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Abstract

Position determination is a critical technical challenge to be addressed in the unmanned and

intelligent advancement of crane systems. Traditional positioning techniques, such as those

based on magnetic grating or encoders, are limited to measuring the positions of the main

carriage and trolley. However, during crane operations, accurately determining the position

of the load becomes problematic when it undergoes swinging motions. To overcome this

limitation, this paper proposes a novel Ultra-Wide-Band (UWB) positioning method for

unmanned crane systems, leveraging the Snake Optimizer Long Short-Term Memory (SO-

LSTM) framework. The objective is to achieve real-time and precise localization of the crane

hook. The proposed method establishes a multi-base station and multi-tag UWB positioning

system using a Time Division Multiple Access (TDMA) combined with Two-Way Ranging

(TWR) scheme. This system enables the acquisition of distance measurements between

the mobile tag and UWB base stations. Furthermore, the hyperparameters of the LSTM net-

work are optimized using the Snake Optimizer algorithm to enhance the accuracy and effec-

tiveness of UWB positioning estimation. Experimental results demonstrate that the SO-

LSTM-based positioning method yields a maximum positioning error of 0.1125 meters and a

root mean square error of 0.0589 meters. In comparison to conventional approaches such

as the least squares method (LS) and the Kalman filter method (KF), the proposed SO-

LSTM-based positioning method significantly reduces the root mean square error (RMSE)

by 63.39% and 58.01%, respectively, while also decreasing the maximum positioning error

(MPE) by 60.77% and 52.65%.

1. Introduction

Within the framework of the "Made in China 2025" initiative, traditional cranes are undergo-

ing a transformation towards intelligent and unmanned configurations. The realization of
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intelligent and unmanned crane systems necessitates the overcoming of key technological

challenges, including positioning, decision-making planning, and tracking control [1, 2].

Notably, positioning serves as a fundamental requirement for enabling effective decision-mak-

ing planning and tracking control. The encoder positioning method, which translates the rota-

tional angle of the shaft into distance measurements fed into the control system, is a viable

option for conventional cranes. However, its suitability diminishes when higher positioning

accuracy is desired. This limitation stems from two primary factors. Firstly, occasional slight

slippage of the crane’s active wheels leads to shaft rotation without corresponding displace-

ment, thereby compromising the stability of the positioning system. Secondly, the variation in

track height causes one of the wheels to lose contact with the track over short distances, a phe-

nomenon significantly influenced by track quality [3]. Alternatively, the barcode positioning

system relies on barcode locators and barcodes to facilitate measurement and positioning.

This system scans barcode graphics installed along the crane’s running line and derives posi-

tion information by comparing the scanned data with the stored information in memory. In

contrast to the encoder positioning system, the barcode positioning system effectively miti-

gates the challenges associated with wheel slippage and substandard track quality. Neverthe-

less, neither the encoder positioning system nor the barcode positioning system can accurately

determine the position of the crane hook during swinging motions [4].

The increasing demand for intelligent and unmanned operations in cranes necessitates a

positioning system that can meet the advanced requirements. Traditional positioning methods

such as encoder positioning and barcode positioning fall short in satisfying the positioning

needs of unmanned driving cranes. Consequently, researchers have been actively exploring

indoor positioning methods suitable for unmanned driving in crane applications. Notable

approaches include Wi-Fi positioning, Bluetooth positioning, geomagnetic positioning, pedes-

trian dead reckoning, and UWB positioning methods [5]. While Wi-Fi positioning has gained

popularity, its accuracy remains relatively low. Wi-Fi fingerprint-based positioning methods

require extensive signal mapping prior to deployment, making them impractical for

unmanned driving cranes [6–8]. Bluetooth positioning allows for short-range reception of

information but suffers from significant distance estimation errors. Distance-based Bluetooth

positioning methods fail to achieve high positioning accuracy, and the stability of Bluetooth

signal strength poses challenges. Signal strength-based Bluetooth positioning also fails to

deliver high accuracy [9, 10]. Magnetic positioning and pedestrian dead reckoning are often

used in combination with other positioning methods due to the difficulty of achieving precise

location estimates independently, resulting in limited positioning accuracy [11, 12]. Distance-

based UWB indoor positioning leverages non-sinusoidal narrow-pulse transmission data,

offering advantages such as fast transmission speed, low power consumption, high positioning

accuracy, and robust anti-interference capabilities [13]. The study referenced as [14] conducts

an analysis of the performance of linearized least squares estimation (LLSE), fingerprint esti-

mation (FPE), and weighted centroid estimation (WCE) concerning their positioning accuracy

within the context of UWB systems. The findings of this analysis serve to provide empirical

evidence supporting the efficacy of UWB-based positioning methodologies.

