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Abstract

Shape is an objective characteristic of an object. A boundary separates a physical object

from its surroundings. It defines the shape and regulates energy flux into and from an object.

Visual perception of a definite shape (geometry) of physical objects is an abstraction. While

the perceived geometry at an object’s sharp interface (macro) creates a Euclidian illusion of

actual shape, the notion of diffuse interfaces (micro) allows an understanding of the realistic

form of objects. Here, we formulate a dimensionless geometric entropy of plant leaves (SL)

by a 2-D description of a phase-field function. We applied this method to 112 tropical plant

leaf images. SL was estimated from the leaf perimeter (P) and leaf area (A). It correlates

positively with a fractal dimensional measure of leaf complexity, viz., segmental fractal com-

plexity. Leaves with a higher P: A ratio have higher SL and possess complex morphology.

The univariate cluster analysis of SL reveals the taxonomic relationship among the leaf

shapes at the genus level. An increase in SL of plant leaves could be an evolutionary strat-

egy. The results of morphological complexity presented in this paper will trigger discussion

on the causal links between leaf adaptive stability/efficiency and complexity. We present SL

as a derived plant trait to describe plant leaf complexity and adaptive stability. Integrating SL

into other leaf physiological measures will help to understand the dynamics of energy flow

between plants and their environment.

Introduction

Nature has invested heavily in diversity. It manifests along multiple dimensions (phenotypic,

physiological) and tiers (molecular, individual, population, community). Physical appearance

(morphology) is the most obvious trait that can be used to differentiate higher forms of life.

Leaf shape of Angiosperms (flowering plants) is an easily discernable plant trait widely used by

taxonomists to characterize plant species [1, 2]. The different shapes of leaves have evolved

through natural selection. These abstract forms (shapes) are not random. They have a mathe-

matical soul that defines their physical form. Fibonacci numbers [3], the golden ratio [4], and
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fractals [5] provide mathematical descriptions of how biomass is arranged in numerical and

structured geometric forms.

Mass and shape are fundamental attributes of living organisms. Biomass limited by a

boundary bestows shape to organisms. Living objects exchange energy and matter with sur-

roundings across boundaries. The exchange of energy and matter underpins evolutionary [6]

and ecological processes [7]. Mereotopology is a theory combining mereology and topology. It

deals with relations of things: parts, wholes, and their boundaries [8]. Mereotopology qualita-

tively describes the static relationship between neighboring things by logical expressions, either

"true (1)" or "false (0)".

The phase-field concept rooted in mathematical physics also describes the boundaries of neigh-

boring things [9]. In contrast to mereotopology, the phase-field concept quantitatively describes

geometric shapes, boundaries, and their dynamic evolution (transitions between object and

boundary) [10]. Modeling using the phase-field approach belongs to the class involving phase

transitions between states. Description of the nature or shape of the transition region of the

phase-field function is achieved by the statistical distribution of gradients in the transition region

[11]. The concept was first implemented in describing the evolution of complex dendritic struc-

tures [12] and later gained the attention of the material science fraternity. Nowadays, phase-field

models are widely used to describe complex shapes, boundaries, and evolution [13, 14].

In-depth knowledge of shape and size is a prerequisite to understanding the interaction

between objects and their environment. Shape perception approaches focus exclusively on

geometric and computational tools. The shape of any physical object is a perception rendered

by human vision. Markosian et al. [15] suggest that only objects with spatial locations be con-

sidered physical objects. However, spatial bounds alone do not convey information (here,

shape) of a physical object. Also, relying on visual perception to conceive the idea of a bound-

ary is unscientific. Visual demarcation at the sharp macroscale interface of an object returns

an illusion. Such shapes demarcated as object boundaries will change with magnification. A

realistic boundary can be perceived as diffuse microscale interfaces with finite thickness [16–

18]. Here, we present a case study in complexity and use the notion of microscale interfaces

and phase field transitions to arrive at the geometric entropy of plant leaf shapes.

Plant leaves exemplify remarkable complexity. Leaves are the primary sites that regulate

photosynthesis and energy transfer. The amount of solar radiation incident on leaves depends

on the geometry and inclination of individual leaves [19]. Converting complex leaf forms into

simple geometric shapes can give valuable insights into leaf-radiation interaction. It allows an

in-depth study of geometry and energy by the basic properties of Euclidean shapes. Informa-

tion and entropy unify the idea of geometry and energy in all biological systems [20, 21].

Understanding the joint descriptions of information, entropy, and geometry will open discus-

sions on the direct causal links between leaf stability/efficiency and the complexity of plant

leaves. Until the dimensionless form of Bekenstein—Hawking entropy was constructed using

a phase-field approach [22], only the notion of entropy in the ’heterogeneity’ sense [23] was

related to the perception of geometry. In this paper, we consider plant leaves to be made up of

2-D non-linear elements and derive their geometric entropy through mathematical formula-

tions based on the geometric approach of Schmitz [22].

Leaf as a 2-D geometric object

Like any physical object, a plant leaf has a mass, momentum, and temperature. We attempt to

describe the geometric entropy of an individual plant leaf by the mathematical information of

physical objects gathered from the formulation of the Bekenstein-Hawking entropy [22]. The

formulation is purely geometrical and is devoid of any of the attributes of physical objects.
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The mean thickness and laminar length/width of plant leaves are in the order of 10−4 m and

10−2 m, respectively [24]. Since the thickness of the leaves is relatively smaller than their lami-

nar dimensions, the visual perception of leaf morphological features is more laminar. Thus,

leaves exhibit remarkable complexity more by variations at their margin, leading to lobes or

serrations. 2- D leaf shape features described along the laminar direction can be considered an

excellent candidate to discriminate the leaves from others. Hence, we consider the plant leaf as

a 2-D structure for analytical purposes. A 2-D leaf is described by an area confined by a bound-

ary—the leaf margin. The leaf boundary distinguishes the bulk of the leaf from its surrounding

environment.

As stated earlier, we consider the leaf as a 2-D object made of non-linear elements. Circular

objects can be described using a continuous 2-D extension of Heaviside and phase-field func-

tions [25, 26], thereby constructing the geometric entropy at its diffuse interfaces.

Description of a circular object

The Heaviside step function (H(x)) and the Phase-field function (F(x)) are essential in describ-

ing the physical states (presence or absence) of a system and are used in the modeling and

mechanics of complex structures [27, 28]. The sharp interface property of the H(x) yields the

value ’1’ wherever the object is present and is ’0’ elsewhere (Fig 1). The geometry of a circle can

be described using this property. Boundaries distinguish an object (’1’) from its non-object

state (’0’). A circle is an area confined by its periphery (boundary). We consider the boundary

of the circle as a sharp interface. Beyond their boundary, there will be no presence of the circle.

