclusion

Currently, it is possible to use a large amount of CCTV data to calibrate pedestrian models. In

this paper, we consider extracting model parameters from trajectories obtained from an auto-

matic pedestrian traffic detector and subsequently calibrating a vaccination center waiting

Fig 9. Pairplot of SMOTE training dataset.

https://doi.org/10.1371/journal.pone.0293679.g009
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Fig 10. Covariance matrix of training data set.

https://doi.org/10.1371/journal.pone.0293679.g010

Table 1. Comparison of classification algorithms.

Algorithm Accuracy

Nearest Neighbors 0.89 (+/- 0.05)

Linear Support Vector Machines 0.82 (+/- 0.07)

RBF Support Vector Machines 0.89 (+/- 0.06)

Gaussian Process 0.89 (+/- 0.06)

Decision Tree 0.89 (+/- 0.04)

Random Forest 0.90 (+/- 0.07)

Neural Network 0.87 (+/- 0.07)

AdaBoost 0.87 (+/- 0.08)

Naive Bayes 0.88 (+/- 0.07)

QDA 0.88 (+/- 0.07)

https://doi.org/10.1371/journal.pone.0293679.t001

Table 2. Parameters of random forest classifier.

Feature Value

Number of trees 0.8360

Max. depth of trees 0.7626

Number of features 0.8471

Min. samples required to be at leaf node 1

Min. samples required to split 5

Criterion Gini impurity

https://doi.org/10.1371/journal.pone.0293679.t002
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Fig 11. Graph of the dependence of accuracy and training time on the number of trees.

https://doi.org/10.1371/journal.pone.0293679.g011

Fig 12. Confusion matrix of undersampled train set (left) with accuracy: 0.836 and recall: 0.7481, undersampled trainset mixed with

pseudo labelled data 90% (middle) accuracy: 0.7626 and recall: 0.8217 and undersampled trainset mixed with pseudo labelled data 99%

(right) with accuracy: 0.8463 and recall: 0.7558.

https://doi.org/10.1371/journal.pone.0293679.g012

Fig 13. Graph of accuracy score (or recall score) dependence on the size of the training set. The gray area shows

when only data from the original training set was used. The accuracy score for the training set was determined by

10-fold cross validation.

https://doi.org/10.1371/journal.pone.0293679.g013
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Fig 14. Confusion matrix of the model using SMOTE data set with accuracy: 0.8471 and recall: 0.7016.

https://doi.org/10.1371/journal.pone.0293679.g014

Fig 15. Graph of the dependence of accuracy and recall scores on the size of the training set. The accuracy score for

the training set was determined by 10-fold cross-validation.

https://doi.org/10.1371/journal.pone.0293679.g015

Table 3. Results of model comparisons.

Train Set Test Accuracy F1 Recall

US 0.8360 0.675 0.7481

US and Pseudo Labelling (90%) 0.7626 0.604 0.8217

SMOTE 0.8471 0.669 0.7016

https://doi.org/10.1371/journal.pone.0293679.t003
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Fig 16. View corrected trajectories from the test dataset (left column) and their comparison with manually defined erroneous points (right

column). The green curve indicates the corrected trajectory.

https://doi.org/10.1371/journal.pone.0293679.g016

Table 4. Model parameters used for calibration.

Parameter Values

Distribution of waiting (at least once) and walking waiting 60% / walking 40%

Waiting point 1 location (WP1) x: 1.34, y: -15.5

Waiting point 2 location (WP2) x: 12.09, y: -13.73

Waiting point 3 location (WP3) x: 0.88, y: -11.18

Waiting point 4 location (WP4) x: 4.49, y: -14.26

Number of stops distribution 1 stop: 78.8%, 2 stops: 21.2%

Distribution of waiting points for 1/1 waiting WP1: 3.85%, WP2: 39.42%, WP3: 34.62%, WP4: 22.11%

Distribution of waiting points for 1/2 waiting WP1: 7.14%, WP2: 25%, WP3: 3.57%, WP4: 64.29%

Distribution of waiting points for 2/2 waiting WP1: 39.29%, WP2: 0%, WP3: 42.86%, WP4: 17.85%