Distance-based UWB positioning methods commonly employed include the Least Squares

(LS) [15–17] and the Kalman Filtering (KF) [18–20]. In the context of indoor three-dimen-

sional spatial positioning, LS method is susceptible to the influence of anchor geometric con-

figurations, leading to challenges in effectively constraining the vertical dimension and

subsequently resulting in elevated errors along the z-direction. Contrasted with the LS method,

achieving heightened precision in position estimation through KF approach necessitates a

more refined system model. Nonetheless, it is important to note that the KF method does not

fundamentally resolve the influence of anchor geometric configurations on UWB positioning.
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In the literature, reference [21] extensively deliberates on the effect of anchor quantity on

UWB position estimation accuracy, underscoring the incremental enhancement in UWB posi-

tioning precision as the number of anchors increases. Nonetheless, the augmented anchor

count, while bolstering position estimation accuracy, concurrently entails escalated localiza-

tion costs. Considering the rapid advancement of machine learning and deep learning tech-

niques, the integration of artificial intelligence (AI) with positioning, commonly referred to as

AI+ positioning, emerges as a promising alternative solution. The LSTM network is capable of

extracting deep and abstract features from extensive sample data. It exhibits significant advan-

tages in training and refining sequential data, enabling accurate position estimation with high

precision without reliance on initial states.

In the training phase of LSTM, several factors influence the training outcomes, such as the

sample size, data normalization technique, and hyperparameters of the LSTM network.

Among these factors, the hyperparameters of the LSTM network play a critical role in deter-

mining the training results [22, 23]. Presently, researchers typically rely on their own expertise

to determine the initial set of hyperparameters for LSTM networks and subsequently make

iterative adjustments throughout the experimental process. However, this manual approach

significantly impacts efficiency and frequently fails to yield the optimal parameter

configuration.

Metaheuristic algorithms, encompassing genetic evolution-based algorithms, physics-based

algorithms, and population-based algorithms, have gained considerable attention from engi-

neers and researchers due to their simplicity, gradient-free nature, and powerful search capa-

bilities [24]. In the domain of crane optimization, reference [25] introduced an enhanced

seagull optimization algorithm, which outperformed other algorithms when applied to the

optimization problem of the crane’s main beam. Moreover, reference [26] tackled the compre-

hensive scheduling problem involving dockside cranes and trucks by proposing an adaptive

particle swarm optimization algorithm that yielded optimal solutions derived from mixed-

integer programming. Additionally, reference [27] contributed an improved genetic algorithm

specifically tailored for dockside crane scheduling, resulting in significantly reduced computa-

tional time while maintaining superior algorithmic performance compared to existing meth-

ods. The Snake Optimizer algorithm, introduced by Fatma A. Hashim in 2022, is a nature-

inspired optimization technique that emulates the feeding and mating behavior of snakes to

tackle diverse optimization tasks [28]. In this study, a novel approach is presented, namely the

Snake Optimizer-based LSTM network, for UWB positioning in unmanned crane operations.

The proposed method leverages the Snake Optimizer algorithm to optimize the hyperpara-

meters of the LSTM network and achieve UWB localization. Through extensive experimental

evaluations, it is demonstrated that the proposed SO-LSTM-based UWB localization algo-

rithm enhances the positioning accuracy of existing crane systems, thus laying a solid founda-

tion for the intelligence and unmanned aspects of crane operations. The primary

contributions of this research are outlined as follows:

1. Constructed a multi-base station, multi-tag UWB positioning system, collected UWB dis-

tance measurements and Tag positions in a real crane scenario, built a UWB ranging data-

set for crane applications, and applied it to determine the position of lifted objects by

cranes.

2. This paper proposes the use of the Snake Optimizer algorithm to solve the problem of

optimizing the hyperparameters of the LSTM network, and verifies the feasibility of using

the Snake Optimizer algorithm to find the optimal hyperparameters of the LSTM

network.
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3. The application of the SO-LSTM-based UWB positioning algorithm in the UWB position-

ing system for cranes enables the determination of the position of the crane’s hook when

the lifted object swings. This offers a novel positioning method solution for unmanned

crane systems.

The subsequent sections of this manuscript are structured as follows: Chapter 2 elaborates

on the application of deep learning techniques in UWB positioning. Chapter 3 provides an in-

depth discussion on the network model employed in the multi-base station and multi-label

crane UWB positioning system. Chapter 4 elucidates the proposed UWB positioning method

based on the SO-LSTM framework. In Chapter 5, the efficacy of the positioning algorithm is

rigorously examined and validated through a series of comprehensive experiments. Lastly,

Chapter 6 presents a concise summary of the accomplishments and contributions made in this

research endeavor.