Fig 1. Visualization of the Heaviside step function H(x) (in orange line) and the phase-field functionsF(x) (in blue line).

https://doi.org/10.1371/journal.pone.0293596.g001
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Thus, the area A of a circle with a radius r0 in circular coordinates is given by H(x) as:

A ¼
ZZ

Hðr � r0Þrdrdy ð1Þ

The sharp interface property of H(x) reduces the limits of the integral from zero to r0:

A ¼ 2p

Z 1

0

Hðr � r0Þrdr ¼ 2p

Z r0

0

rdr ¼ pr0
2 ð2Þ

Similarly, the perimeter P of the circle can be calculated using the gradient of H(x). Since

the distributional derivative of the H(x) results in the definition of the Dirac delta function (δ
(x)) [29], gradients of H(x) will only appear at the boundaries (r0) of the circular object.

i.e

d xð Þ ¼
dHðxÞ

dx
ð3Þ

The perimeter P of the circle therefore calculated as:

P ¼
ZZ

dðr � r0Þrdrdy ¼ 2pr0 ð4Þ

In contrast to the H(x), Phase-field functions (F(x)) are based on a continuous transition

between two states, ’1’ (presence of the object) and ’0’ (absence of object), within a small transi-

tion zone η (Fig 1). However, F(x) can be treated as a continuous and 2-D formulation of H(x)
at a very narrow transition width η.

Fðr � r0Þ � Hðr � r0Þ ð5Þ

and

rFðr � r0Þ � rHðr � r0Þ ¼ dðr � r0Þ ð6Þ

The gradientr describes the one-dimensional derivative in the radial direction.

The following section derives the geometric entropy of circular objects based on the geo-

metric description of the transition region (diffuse interface) in a phase-field function.

Geometric entropy of circular object

Entropy is a ubiquitous concept that reveals a complicated picture in almost all fields ranging

from information [30, 31], thermodynamics [32, 33], biology [34, 35], materials [36, 37], and

economics [38, 39]. While some of these are probability distribution functions, others are not.

However, irrespective of the notion, all are defined in terms of the well-known logarithmic

expression:

S ¼ �
XN

i¼0
FilnFi ð7Þ

Here we consider the boundary of a circular object as a diffuse interface, which assumes an

ideal mixing of an infinite number of equiprobable states of object/non-object (Fi). The geo-

metric entropy (SGE) at the circle’s interface (phase field) is deduced by the geometric descrip-

tion of the diffuse interface using the Temkin model [40].
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The Temkin model describes the entropy of the diffuse interface layers as:

S ¼ �
Xþ1

n¼� 1
ðFn� 1 � FnÞlnðFn� 1 � FnÞ ð8Þ

The corresponding gradient of the probable states (Fi) can be defined by introducing the

notion of discretization length (l) between two adjacent layers as (Fig 2):

dFn ¼ Fn � Fn� 1 ¼

Z nl

ðn� 1Þl

dF
dr

dr ¼
dFn

dr

Z nl

ðn� 1Þl
dr ¼ l

dFn

dr
¼ lrn

rF ð9Þ

Therefore, the discrete entropy described in Eq (8) can be transformed into the continuous

formulation for small discretization length (l) and the infinite number of discrete cells (n) as:

S ¼ �
Xþ1

n¼� 1
l
dFðnlÞ

dr

� �

ln l
dFðnlÞ

dr

� �

�!
Z þ1

� 1

l
dFðnlÞ

dr

� �

ln l
dFðnlÞ

dr

� �

dn ð10Þ

with r nð Þ ¼ r0 þ nl and dn ¼
dr
l

ð11Þ

Applying Eq (9)

S ¼ �
Z þ1

� 1

flrrFðr � r0Þgln lrrFðr � r0Þf g
dr
l

ð12Þ

Extending the entropy from one dimension to two dimensions in the Cartesian plane

changes the radial product lrr into the scalar product l
!
r
!
� and normalizes the integration

Fig 2. Visualization of the gradientFn-1 –Fn in Temkin’s model of the entropy of a diffuse interface (Image concept from Schmitz [22]).

https://doi.org/10.1371/journal.pone.0293596.g002
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direction by some discretization length as:

S ¼ �
ZZþ1

� 1

ð l
!
r
!
�Þln l

!
r
!
�

� � dx
lx

dy
ly

ð13Þ

We recall that the entropy formulation is purely geometrical and does not reveal any intrin-

sic structure (attributes) of the physical object. Thus, the discretization lengths in the two

dimensions can be considered to be a generalized isotropic discretization.

Taking isotropy of discretization, i.e., lx = ly = lp, changes the expression of S in the Carte-

sian plane into polar coordinates by:

S ¼ �
ZZ

ð l
!
r
!
�Þlnð l

!
r
!
�Þ

rdrdy
lp

2
ð14Þ

Integrating over the angle dθ will give:

S ¼ � 2p

Z 1

0

ð l
!
r
!
�ðr � r0ÞÞlnð l

!
r
!
�ðr � r0ÞÞ

rdr
lp

2
ð15Þ

Since finite values ofrϕ can contribute to the integral only at the interface, a proportional-

ity between the terms containingrϕ and the δ-function can be assumed for ϕ at small transi-

tion widths η.

l
lp
ð l
!
r
!
�ðr � r0ÞÞlnð l

!
r
!
�ðr � r0ÞÞ / d r � r0ð Þ ð16Þ

Including Eq (16) with an unknown constant of proportionality into Eq (15) yields:

S ¼ �
2p

lp

Z 1

0

const � dðr � r0Þrdr ¼ � const �
2pr0

lp
¼ � const �

P
lp

ð17Þ

where P is the perimeter of the circle.

The proportionality constant is estimated as -1/4 in the formulation of the Bekenstein-

Hawking entropy of black holes by calculating the average gradient in diffuse interfaces [22].

Hence, the geometric entropy of a circle (SGE) takes the dimensionless form:

SGE ¼
1

4
�

P
lp

ð18Þ

Geometric entropy of plant leaf

Bulk and boundary constitute the structure of any 2-D object. SGE developed at the 2-D inter-

face is purely based on an informational approach and does not contain any temperature term.

It is a configurational entropy that conveys information about shape (geometrical features).

This information conveys the extent of complexity/dissimilarity of shapes from the circularity.