Walking speed [m/s]–normal distribution min: 0.82, μ: 1.17, σ: 0.21, max: 1.52

Exit choice distribution exit 1: 61%, exit 2: 39%

https://doi.org/10.1371/journal.pone.0293679.t004
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room model. The parameter extraction involved DBScan cluster analysis for automatic filter-

ing of client and staff trajectories. The Random Forest classification algorithm was used to

detect erroneous points in the trajectories caused by occlusion. Based on the cleaned data, the

parameters of the normal distribution of walking speed, waiting points distribution, waiting

points location, waiting times distribution, and exit choice distribution were calculated. The

model was designed in two settings—basic, i.e., with calibrated input flow and walking speed

only, and advanced—with calibration of all extracted parameters. A visual validation test was

performed to evaluate the shape of trajectories in simulation. The results showed a significantly

better fit of the advanced model compared to the baseline model against the cleaned CCTV

data.

The proposed calibration procedure allows testing the effect of procedural changes on the

throughput of the vaccination center or other facilities—e.g., changes in the form of registra-

tion of clients of the vaccination center, changes in the number of staff in a given section of the

facility, number of administrative and medical tasks, or vaccination settings (optimal number

of patients seen in parallel)—which can have a significant impact on system throughput. A

limitation is that in parts of the facility where behavioral parameters have been calibrated, geo-

metric changes to the facility cannot be tested as this could result in significantly different

behavior of occupants—different waiting areas and waiting times. Therefore, testing geometric

modifications can be performed in parts of the facility that are adjacent or preceding the part

Fig 18. Waiting points location and qualitative validation of trajectory shapes of cleaned trajectories from pedestrian

traffic detector, model A–basic, and model B–advanced.

https://doi.org/10.1371/journal.pone.0293679.g018

Fig 17. Waiting times for 1/1 waiting (left), 1/2 waiting (middle), 2/2 waiting (right).

https://doi.org/10.1371/journal.pone.0293679.g017
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where behavioral parameters are calibrated. As a result, the effect of procedural changes

described above on facility throughput can be tested as a function of different geometric

arrangements of specific parts of the facility. Changes in input intensity of flow of occupants in

front of calibrated elements can also be problematic and lead to significantly different behav-

ior. To verify capacity and identify bottleneck of whole system, it is always necessary to extract

model parameters from camera data taken at peak occupancy of facility.

Another shortcoming is the instability of the algorithm when there is a high density of

occupants, where a person is often lost and the trajectory becomes confused. In such situa-

tions, it can be very difficult for an algorithm to reliably identify and track individuals, and

their trajectories can become confused or even lost altogether. The proposal of a reliable algo-

rithm for detecting and tracing occupants in a crowd from tracked trajectories is a frequent

topic of research.

As the field of machine learning continues to advance, there is an increasing demand for

more efficient and effective methods of predicting model output values in real time during the

operation of the object under study. This is particularly important in scenarios where quick

and accurate decision-making is crucial, such as in industrial control systems, autonomous

vehicles, and medical diagnosis. Further research in this area will focus on developing novel

algorithms and techniques that can automatically predict model output values in real time,

based on data generated by the object under study. This will involve the use of advanced statis-

tical and machine learning methods, such as deep learning, reinforcement learning, and Bayes-

ian inference.

One potential solution to this problem is the creation of adaptive agents, which can adjust

their behavior based on data extracted from the model. These agents can be trained using data

generated by the object under study and can use this data to dynamically adjust their proper-

ties and decision-making processes. This approach has the potential to significantly improve

the accuracy and efficiency of real-time model predictions, as well as enable more sophisticated

control systems and intelligent agents. Overall, the development of automated real-time pre-

diction methods and adaptive agents based on data extracted from models has the potential to

revolutionize a wide range of fields, from manufacturing and logistics to healthcare and

finance. As such, it is an exciting area of research that is likely to see significant progress in the

coming years.

Author Contributions

Conceptualization: Martina Pálková, Ondřej Uhlı́k, Tomáš Apeltauer.
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gence. 2021, 51, 1394–1409. Dostupné z: https://doi.org/10.1007/s10489-020-01852-8.

40. JIANG Z., T PAN C. ZHANG a J. YANG. A New Oversampling Method Based on the Classification Con-

tribution Degree. Symmetry. 2021, 13. Dostupné z: https://doi.org/10.3390/sym13020194.
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