2. Related work

Scholars both domestically and internationally have conducted extensive research on UWB

positioning. Reference [29], proposed as early as 2012 the utilization of UWB for estimating

the posture of cranes, a crucial aspect for predicting potential collisions involving cranes. As

research endeavors continue to delve deeper, recent years have witnessed new breakthroughs

in UWB technology. In this chapter, we delve into the advantages of deep learning networks

and their application within UWB positioning systems.

In recent years, deep learning has received considerable attention in the field of positioning.

In reference to [30], the CNN-LSTM deep learning method was employed for UWB NLOS/

LOS signal classification, demonstrating superior classification performance. Another study

presented in reference [31] proposed a novel positioning method that leverages convolutional

neural networks (CNNs) in conjunction with UWB signals. Through simulations, it was veri-

fied that the proposed CNN-based positioning method outperforms traditional threshold-

based approaches. In the context of mitigating range errors in NLOS conditions, reference

[32] introduced a deep learning-based approach that exploits the distinct response states

exhibited by the channel impulse response (CIR). Experimental evaluations conducted in a

greenhouse with multiple intervals demonstrated significant mitigation of positioning errors

in NLOS environments, while retaining usability even in severely obstructed scenarios. To

address the challenges posed by multipath and non-line-of-sight propagation in UWB signals,

reference [33] proposed a novel positioning framework. By extracting features from time and

power vectors obtained from UWB signals, a multi-layer perceptron (MLP) and a convolu-

tional neural network (CNN) were employed to enhance the performance of indoor position-

ing systems. Simulation results indicated that the designed CNN architecture reduced the

average error by approximately 3 cm. In the realm of gated recurrent unit (GRU)-based posi-

tioning methods, reference [34] introduced a positioning approach that combines GRU with

UWB signals. Compared to existing methods based on CNN, this approach significantly

reduces training and testing time. Simulation results demonstrated that the proposed method

achieved a low RMSE of 0.8 meters. Furthermore, reference [35] proposed a deep learning

model utilizing LSTM networks for UWB tag position prediction. The performance of the pro-

posed LSTM-based UWB positioning system was analyzed in terms of learning rate, loss func-

tion, and optimizer selection. Simulation results showcased that the proposed UWB

positioning solution achieved centimeter-level average positioning error, surpassing tradi-

tional UWB positioning methods.

In the "Related Work" section, discussions revolve around the utilization of machine learn-

ing concepts to enhance the accuracy of UWB system positioning. However, the positioning
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accuracy of UWB systems still requires further enhancement. Therefore, it is imperative to

introduce a novel positioning methodology tailored for the unmanned crane’s location estima-

tion. With the objective of minimizing positioning errors, this paper proposes a novel UWB

positioning approach for unmanned cranes based on the SO-LSTM framework. Experimental

results demonstrate that, in comparison to traditional LS and KF methods, this approach effec-

tively reduces the UWB system’s positioning errors. This contribution holds significant impli-

cations for the future development of unmanned autonomous crane systems.

3. Multi-anchor multi-tag UWB localization system network model

The UWB positioning system comprises three main components: the Tag, the Anchor, and

the Central Localization Engine (CLE) residing in the backend. The CLE is responsible for

clock synchronization with the Anchors. Upon receiving a beacon request from an Anchor,

the CLE initializes the data to ensure consistency with the Anchors’ data within the system.

Throughout the system’s operation, the CLE continuously monitors the status of both the

Anchors and Tags. Collaboratively, the Tag and Anchor perform distance measurements,

which are integral to the functionality of the UWB positioning system.

The UWB positioning system consists of a set of n tags, employing TDMA technology to

partition time into various time slots for specific purposes such as clock synchronization, base

station broadcasting, service channel (SVC) reservation, TWR distance measurement, and

IDLE protection time. The CLOCK time slot is designated for clock synchronization between

the CLE and the Anchors within the system. The BCN time slot is utilized by Anchors to

request time slots. The network model and slot allocation of the multi-anchor multi-tag UWB

positioning system are depicted in Fig 1 Each Tag is assigned a dedicated time slot, wherein

Fig 1. Network model and time slot allocation.

https://doi.org/10.1371/journal.pone.0293618.g001
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Tag 1, for example, operates while other Tags remain in standby mode. Tag 1 employs the

TWR distance measurement principle to calculate the distance between itself and the Anchors

within the system.

The TWR distance measurement technique estimates the distance between the Tag and

Anchor by measuring the round-trip flight time of the signal transmitted between them. Fig 2

illustrates the distance measurement model employed between the Tag and Anchor. The pro-

cess begins with the Tag initiating a distance measurement request called "Poll" and noting the

transmission time T1. Subsequently, the i-th Anchor receives the "Poll" request from the Tag

and records the arrival time Ti1. Anchor i responds to the Tag by sending a response message,

denoted as "Resp," while also recording the transmission time Ti2. The Tag receives the

response message from Anchor i, noting the reception time Ti3. Finally, the Tag transmits a

final ranging message called "Final," recording the transmission time T2. Anchor i receives the

ranging message and records the reception time Ti4.