Geometric entropy is not limited to circular objects. It can be constructed for objects of any

shape dimension [22]. In 2-D, an arc is part of the circumference of a circle. Since the area ele-

ment in plane-polar coordinates is simple (rdrdθ), SGE can be determined directly from Tem-

kin’s model. Apart from a circle, every 2-D shape can be visualized as made of infinitesimally

small arcs. Hence, their geometric entropy can be arrived at from Temkin’s model. However,

the progression of the area element (rdrdθ) in plane-polar coordinates complicates the formu-

lation of the entropy of non-circular objects. Notwithstanding the above, the general structure

of the geometric entropy of any 2-D shape will be similar to that of a circle (SGE) (Eq 18). The
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parameters (circumference and discretization length) will remain the same, but the coefficient

in the SGE equation is subject to change. Hence the entropy of any 2-D object is comparable to

SGE. Here we focus on terrestrial plant leaves viewed as 2-D objects. We consider the leaf-envi-

ronment interface of the plant leaf as a narrow phase field (Fig 3) and describe the structure of

the geometric entropy of a plant leaf (SL) by the SGE of a circular object.

Generally, 2-D shape features are described only in the x and y direction. The parameters of

SL are subjective to the rationale of 2-D complexity and leaf characteristics. We consider the

dimensions of the diffuse interface (in x or y direction) to correspond to the leaf dimensions

(length L or width W) (Fig 3). Finite element method (FEM) is an innovative concept to model

the development of phase field surfaces. Taking the logic of isotropy of discretization in 2-D

non-Euclidean shapes from the finite element method [41], the generalized discretization

length (lp) corresponds with the square root of the leaf area. Since the perimeter and leaf area

play an important role in leaf physiology [42, 43], we consider the two variables in geometric

entropy (SL), perimeter and discretization length; as leaf traits. The perimeter is considered the

leaf perimeter, and the discretization length is the square root of the leaf area.

Hence, the geometric entropy (SL) of an ordinary leaf takes the form:

SL ¼
1

4
�

P
ffiffiffiffi
A
p ð19Þ

where P is the leaf perimeter, and A is the leaf area.

Eq (19) resembles the leaf dissection index (LDI) [44]. While LDI is commonly used to

depict the complexity of plant leaf shape, we could not trace the assumptions and scientific

derivation of LDI. Hence we consider Eq (19) as arriving at the geometric entropy through a

scientific approach. In the following sections, we illustrate the use of geometric entropy (SL) to

analyze the complexity of plant leaf shapes.

Fig 3. Visualization of a narrow leaf-environment diffuse interface. We assume the dimensions of the diffuse interface (in x or y direction) correspond to the

leaf dimensions (length L or width W).

https://doi.org/10.1371/journal.pone.0293596.g003

PLOS ONE Geometric entropy of plant leaves

PLOS ONE | https://doi.org/10.1371/journal.pone.0293596 January 2, 2024 7 / 24

https://doi.org/10.1371/journal.pone.0293596.g003
https://doi.org/10.1371/journal.pone.0293596


Dataset and measurement

Mature, healthy leaves of 112 flat-leaved plant species in 40 families were collected from Tri-

vandrum (8˚ 32’ N, 77˚ 16’ E and 8˚ 46’ N, 76˚ 41’ E), Kerala, India, from June to December

2022 (Table 1). Trivandrum is situated on the southwest coast of India and has a tropical cli-

mate with diverse flora and fauna.

Leaves with petioles were scanned on a white background using a digital scanner (Epson L

360). The original RGB images were scaled to 1024 × 1024 pixels and converted into bitmap

format (24-bit). The scaled color images were transformed into grayscale images and con-

verted to binary images using Otsu’s threshold [45]. The binary images were used to estimate

the geometric entropy.

The perimeter and area of the binary leaf images were computed using MATLAB [46]. The

area of the leaf corresponds to the total number of pixels in the leaf part in the binary images.

However, the perimeter corresponds to the number of pixels along the periphery of the leaf

parts. The geometric entropy (SL) of the leaves was calculated using Eq (19).

Segmental fractal complexity (DSS) is an improved leaf complexity measure from a fractal-

thermodynamic system analogy [47]. It is an algebraic combination of the fractal dimensions

of the components of the leaf images, viz., leaf lamina, the background, and leaf edges.

DSS ¼ DBackground þ DEdge � DLeaf ð20Þ

where DBackground, DEdge, and DLeaf are the fractal dimensions of leaf background, edges, and

lamina, respectively. DSS of the leaves was calculated using Eq (20). SL was correlated with DSS.

Results

Plant leaves used in this study exhibited remarkable morphological complexity (Fig 4). The

geometric entropy of the leaf images (SL) varied between 2.581 and 30.683 (Table 1). The leaf

of Bridelia retusa showed the lowest SL, and that of Jacaranda mimosifolia, the highest. Deeply

lobed broad leaves of Bauhinia purpurea and Merremia vitifolia showed lower SL than many

simple leaves in the study. Narrow leaves of Plumeria rubra, Acacia auriculiformis, Mangifera
indica, Monoon longifolium, Syzygium jambos, and Nerium oleander showed higher SL than

deeply lobed leaves of Tithonia diversifolia, Rhaphidophora tetrasperma. The SL of pinnately

compound leaves of Cassia fistula, Phyllanthus acidus, Senna occidentalis, Calliandra haemato-
cephala, Simarouba glauca, Senna siamea, Sesbania grandiflora, Azadirachta indica, Murraya
koenigii, Averrhoa bilimbi, Caesalpinia pulcherrima, Tagetes erecta, Caesalpinia coriaria, Cae-
salpinia sappan, Albizia odoratissima, Melia azedarach, Moringa oleifera, Phyllanthus emblica,

and Jacaranda mimosifolia were the highest and ranged from 6.158 to 30.683 (Table 1). The SL

values increase with decreasing leaf width and increasing leaf pinnation. SL was comparable

for leaves with similar morphology.

Table 1 presents the segmental fractal complexity (DSS) of the leaves studied. DSS varies

between 1.044 and 1.952. The pinnately compound leaf of Jacaranda mimosifolia recorded the

highest DSS. The lowest DSS was observed for the simple leaf of Calotropis gigantea. The DSS of

the pinnately compound leaves of Senna occidentalis, Simarouba glauca, Albizia odoratissima,

Sesbania grandiflora, Azadirachta indica, Calliandra haematocephala, Cassia fistula, Murraya
koenigii, Melia azedarach, Moringa oleifera, Averrhoa bilimbi, Tagetes erecta, Phyllanthus
emblica, and Jacaranda mimosifolia ranged between 1.215 and 1.952 (Table 1). DSS also

increases with decreasing leaf width and increasing leaf lobiness and pinnation. Fig 5 illustrates

a strong monotonic relationship (ρ = 0.95, p< 0.001) between SL and DSS.

We classified the variation in SL at the taxonomic level. Fig 6 depicts the similarity dendro-

gram. The high cophenetic correlation coefficient (0.97) indicates the quality of classification.
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Table 1. Geometric entropy (SL) and segmental fractal complexity (DSS) of the plant leaves collected from Trivandrum, Kerala, India.

Sl.

No.

Plant species Genus Family Segmental fractal

complexity (DSS)

Geometric entropy

(SL)

Leaf type

1 Justicia adhatoda L. Justicia Acanthaceae 1.105 3.876 Simple

2 Hydnocarpus pentandrus (Buch.-Ham.)
Oken

Hydnocarpus Achariaceae 1.099 3.807 Simple

3 Anacardium occidentale L. Anacardium Anacardiaceae 1.057 2.73 Simple

4 Mangifera indica L. Mangifera Anacardiaceae 1.12 4.262 Simple, Narrow

5 Spondias pinnata (L.fil.) Kurz Spondias Anacardiaceae 1.092 3.215 Simple

6 Annona muricata L. Annona Annonaceae 1.067 3.029 Simple

7 Annona reticulata L. Annona Annonaceae 1.087 3.417 Simple

8 Annona squamosa L. Annona Annonaceae 1.081 3.413 Simple

9 Monoon longifolium (Sonn.) B.Xue & R.M.

K.Saunders
Monoon Annonaceae 1.121 4.312 Simple, Narrow

10 Alstonia scholaris (L.) R. Br. Alstonia Apocynaceae 1.099 3.701 Simple

11 Calotropis gigantea (L.) W.T.Aiton Calotropis Apocynaceae 1.044 2.636 Simple

12 Plumeria rubra L. Plumeria Apocynaceae 1.114 4.000 Simple, Narrow

13 Tabernaemontana alternifolia L. Tabernaemontana Apocynaceae 1.103 3.821 Simple

14 Nerium oleander L. Nerium Apocynaceae 1.119 4.652 Simple, Narrow

15 Plumeria alba L. Plumeria Apocynaceae 1.082 3.162 Simple

16 Rhaphidophora tetrasperma Hook.f. Rhaphidophora Araceae 1.081 3.972 Simple, Lobed

17 Tagetes erecta L. Tagetes Asteraceae 1.408 8.911 Unipinnate

18 Tithonia diversifolia (Hemsl.) A.Gray Tithonia Asteraceae 1.108 3.903 Simple, Lobed

19 Handroanthus impetiginosus (Mart. ex
DC.) Mattos

Handroanthus Bignoniaceae 1.100 3.594 Simple

20 Jacaranda mimosifolia D.Don Jacaranda Bignoniaceae 1.952 30.683 Bipinnate

21 Tecoma stans (L.) Juss. ex Kunth Tecoma Bignoniaceae 1.114 3.685 Simple, Toothed

22 Trema tomentosa (Roxb.) H. Hara Trema Cannabaceae 1.122 4.171 Simple, Toothed

23 Carica papaya L. Carica Caricaceae 1.135 4.44 Simple, Lobed

24 Garcinia mangostana L. Garcinia Clusiaceae 1.103 3.578 Simple

25 Terminalia arjuna (Roxb. ex DC.) Wight &
Arn.

Terminalia Combretaceae 1.082 3.619 Simple

26 Terminalia bellirica (Gaertn.) Roxb. Terminalia Combretaceae 1.068 3.044 Simple

27 Merremia vitifolia (Burm. f.) Hallier f. Merremia Convolvulaceae 1.077 3.177 Simple, Lobed

28 Hopea ponga (Dennst.) Mabb. Hopea Dipterocarpaceae 1.098 3.452 Simple

29 Hopea parviflora Bedd. Hopea Dipterocarpaceae 1.080 3.281 Simple

30 Vateria indica L. Vateria Dipterocarpaceae 1.120 3.437 Simple, Narrow

31 Hevea brasiliensis (Willd. ex A.Juss.) Müll.
Arg.

Hevea Euphorbiaceae 1.058 3.242 Simple

32 Macaranga peltata (Roxb.) Müll.Arg. Macaranga Euphorbiaceae 1.071 3.066 Simple

33 Acacia auriculiformis Benth. Acacia Fabaceae 1.127 4.208 Simple, Narrow

34 Acacia mangium Willd. Acacia Fabaceae 1.089 3.717 Simple

35 Albizia odoratissima (L.f.) Benth. Albizia Fabaceae 1.226 10.14 Bipinnate

36 Bauhinia purpurea L. Bauhinia Fabaceae 1.048 2.719 Simple, Lobed

37 Caesalpinia sappan L. Caesalpinia Fabaceae 1.173 9.299 Bipinnate

38 Caesalpinia pulcherrima (L.) Sw. Caesalpinia Fabaceae 1.16 8.54 Bipinnate

39 Caesalpinia coriaria (Jacq.) Willd. Caesalpinia Fabaceae 1.159 9.040 Bipinnate

40 Calliandra haematocephala Hassk. Calliandra Fabaceae 1.233 6.356 Unipinnate

41 Cassia fistula L. Cassia Fabaceae 1.233 6.158 Unipinnate

42 Pueraria phaseoloides (Roxb.) Benth. Pueraria Fabaceae 1.116 4.004 Trifoliate

43 Gliricidia sepium (Jacq.) Kunth Gliricidia Fabaceae 1.15 5.863 Unipinnate

(Continued)
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Table 1. (Continued)

Sl.

No.

Plant species Genus Family Segmental fractal

complexity (DSS)

Geometric entropy

(SL)

Leaf type

44 Indigofera hirsuta L. Indigofera Fabaceae 1.206 5.574 Unipinnate

45 Senna occidentalis L. Senna Fabaceae 1.215 6.333 Unipinnate

46 Senna siamea (Lam.) H.S.Irwin & Barneby Senna Fabaceae 1.186 6.896 Unipinnate

47 Senna surattensis (Burm.f.) H.S.Irwin &
Barneby

Senna Fabaceae 1.197 5.192 Unipinnate

48 Sesbania grandiflora (L.) Pers. Sesbania Fabaceae 1.227 6.979 Unipinnate

49 Tamarindus indica L. Tamarindus Fabaceae 1.125 5.328 Unipinnate

50 Holmskioldia sanguinea Retz. Holmskioldia Lamiaceae 1.077 3.218 Simple, Toothed

51 Vitex negundo L. Vitex Lamiaceae 1.211 6.034 Palmate, 3–5

foliolate

52 Cinnamomum tamala (Buch.-Ham.) T.

Nees & Eberm.