Anchor i derives the round-trip timestamp measurements between the Tag and Anchor,

resulting in the values Troundi1, Troundi2, Treplyi1, and Treplyi2. Tround signifies the time interval

encompassing the transmission of a ranging pulse signal by the Tag or Anchor to the subse-

quent reception of the ranging pulse signal. Treply denotes the time interval spanning the recep-

tion of a ranging pulse signal by the Tag or Anchor to the subsequent transmission of the

ranging pulse signal. The computation of the flight time is performed as follows:

Tprop ¼
Troundi1 � Troundi2 � Treplyi1 � Treplyi2

Troundi1 þ Troundi2 þ Treplyi1 þ Treplyi2
ð1Þ

Upon completion of the distance measurement process, Anchor i transmits a Report mes-

sage to the Tag, conveying the distance information between Anchor i and the Tag. The Tag

then encapsulates this information and uniformly transmits it to the CLE for further process-

ing. The CLE initially employs the LS method to preliminarily compute the position of the

Tag. Subsequently, the distance information, along with the computed Tag position, is trans-

mitted to the computer, where further refinement of the position estimation is carried out.

Fig 2. Time of flight ranging model.

https://doi.org/10.1371/journal.pone.0293618.g002
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4. The UWB positioning method for unmanned tower cranes based

on SO-LSTM

The Snake Optimizer algorithm, inspired by the feeding and mating behavior of snakes, is a

nature-inspired optimization algorithm employed in this study. The proposed UWB position-

ing method based on SO-LSTM consists of two stages. In the initial stage, the Snake Optimizer

algorithm is utilized to optimize the hyperparameters of the LSTM network. Subsequently, in

the second stage, the LSTM network is trained to accurately predict the position of the tag.

As depicted in Table 1, the distance measurement values obtained from the UWB position-

ing system in this study are categorized into two groups: the optimization group and the exper-

imental group. The optimization group is employed for optimizing the hyperparameters of the

LSTM network using the Snake Optimizer algorithm. On the other hand, the experimental

group is utilized for training the LSTM network and predicting the position of the UWB Tag.

Both groups encompass training data and testing data, which comprise distance measurement

values and the corresponding Tag positions obtained from measurements.

4.1. Snake optimizer LSTM hyperparameters

The Snake Optimizer algorithm is employed to perform hyperparameter optimization for the

LSTM network, aiming to identify improved training parameters suitable for UWB position-

ing. The hyperparameters considered in this study for optimization using the Snake Optimizer

algorithm encompass the number of hidden nodes, learning rate, and number of iterations of

the LSTM network. These hyperparameters play a crucial role in enhancing the performance

and effectiveness of the LSTM network for UWB positioning.

Illustrated in Fig 3, the optimization of LSTM network hyperparameters via the Snake Opti-

mizer algorithm involves a iterative process. The algorithm continuously updates the training

Table 1. UWB data grouping.

UWB Data

Optimization Group Experimental Group

training data test data training data test data

https://doi.org/10.1371/journal.pone.0293618.t001

Fig 3. Snake optimizer algorithm optimization process.

https://doi.org/10.1371/journal.pone.0293618.g003
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parameters and trains the LSTM network using the generated hyperparameters to estimate the

position of the UWB Tag. The fitness function is responsible for evaluating the loss value of

the LSTM network. The Snake Optimizer algorithm receives the loss value computed by the

fitness function, generates refined training parameters, and subsequently feeds them back to

the LSTM network for further training. The performance of the trained parameters is consid-

ered better when the loss value obtained from the fitness function is smaller. The calculation

method employed by the fitness function is outlined as follows:

rmse ¼ sqrtð
1

n
�
Xn

i¼1

ðDxi
2 þ Dyi

2 þ Dzi
2ÞÞ ð2Þ

In this context, Δxi, Δyi, and Δzi denote the discrepancies between the estimated position and

the measured position of the i-th distance measurement value along the x-axis, y-axis, and z-

axis, respectively.

Initially, the Snake Optimizer algorithm randomly generates n sets of parameters and pro-

ceeds to train the LSTM network using each parameter set, while recording the corresponding

training loss. The algorithm then identifies the parameter set that yields the smallest loss as the

global best parameter, denoted as Xfood. Subsequently, the n parameter sets are evenly divided

into two groups: the male parameter group and the female parameter group. The best parame-

ters fbest,m for the male group and fbest,f for the female group are determined. The relevant

parameters associated with the Snake Optimizer algorithm are presented in Table 2. The pro-

cess of updating the LSTM network hyperparameters using the Snake Optimizer algorithm is

depicted in Fig 4.