Cinnamomum Lauraceae 1.098 3.515 Simple

53 Cinnamomum verum J.Presl Cinnamomum Lauraceae 1.055 2.852 Simple

54 Strychnos nux-vomica L. Strychnos Loganiaceae 1.08 3.1 Simple

55 Dendrophthoe falcata (L.fil.) Blume Dendrophthoe Loranthaceae 1.092 3.874 Simple

56 Lagerstroemia speciosa (L.) Pers. Lagerstroemia Lythraceae 1.051 2.734 Simple

57 Lawsonia inermis L. Lawsonia Lythraceae 1.068 2.890 Simple

58 Durio zibethinus Murray Durio Malvaceae 1.102 3.528 Simple

59 Hibiscus cannabinus L. Hibiscus Malvaceae 1.204 5.591 Simple, Lobed

60 Hibiscus rosa-sinensis L. Hibiscus Malvaceae 1.112 3.825 Simple, Toothed

61 Hibiscus tiliaceus L. Hibiscus Malvaceae 1.082 2.968 Simple

62 Sterculia balanghas L. Sterculia Malvaceae 1.079 3.148 Simple

63 Thespesia populnea (L.) Sol. ex Corrêa Thespesia Malvaceae 1.102 3.408 Simple

64 Clidemia hirta (L.) D. Don Clidemia Melastomataceae 1.059 2.716 Simple, Toothed

65 Azadirachta indica A.Juss. Azadirachta Meliaceae 1.23 7.642 Unipinnate

66 Melia azedarach L. Melia Meliaceae 1.352 10.292 Bipinnate

67 Artocarpus heterophyllus Lam. Artocarpus Moraceae 1.076 2.964 Simple

68 Artocarpus hirsutus Lam. Artocarpus Moraceae 1.049 2.686 Simple

69 Ficus benghalensis L. Ficus Moraceae 1.053 2.652 Simple

70 Ficus elastica Roxb. Ficus Moraceae 1.057 2.779 Simple

71 Ficus exasperata Vahl Ficus Moraceae 1.088 3.41 Simple

72 Ficus hispida L.fil. Ficus Moraceae 1.080 3.201 Simple

73 Ficus religiosa L. Ficus Moraceae 1.125 3.842 Simple

74 Morus alba L. Morus) Moraceae 1.051 2.722 Simple, Toothed

75 Morus macroura Miq. Morus Moraceae 1.069 3.113 Simple, Toothed

76 Moringa oleifera Lam. Moringa Moringaceae 1.384 10.954 Tripinnate

77 Eugenia victoriana Cuatrec. Eugenia Myrtaceae 1.100 3.615 Simple

78 Pimenta dioica (L.) Merr. Pimenta Myrtaceae 1.066 2.854 Simple

79 Psidium cattleianum Afzel. ex Sabine Psidium Myrtaceae 1.060 2.987 Simple

80 Psidium guajava L. Psidium Myrtaceae 1.074 3.131 Simple

81 Syzygium aqueum (Burm.fil.) Alston Syzygium Myrtaceae 1.063 2.716 Simple

82 Syzygium aromaticum (L.) Merr. & Perry Syzygium Myrtaceae 1.090 3.545 Simple

83 Syzygium cumini (L.) Skeels Syzygium Myrtaceae 1.078 3.045 Simple

84 Syzygium jambos (L.) Alston Syzygium Myrtaceae 1.144 4.522 Simple, Narrow

85 Syzygium malaccense (L.) Merr. & L.M.

Perry
Syzygium Myrtaceae 1.092 3.511 Simple

(Continued)
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The leaves of 112 species were grouped into 5 clusters (indicated with different colors in Fig 6)

at 89% similarity threshold. Three-quarters of the species studied were clubbed as cluster 1

(red in Fig 6). Except for Averrhoa carambola, all other species in cluster 1 had simple leaves.

The similarity of this cluster ranges from 96–100%. SL in cluster 1 varies between only 2.581

and 4.812. However, the values increase with decreasing leaf width. Narrow simple leaves

exhibited comparatively a higher SL and were clubbed together in cluster 1. Read in an anti-

clockwise direction; narrow leaves predominantly occupied the tail end of cluster 1 (Fig 6).

The following families included multiple species and were unique to cluster 1: Anacardiaceae

(3 species), Annonaceae (4 species), Apocynaceae (6 species), Combretaceae (2 species), Dip-

terocarpaceae (3 species), Euphorbiaceae (2 species), Lauraceae (2 species), Lythraceae (2 spe-

cies), Moraceae (9 species), Myrtaceae (10 species), Piperaceae (2 species), Salicaceae (2

species), Sapindaceae (2 species), and Sapotaceae (6 species). Different species from the same

genus of the above listed families showed remarkable similarity in shape in this cluster

(Table 2).

Cluster 2 (blue in Fig 6) comprises predominantly uni-pinnate species. It does not include

any simple or bi or tri-pinnate leaves. The similarity of this cluster ranges between 94–100%.

Table 1. (Continued)

Sl.

No.

Plant species Genus Family Segmental fractal

complexity (DSS)

Geometric entropy

(SL)