During the optimization process, the maximum number of optimization iterations is repre-

sented as T, while the current iteration is denoted as t. Initially, the quantities of food (Q) and

environmental temperature (Temp) are computed, and their values are influenced by T and t.

The calculation formulas for Q and Temp are as follows:

Temp ¼ expð
� t
T
Þ ð3Þ

Q ¼ C1 ∗ expð
t � T
T
Þ ð4Þ

During the optimization process, various behaviors are performed based on the comparison

between the Q and the predefined threshold value (Threshold1). If Q is less than Threshold1,

the new parameters are determined by updating the current parameters solely based on the

Table 2. SO-LSTM algorithm parameters.

Symbol Value Parameter

Threshold1 0.25 Food quantity (Q) threshold

Threshold2 0.6 Environment temperature (Temp) threshold

[X1min, X1max] [10, 200] Search Range for Hidden Node Count

[X2min, X2max] [0.001, 0.02] Search Range for Learning Rate

[X3min, X3max] [10, 500] Search Range for Maximum Iterations

https://doi.org/10.1371/journal.pone.0293618.t002
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loss value. The formulas for updating the male parameter group are as follows:

Am ¼ expð
� frand;m
fi;m
Þ ð5Þ

Xi;mðt þ 1Þ ¼ Xrand;mðtÞ � C2 � Am � ððXmax � XminÞ � randþ XminÞ ð6Þ

Formula for calculating the female parameter group:

Af ¼ expð
� frand;f
fi;f
Þ ð7Þ

Xi;f ¼ Xrand;mðt þ 1Þ � C2 � Af � ððXmax � XminÞ � randþ XminÞ ð8Þ

Xi refers to the position of the i-th parameter in the parameter group, m represents the male

Fig 4. The process of updating LSTM hyperparameters with the snake optimizer algorithm.

https://doi.org/10.1371/journal.pone.0293618.g004
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parameter group, f represents the female parameter group, and rand is a random number

between 0 and 1.

If the food amount Q is greater than the threshold value Threshold1, the algorithm further

examines whether the environmental temperature Temp exceeds the threshold value Thresh-

old2. In the case where Temp is greater than Threshold2, both the male and female parameter

groups are updated based on the environment temperature.

Xi;jðt þ 1Þ ¼ Xfood � C3 � Temp� rand � ðXfood � Xi;jðtÞÞ ð9Þ

If the food amount Q is greater than the threshold value Threshold1 and the environmental

temperature Temp is less than the threshold value Threshold2, the parameter group is updated

based on the current best parameters. The calculation formula for updating the male parame-

ter group is as follows:

FM ¼ expð
� fbest;f
fi
Þ ð10Þ

Xi;mðt þ 1Þ ¼ Xi;mðtÞ þ C3 � FM � rand � ðQ� Xbest;f � Xi;mðtÞÞ ð11Þ

Calculation formula for the female parameter group:

Xi;f ðt þ 1Þ ¼ Xi;f ðt þ 1Þ þ C3 � FF � rand� ðQ� Xbest;m � Xi;f ðt þ 1ÞÞ ð12Þ

If the food amount Q is greater than the threshold value Threshold1 and the environmental

temperature Temp is equal to the threshold value Threshold2, the parameter group is updated

based on the food quantity, and the worst-performing group in the existing parameter group

is replaced. The calculation formula for updating the parameter group according to the food

quantity is as follows: The calculation formula for updating the male parameter group is:

Xi;mðt þ 1Þ ¼ Xi;mðtÞ þ C3 �Mm � rand� ðQ� Xi;f ðtÞ � Xi;mðtÞÞ ð13Þ

The newly generated set of parameters replaces the worst-performing set of parameters in

the male parameter group.

Xworst;m ¼ Xmin þ rand� ðXmax � XminÞ ð14Þ

The calculation formula for updating the female parameter group is as follows: the newly

generated set of parameters replaces the worst-performing set of parameters in the female

parameter group.

Xi;f ðt þ 1Þ ¼ Xi;f ðtÞ þ C3 �Mf � rand� ðQ� Xi;mðtÞ � Xi;f ðtÞÞ ð15Þ

The worst-performing set of parameters in the male parameter group is replaced with the

newly generated set of parameters.