Leaf type

86 Syzygium samarangense (Blume) Merr. &
L.M.Perry

Syzygium Myrtaceae 1.071 2.992 Simple

87 Nyctanthes arbor-tristis L. Nyctanthes Oleaceae 1.057 3.064 Simple

88 Averrhoa bilimbi L. Averrhoa Oxalidaceae 1.403 8.395 Unipinnate

89 Averrhoa carambola L. Averrhoa Oxalidaceae 1.117 4.812 Unipinnate

90 Bridelia retusa (L.) A.Juss. Bridelia Phyllanthaceae 1.051 2.581 Simple

91 Phyllanthus acidus (L.) Skeels Phyllanthus Phyllanthaceae 1.19 6.188 Unipinnate

92 Phyllanthus emblica L. Phyllanthus Phyllanthaceae 1.579 13.862 Unipinnate

93 Sauropus androgynus (L.) Merr. Sauropus Phyllanthaceae 1.135 5.832 Unipinnate

94 Piper longum L. Piper Piperaceae 1.076 3.279 Simple

95 Piper nigrum L. Piper Piperaceae 1.064 2.833 Simple

96 Xanthophyllum flavescens Roxb. Xanthophyllum Polygalaceae 1.085 3.295 Simple

97 Carallia brachiata (Lour.) Merr. Carallia Rhizophoraceae 1.062 3.174 Simple

98 Mussaenda philippica A.Rich. Mussaenda Rubiaceae 1.087 3.283 Simple

99 Aegle marmelos (L.) Corrêa Aegle Rutaceae 1.21 5.976 Compound, 3–5

foliolate

100 Murraya koenigii (L.) Spreng. Murraya Rutaceae 1.245 7.787 Unipinnate

101 Flacourtia jangomas (Lour.) Raeusch. Flacourtia Salicaceae 1.056 2.786 Simple, Toothed

102 Flacourtia sepiaria Roxb. Flacourtia Salicaceae 1.078 3.031 Simple, Toothed

103 Santalum album L. Santalum Santalaceae 1.091 3.217 Simple

104 Nephelium lappaceum L. Nephelium Sapindaceae 1.106 2.806 Simple

105 Nephelium mutabile Blume Nephelium Sapindaceae 1.086 3.456 Simple

106 Chrysophyllum cainito L. Chrysophyllum Sapotaceae 1.075 3.105 Simple

107 Chrysophyllum oliviforme L. Chrysophyllum Sapotaceae 1.057 2.726 Simple

108 Manilkara zapota (L.) P.Royen Manilkara Sapotaceae 1.122 3.882 Simple

109 Mimusops elengi L. Mimusops Sapotaceae 1.101 3.521 Simple

110 Pouteria caimito (Ruiz & Pav.) Radlk. Pouteria Sapotaceae 1.080 3.426 Simple

111 Synsepalum dulcificum (Schumach. &
Thonn.) Daniell

Synsepalum Sapotaceae 1.102 3.624 Simple

112 Simarouba glauca DC. Simarouba Simaroubaceae 1.216 6.482 Unipinnate

https://doi.org/10.1371/journal.pone.0293596.t001
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Of these, Senna surattensis, Tamarindus indica, Indigofera hirsute, Gliricidia sepium, Cassia fis-
tula, Senna occidentalis, Calliandra haematocephala, Senna siamea, and Sesbania grandiflora
were from Fabaceae family. SL of leaves of species from the Fabaceae family varies between

2.719 (Bauhinia purpurea) and 10.14 (Albizia odoratissima). Leaves of species under the Faba-

ceae family exhibit diverse shapes ranging from simple to bipinnate. The former was catego-

rized into cluster 1 and the latter into cluster 3. Three species from the genus Senna, Senna
surattensis (SL—5.192), Senna occidentalis (SL—6.333), Senna siamea (SL—6.896) were

grouped in cluster 2 (Table 2).

Cluster 3 (green in Fig 6) comprises only pinnately compound leaves, and their SL varies

between 8.395 and 10.954. The similarity of this cluster ranges from 93% to 100%. Of these

Averrhoa bilimbi, Tagetes erecta were uni-pinnate, and Caesalpinia pulcherrima, Caesalpinia
coriaria, Caesalpinia sappan, Albizia odoratissima, and Melia azedarach, were bi-pinnate.

However, the leaf of Moringa oleifera (SL—10.954) is tripinnate and is the distant ’leaf’. Three

species from the same genus: Caesalpinia (Fabaceae), Caesalpinia pulcherrima (SL—8.540),

Fig 4. Morphological complexity of the plant leaves studied. Arrangements of the leaves are in the increasing order

of geometric entropy (SL).

https://doi.org/10.1371/journal.pone.0293596.g004
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Caesalpinia coriaria (9.040), and Caesalpinia sappan (SL—9.299), were also grouped in cluster

3 (Table 2).

Cluster 4 and 5 (magenta and yellow in Fig 6) constitutes only one clade each, Phyllanthus
emblica (Phyllanthaceae, SL—13.862), and Jacaranda mimosifolia (Bignoniaceae, SL—30.683),

respectively, and stand out as simplicifolious (dissimilarity 17% and 100% respectively). SL of

species’ leaves from Phyllanthaceae varies from 2.581 (Bridelia retusa) to 13.862 (Phyllanthus
emblica). Their shapes range from simple (Bridelia retusa) to uni-pinnate (Sauropus androgy-
nus, Phyllanthus acidus, Phyllanthus emblica). Apart from cluster 4, they also belong to cluster

2 (Sauropus androgynus, Phyllanthus acidus). Similarly, Handroanthus impetiginosus (SL—
3.594), and Tecoma stans (SL—3.685) from Bignoniaceae, were also included in cluster 1. SL of

species from Bignoniaceae varies from 3.594 (Handroanthus impetiginosus) to 30.683 (Jaca-
randa mimosifolia). While the present study does not reveal well-differentiated clusters to dis-

criminate SL at the family level, it does reveal the well-differentiated clustering of SL at the

genus level (Table 2).

Fig 5. Monotonic relationship between the geometric entropy (SL) and segmental fractal complexity (DSS).

https://doi.org/10.1371/journal.pone.0293596.g005
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Discussion

Geometric shape (information) plays a vital role in the ecological system [48]. The morpholog-

ical structure of life forms carries information imparted by its geometry to distinguish them

from others. However, the geometry of every living object is bestowed by the boundary that

limits their biomass. Geometric analysis of natural structures allows for determining their

shape optimization to maximize energy efficiency and visual appeal [49].

Defining boundaries is vital in morphometric analysis. In current knowledge, living forms

are confined only to three dimensions. Boundaries distinguishing organisms (or any objects)

from their environment (or non-objects) also have characteristic dimensions. One-

Fig 6. Dendrogram of geometric entropy of plant leaves (SL). The dendrogram results in 5 clusters at a cutoff similarity of 89%.

https://doi.org/10.1371/journal.pone.0293596.g006
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Table 2. Classification of plant species at genus level based on hierarchical cluster analysis of geometric entropy (SL).

Family Genus Plant species

Cluster 1 Cluster 2 Cluster 3

Annonaceae Annona Annona muricata L.

Annona squamosa L.

Annona reticulata L.

Apocynaceae Plumeria Plumeria rubra L.

Plumeria alba L.

Combretaceae Terminalia Terminalia bellirica (Gaertn.) Roxb.

Terminalia arjuna (Roxb. ex DC.) Wight & Arn.

Dipterocarpaceae Hopea Hopea ponga (Dennst.) Mabb.

Hopea parviflora Bedd.

Fabaceae Acacia Acacia mangium Willd.

Acacia auriculiformis Benth.

Senna Senna surattensis (Burm.f.) H.S.Irwin &
Barneby

Senna occidentalis L.

Senna siamea (Lam.) H.S.Irwin & Barneby
Caesalpinia Caesalpinia pulcherrima (L.)

Sw.

Caesalpinia coriaria (Jacq.)
Willd.

Caesalpinia sappan L.

Lauraceae Cinnamomum Cinnamomum verum J.Presl
Cinnamomum tamala (Buch.-Ham.) T.Nees &

Eberm.

Malvaceae Hibiscus Hibiscus tiliaceus L.

Hibiscus rosa-sinensis L.

Moraceae Ficus Ficus benghalensis L.

Ficus elastica Roxb.

Ficus hispida L.fil.
Ficus exasperata Vahl

Ficus religiosa L.

Morus Morus alba L.

Morus macroura Miq.

Myrtaceae Syzygium Syzygium aqueum (Burm.fil.) Alston
Syzygium samarangense (Blume) Merr. & L.M.

Perry
Syzygium cumini (L.) Skeels

Syzygium malaccense (L.) Merr. & L.M.Perry
Syzygium aromaticum (L.) Merr. & Perry

Syzygium jambos (L.) Alston
Psidium Psidium cattleianum Afzel. ex Sabine

Psidium guajava L.

Piperaceae Piper Piper nigrum L.

Piper longum L.

Salicaceae Flacourtia Flacourtia jangomas (Lour.) Raeusch.

Flacourtia sepiaria Roxb.

Sapindaceae Nephelium Nephelium lappaceum L.

Nephelium mutabile Blume

(Continued)
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dimensional objects are lines confined by a boundary consisting of two points (dimensionless).

2-D objects are planar and confined by a boundary, which is a line (1-D). Similarly, 3-D

objects are spatial and confined by a boundary, which is an area (2-D). In general, an n-dimen-

sional object is confined by an n-1 dimensional boundary.

We describe the geometry of a circular object (2-D) by the sharp interface property of the

Heaviside step function (H(x)) (Fig 1). Considering the boundary of the circular object as a dif-

fuse interface with an infinite number of equiprobable states of presence and absence of the

object, the geometric entropy (SGE) at the circle’s interface is deduced by using a phase-field

function (Fig 2). The SGE (in Eq (18)) is composed of only two variables: circumference and

discretization length. This entropy is associated only with the information contained in the

structural form of objects.

Geometric entropy can be constructed for any object of any dimension. SGE was trans-

formed by considering the plant leaf-environment interface as a narrow phase field to describe

the geometric entropy of plant leaves (SL). Two leaf traits, viz., leaf area and perimeter, were

selected as the parameters in the relation. They were selected based on their dimensionality

and physiological importance.

Plant leaves absorb solar energy and process it to maintain a high organization with lower

entropy by photosynthesis [50]. The capture of energy and carbon assimilation in plant leaves

depends on the geometry and positioning of the leaf lamina. An increase in leaf perimeter (by

serration or lobes) increases the entropy in shape and geometric complexity. However, a high

perimeter achieved by increasing the laminar area may not increase the leaf complexity unless

accompanied by a significant increase in the number of serrations or lobes. Leaf perimeter

influences its physiology in many ways [51–53]. Increasing the marginal serration without

compromising the leaf area could be regarded as an adaptive strategy in terms of heating [54].

Deep serrations or lobes reduce the leaf area and maintain photosynthetic tissues closer to

veins, thereby supporting high photosynthetic rates [55, 56]. The leaf hydraulic resistance also

describes the adaptive stability of dissected leaves. Lobed and dissected leaves have fewer

minor veins that reduce hydraulic resistance than entire leaves, which is advantageous in dry

environments [55, 56]. Further, leaf margin optimization with air temperature has been con-

firmed in many areas and utilized in many plant evolutionary studies [57, 58].

Leaf energetics have focused more on leaf area than other traits such as leaf length, width,

thickness, and perimeter. A larger leaf area is advantageous in light capture and photosynthetic

productivity [59]. The seemingly obvious behavior of small leaves in higher canopies [60] and

larger leaves in lower canopies [61, 62] provide evidence of the importance of leaf surface area

in solar energy absorption and photosynthesis [63]. Notably, smaller leaves with significant

vein density are more efficient in nutrient transport and tolerant to leaf vein embolism [64].

The areal optimization of the leaves also influences the leaf thermal regulation via boundary

layer thickness [65, 66]. Larger leaves have a thick leaf boundary layer that diminishes the con-

vective heat loss and gas exchange between the leaf and the surrounding air compared to

Table 2. (Continued)

Family Genus Plant species

Cluster 1 Cluster 2 Cluster 3

Sapotaceae Chrysophyllum Chrysophyllum oliviforme L.

Chrysophyllum cainito L.

Clusters 4 and 5 are simplicifolious with Phyllanthus emblica and Jacaranda mimosifolia, respectively. Plant species from the Fabaceae family exhibit diverse leaf shapes

across different genera and are thus included in multiple clusters.

https://doi.org/10.1371/journal.pone.0293596.t002
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smaller leaves with a thin boundary layer [67]. Further, the decrease in leaf size with decreasing

water availability [68] reduces the leaf temperature and avoids overheating in arid environ-

ments [69]. Therefore, having small leaves is generally advantageous in arid environments.

However, large leaves with less energy exchange efficiency seem advantageous in humid envi-

ronments [70, 71].

Narrowing of leaves is an adaptive strategy to maintain a high perimeter within a finite

area. Narrow leaves with optimal width have less photosynthetic productivity in terms of leaf

area. However, the reduction in leaf area is compensated by the ability of elongated leaves to

harvest water from fog [72] and tolerate strong shearing forces [73]. Leaf width and perimeter

(lobiness) also describe the adaptive stability of plants by the boundary layer thickness of plant

leaves. Lobed and narrow leaves usually have a thin leaf boundary layer than circular leaves

[74, 75]. When the microclimatic boundary layer becomes thin, leaves can track the surround-

ing air through efficient cooling and heating by convection [75, 76]. Thus, lobed and narrow

leaves are less vulnerable to heating and freezing during the day and night [77].

Since the form of geometric entropy of any 2-D object resembles SGE, and here we consider

the plant leaf as a 2-D object (see above), the parameter perimeter was taken as the leaf perime-

ter (P), and the smallest discretization length as the square root of the leaf area (A). SGE

described here is a straightforward formula that evolved from an information perspective. SL

increases with P and decreases with A. The leaf area in the denominator of SL offsets the uncer-

tainty of a large perimeter with entire leaf margins. It reveals the same structure as LDI. Leaves

with a higher P/A ratio have higher geometric entropy and complexity, ensuring more adap-

tive stability in changing environments (see above). Consequently, leaf geometry converges

into fractal-like structures to accommodate excess leaf margin (within a finite area) by induc-

ing waviness and lobiness along the edges. It is logical as fractal structures arise as a natural

consequence of the most effective energy dissipation requirements [78, 79]. Natural fractals

are an innovative adaptive strategy that minimizes energy/nutrient loss. Therefore, increasing

geometric entropy opens discussions on the direct causal links between leaf stability/efficiency

and complexity.

Leaves with similar morphological features have comparable SL values (Table 1). Narrow

and pinnately compound leaves had a higher P/A ratio and SL values. Consequently, narrow-

simple leaves used in the study recorded higher SL than broad leaves with deep lobes. Irrespec-

tive of the size of the leaf laminar plane, SL is scalable by the P/A ratio. Similar to the SL values,

DSS increases with decreasing leaf width and increasing lobiness and pinnation.