Xworst;f ¼ Xmin þ rand� ðXmax � XminÞ ð16Þ

The Snake Optimizer algorithm updates the parameters and conducts training of the LSTM

network using the generated parameters. It outputs the training loss of the network with these

parameters and updates the parameters based on the obtained loss value. Upon completion of

the optimization process, the algorithm examines whether the current optimization count t is

less than the maximum optimization count T. If t is indeed less than T, the algorithm proceeds

with further optimization; otherwise, it outputs the best set of hyperparameters obtained.
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4.2. LSTM localization method

The UWB ranging data exhibits temporal correlation, and considering the comparison with

Recurrent Neural Network (RNN) and Extreme Learning Machine (ELM) models, the

LSTM model is determined to be more suitable for UWB localization. Accordingly, this

paper implements a UWB positioning prediction process based on LSTM, as depicted in

Fig 5.

1. The LSTM network hyperparameters optimized by the Snake Optimizer algorithm are

obtained.

2. An LSTM network is constructed using the hyperparameters optimized by the Snake Opti-

mizer algorithm, and the Adam optimization algorithm is employed to optimize and update

the network’s parameters.

3. UWB training data for the experimental group is acquired, and the LSTM network created

in Step (2) is trained using this data.

4. UWB ranging test data for the experimental group is obtained, and the trained LSTM net-

work is utilized to predict the location of the UWB tag.

5. The predicted location generated by the LSTM network is analyzed, and a comparison is

made with the measured location of the test data Tag in the experimental group. Subse-

quently, the RMSE and the MPE are calculated.

5. Experimental results and analysis

In order to assess the effectiveness of the proposed SO-LSTM-based UWB position estimation

method, two sets of experiments were devised, wherein the position of the Tag was estimated

Fig 5. Process of UWB location prediction based on LSTM.

https://doi.org/10.1371/journal.pone.0293618.g005
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using the LS, KF, and SO-LSTM methods respectively. In order to compare the positioning

accuracy of these three methods, the study evaluated two performance metrics for each posi-

tioning method: RMSE and MPE.

5.1. Experiment platform introduction

The experimental setup included an overhead bridge crane, as illustrated in Fig 6. The bridge

crane had a total length of 7.8 meters and a total width of 5.8 meters. The main trolley of the

crane had a maximum travel distance of 5.2 meters, while the auxiliary trolley had a maximum

travel distance of 4 meters. The crane was capable of lifting loads weighing up to 1000

kilograms.

The experimental setup employed DWM1001 modules manufactured by Qorvo Semicon-

ductor as the UWB devices. During the experimental setup, the UWB Anchors were posi-

tioned atop the support beam of the crane, while the UWB Tag was securely attached to the

crane’s hook. A UWB ranging system consisting of 6 Anchors and 1 Tag was established for

the experiment. The coordinates of the 6 Anchors were defined as follows: Anchor 1 (6.23,

0.01, 2.12), Anchor 2 (6.23, 3.68, 2.11), Anchor 3 (6.22, 7.35, 2.13), Anchor 4 (0.64, 0.03, 2.13),

Anchor 5 (0.65, 3.7, 2.11), and Anchor 6 (0.64, 7.4, 2.11).

Fig 6. Crane experimental platform.

https://doi.org/10.1371/journal.pone.0293618.g006
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5.2. Experiment 1

In the first experiment, the initial position of the Tag was set at point A1 (2.006, 1.674, 0.535),

with subsequent turning points at A2 (4.391, 1.642, 0.535), A3 (4.401, 5.673, 1.010), and A4

(2.041, 5.713, 1.008). The crane hook followed the trajectory A1!A2!A3!A4!A1.

Throughout the crane’s movement, distance measurements between the Tag and the 6

Anchors were collected. The trajectory of the Tag’s movement is depicted in Fig 7. Calculate

the errors between UWB distance measurements and actual distance values, and visualize the

ranging errors. The visualized ranging errors are shown in Fig 8.

The Snake Optimizer algorithm iteratively generates new hyperparameters for the LSTM

network and trains the network using these newly generated parameters. The fitness function

evaluates the training loss, where a smaller loss indicates superior parameters. Through 1000

optimization iterations using the Snake Optimizer algorithm, the best hyperparameters for the

LSTM network were determined as follows: 195 hidden nodes, a learning rate of 0.0182, and a

maximum iteration count of 326. The loss value curve of the LSTM network during the Snake

Optimizer algorithm optimization process is illustrated in Fig 9. The figure demonstrates a

rapid convergence of the loss value, indicating the strong capability of the Snake Optimizer

algorithm in optimizing the hyperparameters of the LSTM network.

Fig 10 presents the actual trajectory of the target alongside the estimated trajectories

obtained using the LS, KF, and SO-LSTM localization methods. The evaluation of these locali-

zation methods in this experiment involved calculating the RMSE and MPE. As shown in

Table 3. For the LS method, the calculated RMSE and MPE were 0.1999 meters and 0.3354

Fig 7. Experimental trajectory of crane hook movement in experiment 1.

https://doi.org/10.1371/journal.pone.0293618.g007
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meters, respectively. The KF method yielded an RMSE of 0.1510 meters and an MPE of 0.2602

meters. As for the SO-LSTM localization method, the RMSE and MPE were found to be

0.0513 meters and 0.0917 meters, respectively. It is evident that the LS and KF methods exhibit

larger fluctuations in target tracking, whereas the SO-LSTM localization method demonstrates

reduced fluctuations and a stronger capability for tracking the target accurately.