Though SL and DSS were developed from two different notions, they are related. The strong

linear relation between the SL and DSS (Fig 5) reinforces the validity of SL. SL is developed

from an information theory approach. It increases with increasing leaf perimeter and decreas-

ing leaf area. Leaves with lobiness, dissection, narrow width, and high serrations have a high P/
A ratio and, thereby, high SL. DSS is based on a fractal-thermodynamic system analogy that

comprises discrete fractal dimensions of leaf parts: lamina, background, and edge. The princi-

ple of fractal analysis stems from the space-filling capacity of fractal parts (leaves), which

describes the scaling and distribution of leaf parts from the surrounding space. DSS is lower

for simple leaves and increases with thinning, lobiness, and pinnation of leaves. The ability to

capture the plant leaves’ dissection, lobiness, and serration features underlines the analogy

between SL and DSS.

Leaf morphological studies are crucial to plant taxonomy and systematics [1]. Univariate

cluster analysis of SL distribution reveals the taxonomic relationship among the leaf shapes

(Fig 6, Table 2). SL was classified into 5 clusters at a threshold similarity of 89%. Three-quarters

of the species were clubbed into cluster 1 (red in Fig 6), and most had simple leaves (Fig 4).

Simple leaves generally have comparable length and width as compared to compound leaves.
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In such cases, the variations in SL due to the variations in perimeter and area (due to variations

in length and width) will be less apparent in simple leaves than in compound leaves. This limits

the SL of leaves in cluster 1 to be grouped together. Leaves in other clusters show significant SL

variations (5.192–30.683). A consistent pattern of SL could not be attributed to plant leaves

belonging to the same family. The leaves of plants from the same family exhibit various leaf

shapes. However, a pattern seems to emerge at the genus level. Plant leaves of the species

belonging to the same genus exhibit similar shapes and SL values. Therefore, we hope SL could

stimulate plant biologists to explore its potential use in taxonomy.

SL is an inherent complexity measure that outperforms other complex geometric morpho-

metrics. Devoid of statistical techniques, SL is free from time-consuming preprocessing tech-

niques and can account for leaf shape regardless of the size of the leaves. It posits a prospective

method to quantify the extent of variation in leaf shapes, especially by the influence of deep

lobiness, serrations, and dissections on leaf perimeter. The ease of use and efficiency of SL will

encourage plant biologists to draw more accurate inferences on leaf shape variations. More-

over, the theoretical maximum of DSS of extremely narrow leaves and the Peano curve-shaped

leaves with a high P/A ratio [47] consolidates SL. Since complex leaves (high P/A ratio) have

more adaptive stability in changing environments [80, 81], SL can be considered a derived

plant trait to describe leaf complexity and adaptive stability.

The evolution of leaf shapes is not by chance. It is an end-product of functional perfection

[82]. The complexity bestowed in the leaves by evolution reflects directly on plants’ physiologi-

cal processes. The knowledge of complex leaf forms has a vast potential for understanding geo-

metric information and its link with energy capture. The joint descriptions of information and

energy will answer pertinent questions about nature’s design procedures and energy-entropy

tradeoffs. Our findings introduce an inclusive measure of leaf complexity, represented as geo-

metric entropy. It demonstrates the utility and outperformance over conventional landmark-

based and geometric morphometrics. SL is an objective plant trait that can be leveraged to mea-

sure leaf stability/efficiency. It will help in artificial leaf design studies to genetically engineer

optimal leaf shapes to increase energy capture, carbon sequestration, and crop yields [83]. Sim-

ilarly, since lobiness and serrations in leaves enhance the plant leaves thermal endurance and

vapor dissipation, designing structures with evaporative protrusions inspired by leaf structures

(Biomimetics) is being explored. Various model inspired by the leaf geometry reveals the cor-

relation of evaporation rate with protrusion aspect ratio and breaks new ground for designing

evaporation-assisted and passively enhanced thermal systems [84, 85]. Further, serrations in

leaves enable a large area with optimized aerodynamic properties, viz. cooling and wind resis-

tance, which finds potential applications in designing photovoltaic panels [86]. Geometric

morphometric studies were complicated by the plasticity of features and the number of identi-

fiable homologous points [87, 88]. Since scalable by the P/A ratio, SL can be considered a more

practical measure that circumvents the objectivity constraint imposed by leaf plasticity. Fur-

ther, geometric morphometric techniques mainly focus on the homologous features that are

sensitive to the leaf size rather than leaf shape, which limits the comparison of leaves with dis-

parate morphologies and thus cannot reliably discriminate leaf shapes at taxonomic levels.

However, despite slight imperfections, SL posits a potential method for classifying leaf shapes

at a genus level.

Leaf morphology is closely related to climate [89]. Biological specimens have been found

useful in tracking the species’ morphological changes caused by climate change [90, 91]. Since

paleoclimate correlations focus on marginal serrations [53], leaf dissection (thereby SL) can be

utilized as a plausible index to understand the paleoclimate. Further, paleobotanical studies

have confirmed an adaptive temporal shift towards narrow leaves [91], consolidating the struc-

ture and utility of SL in describing leaf adaptive stability/efficiency. Though several hypotheses
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about the possible functions of dissected leaves have been discussed [52, 56, 92], detailed physi-

ological insights describing possible changes in leaf shape in response to climate have not yet

been revealed. More inferences can be revealed only by combining digital morphometrics with

the paleobotanical collections. Incorporating SL as a morphological trait can help analyze the

climatic relationship of leaf forms to understand further prospective applications, viz. models

depicting the impacts of climate change scenarios on plants, reconstructing paleotemperature

from paleobotanical leaf specimens, the evolutionary history of plants, and futuristic ecosys-

tems [93]. Further, integrating SL into other leaf physiological measures such as photosynthe-

sis, respiration, and evaporation can open pathways to understanding energy flow and

interaction between plant leaves and their surroundings. Morphological complexity, expressed

as SL, will pave the way to understanding adaptive resilience at the species level. Resolving

these gaps between information, entropy, and energy will allow advances to reveal ecosystem

dynamics.

Conclusion

We presented a mathematical framework to estimate the geometric entropy of plant leaves.

The geometric entropy contains information on leaf geometry, represented by two physiologi-

cally important traits: leaf perimeter and leaf area. The geometric entropy of the leaf reveals

the physical basis of its dissection index and accounts for the connection between complexity

and adaptive stability in plants. However, leaves exhibit diverse leaf shapes at the family level.

That limits SL to any taxonomic relationship at the family level. A consistent pattern of SL

seems to emerge at the genus level. Further, we propose geometric entropy as a derived plant

trait to discriminate leaf shapes and denote the adaptive stability of plants in rapidly changing

environments. The relevance of this morphological trait needs to be tested to explore adaptive

plant morphogenesis and obtain a clearer picture of function-based Eco-Devo studies.
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