Fig 8. Visualization of ranging error in experiment 1.

https://doi.org/10.1371/journal.pone.0293618.g008

Fig 9. SO-LSTM loss value curve.

https://doi.org/10.1371/journal.pone.0293618.g009
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This research conducted an analysis of the positional estimation errors of the three localiza-

tion methods along the X, Y, and Z axes. Figs 11–13 serve to visually represent the positional

estimation errors along these specific coordinate axes. Table 4 provides the RMSE values for

the X, Y, and Z coordinate axes associated with the three positioning methods. The findings

reveal that the SO-LSTM method demonstrates slightly improved position estimation errors

in the X and Y axis components compared to the LS and KF methods. Furthermore, in the Z

axis component, the SO-LSTM method significantly surpasses the LS and KF methods in

terms of performance.

5.3. Experiment 2

In the second set of experiments, the positions of the Anchors and other conditions remained

unchanged, but the movement path of the crane hook was modified. The initial position of the

Tag was set at B1 (2.726, 5.716, 1.248), with turning points at B2 (4.484, 5.659, 1.247), B3

(4.476, 4.219, 1.249), B4 (2.745, 4.265, 1.247), B5 (2.787, 1.879, 1.247), B6 (4.594, 1.817, 1.249),

Fig 10. Localization trajectory for experiment 1.

https://doi.org/10.1371/journal.pone.0293618.g010

Table 3. Statistical analysis of positioning errors for three localization methods in experiment 1.

LS KF SO-LSTM

RMSE (m) 0.1999 0.1510 0.0513

MPE (m) 0.3354 0.2602 0.0917

https://doi.org/10.1371/journal.pone.0293618.t003
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B7 (4.603, 3.381, 1.248), and B8 (2.706, 3.433, 1.248). The movement trajectory of the crane

hook followed the sequence B1! B2! B3! B4! B5! B6! B7! B8! B1. Distance

measurements between the Tag and the Anchors were collected during the crane operation.

Fig 14 illustrates the movement trajectory of the crane hook in the second experiment.

Fig 11. Experiment 1: X-axis positioning estimation error.

https://doi.org/10.1371/journal.pone.0293618.g011

Fig 12. Experiment 1: Y-axis positioning estimation error.

https://doi.org/10.1371/journal.pone.0293618.g012

Fig 13. Experiment 1: Z-axis positioning estimation error.

https://doi.org/10.1371/journal.pone.0293618.g013
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In this set of experiments, the Snake Optimizer algorithm, obtained from Experiment 1,

was employed to determine the LSTM network hyperparameters for the position estimation

process of the SO-LSTM localization method. Fig 15 illustrates the true trajectory of the target

and the estimated trajectories obtained by the LS, KF, and SO-LSTM localization methods in

the second set of experiments. As shown in Table 5. The RMSE and MPE were calculated for

each localization method. The LS method yielded an RMSE of 0.1609 meters and an MPE of

0.2868 meters. The KF method achieved an RMSE of 0.1403 meters and an MPE of 0.2376

meters. The SO-LSTM localization method demonstrated superior performance with an

RMSE of 0.0589 meters and an MPE of 0.1125 meters. These results indicate that the

SO-LSTM localization method surpasses the LS and KF methods in terms of position tracking

accuracy.

This study undertakes an analysis of the positioning errors incurred by three distinct esti-

mation methods concerning the X, Y, and Z coordinate axes. Notably, the graphical

Table 4. RMSE for all three axes in experiment 1 with three positioning methods.

LS KF SO-LSTM

RMSE of the X-axis (m) 0.0547 0.0441 0.0269

RMSE of the Y-axis (m) 0.0741 0.0544 0.0433

RMSE of the Z-axis (m) 0.1772 0.1339 0.0062

https://doi.org/10.1371/journal.pone.0293618.t004

Fig 14. Experimental trajectory of crane hook movement in experiment 2.

https://doi.org/10.1371/journal.pone.0293618.g014
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representations in Figs 16–18 provide a comprehensive visualization of the positioning estima-

tion errors along these specific axes. Table 6 provides the RMSE values for the three localiza-

tion methods in the X, Y, and Z coordinate axes. Notably, the SO-LSTM localization method

demonstrates superior positioning accuracy in all three coordinates (X, Y, and Z) when com-

pared to the LS and KF methods.

5.4. Results and analysis

Fig 19(a) and 19(b) in the experiment depict the histograms of RMSE and MPE for the three

positioning estimation methods employed in Experiment 1 and Experiment 2, respectively.

The histograms clearly illustrate that the SO-LSTM positioning method consistently exhibits

smaller values of RMSE and MPE in comparison to the LS and KF methods.

Table 7 presents the percentage improvement in positioning accuracy achieved by the

SO-LSTM method when compared to the LS and KF methods. The results indicate that in

Experiment 1, the SO-LSTM positioning method achieved a significant reduction of 74.33% in

Fig 15. Localization trajectory for experiment 2.

https://doi.org/10.1371/journal.pone.0293618.g015

Table 5. Statistical analysis of positioning errors for three localization methods in experiment 2.

LS KF SO-LSTM

RMSE (m) 0.1609 0.1403 0.0589

MPE (m) 0.2868 0.2376 0.1125

https://doi.org/10.1371/journal.pone.0293618.t005
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RMSE and 72.65% in MPE compared to the LS method. Similarly, compared to the KF

method, the SO-LSTM positioning method achieved a reduction of 66.02% in RMSE and

64.75% in MPE. In Experiment 2, the SO-LSTM positioning method demonstrated a reduc-

tion of 63.39% in RMSE and 60.77% in MPE compared to the LS method. Furthermore, when

Fig 16. Experiment 2: X-axis positioning estimation error.

https://doi.org/10.1371/journal.pone.0293618.g016

Fig 17. Experiment 2: Y-axis positioning estimation error.

https://doi.org/10.1371/journal.pone.0293618.g017

Fig 18. Experiment 2: Z-axis positioning estimation error.

https://doi.org/10.1371/journal.pone.0293618.g018
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Table 6. RMSE for all three axes in experiment 2 with three positioning methods.

LS KF SO-LSTM

RMSE of the X-axis (m) 0.0550 0.0511 0.0329

RMSE of the Y-axis (m) 0.0693 0.0639 0.0489

RMSE of the Z-axis (m) 0.1344 0.1140 0.0008

https://doi.org/10.1371/journal.pone.0293618.t006

Fig 19. Analysis of position estimation trajectory errors (a) experiment 1 error histogram (b) experiment 2 error

histogram.

https://doi.org/10.1371/journal.pone.0293618.g019
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compared to the KF method, the SO-LSTM positioning method achieved a reduction of

58.01% in RMSE and 52.65% in MPE.

Through the analysis of the positioning errors in Experiment 1 and Experiment 2, it can be

concluded that the proposed SO-LSTM positioning method exhibits a significant enhance-

ment in the accuracy of the UWB positioning system compared to the LS and KF methods.

This finding highlights the effectiveness of the SO-LSTM method in improving the precision

of location estimation, particularly in unmanned crane systems. The results suggest that the

SO-LSTM method offers a promising solution for achieving higher accuracy in position

estimation.

6. Conclusions

This paper presents a novel UWB positioning methodology for unmanned crane systems,

employing the SO-LSTM technique with the objective of enhancing the positioning accuracy

of the crane’s hook. The proposed method leverages the TDMA and TWR techniques to estab-

lish a multi-base station and multi-tag UWB positioning system. Initially, the LSTM network’s

hyperparameters, including the number of hidden nodes, learning rate, and iteration count,

are optimized using the Snake Optimizer algorithm. Subsequently, the optimized LSTM net-

work is trained using UWB ranging data to precisely determine the position of the crane’s

hook.

Experimental findings substantiate that the proposed approach outperforms the conven-

tional LS and KF methods in terms of achieving higher accuracy in position estimation. The

proposed method effectively addresses the limitations associated with traditional crane posi-

tioning techniques, which encounter challenges in accurately determining the position of

swinging loads. In the future, the application of the SO-LSTM-based UWB positioning

method in real-world crane operation scenarios will be conducted to further assess its practical

viability and suitability.
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2 Positioning Error" provide the positioning estimation errors for Experiment 1 and Experi-

ment 2.
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Table 7. Percentage improvement in SO-LSTM positioning accuracy.

LS positioning

error (m)

KF positioning

error (m)

SO-LSTM

positioning error

(m)

Percentage improvement in accuracy

of SO-LSTM compared to LS.

Percentage improvement in accuracy

of SO-LSTM compared to KF.

Experiment

1

MPE 0.3354 0.2602 0.0917 72.65% 64.75%

RMSE 0.1999 0.1510 0.0513 74.33% 66.02%

Experiment

2

MPE 0.2868 0.2376 0.1125 60.77% 52.65%

RMSE 0.1609 0.1403 0.0589 63.39% 58.01%

https://doi.org/10.1371/journal.pone.0293618.t007
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