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Abstract

Objectives

Since the declaration of the COVID-19 pandemic, many governments have imposed poli-

cies to reduce contacts between people who are presumed to be particularly vulnerable to

dying from respiratory illnesses and the rest of the population. These policies typically

address vulnerable individuals concentrated in centralized care facilities and entail limiting

social contacts with visitors, staff members, and other care home residents. We use a stan-

dard epidemiological model to investigate the impact of such circumstances on the pre-

dicted infectious disease attack rates, for interacting robust and vulnerable populations.

Methods

We implement a general susceptible-infectious-recovered (SIR) compartmental model with

two populations: robust and vulnerable. The key model parameters are the per-individual

frequencies of within-group (robust-robust and vulnerable-vulnerable) and between-group

(robust-vulnerable and vulnerable-robust) infectious-susceptible contacts and the recovery

times of individuals in the two groups, which can be significantly longer for vulnerable

people.

Results

Across a large range of possible model parameters including degrees of segregation versus

intermingling of vulnerable and robust individuals, we find that concentrating the most vul-

nerable into centralized care facilities virtually always increases the infectious disease attack

rate in the vulnerable group, without significant benefit to the robust group.

Conclusions

Isolated care homes of vulnerable residents are predicted to be the worst possible mixing

circumstances for reducing harm in epidemic or pandemic conditions.
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Introduction

During the COVID era (from the World Health Organization (WHO) 11 March 2020

COVID-19 pandemic declaration to present), many governments have imposed policies isolat-

ing or segregating people deemed highly vulnerable to respiratory disease, including by

restricting movement into and out of long-term care homes where elderly and physically or

mentally disabled people reside and reducing contacts between care home residents and staff

[1–4].

Although it was known that isolation and loneliness can have serious negative health conse-

quences for segregated vulnerable people [5–8], and although it was known that residents con-

centrated in care homes are particularly vulnerable to infectious diseases [8–12], and although

data from the spring of 2020 showed disproportionately large all-cause mortality increases in

long-term care homes that were positively correlated with the number of care home residents

[13, 14], governments continued to implement policies confining vulnerable people into care

homes and reducing social contacts with visitors and staff more than one year after the WHO’s

11 March 2020 COVID-19 pandemic declaration.

Non-pharmaceutical interventions such as travel restrictions, workplace closures, and age-

specific enforced social distancing or quarantining have been justified during the COVID era

using theoretical infectious disease models based on the paradigm of spread by close-proximity

pairwise contacts [15–19]. At their core, the baseline epidemiological models on which essen-

tially all more sophisticated models are built, have two main parameters determining whether

an infectious disease epidemic emerges and, if it does, its magnitude and duration. These two

parameters are: the rate at which individuals experience pairwise contacts with others that

could result in transmission of the infection, and the rate at which infected individuals recover

and become immune. When modeling the consequences of any non-pharmaceutical interven-

tion, it is crucial to first understand the impact of varying contact frequencies and recovery

rates, before adding more sophisticated model features.

Researchers who have explored the impact of non-pharmaceutical interventions in models

of COVID-19 spread with different age groups typically distinguish the age groups based on

susceptibility to infection, contact rates, and the probability of severe outcome or death upon

infection, but do not consider the impact of age-group-specific recovery rates [20–27]. When

such models do allow for longer recovery times for older or more vulnerable individuals,

including in models that specifically seek to represent vulnerable individuals residing in care

homes, the models are highly-detailed in structure, involving many disease-state compart-

ments and associated parameters [28–38]; the authors of these studies have not made compre-

hensive explorations of the model results across broad ranges of parameter values, but rather

investigate model outcomes for different intervention scenarios using narrow ranges of epide-

miological parameter values taken to be relevant to COVID-19.

However, in order to appreciate the spectrum of outcomes that are possible in a given theo-

retical model, and its limitations and sensitivity to assumptions, it is crucial to base the model

on the simplest-possible sufficiently realistic conceptual foundation and only add extensions

incrementally [39, 40]. This approach optimizes relevance and minimizes confounding the

results with complexity and intangible propagation of error. Focusing on only the core model

ingredients limits the dimensionality of the model, permitting the needed examination of the

model’s outcomes across a comprehensive range of parameter values. We adopt this explor-

atory and insight-generating approach, rather than an approach in which a more complex

model is used to make predictions about the application of a specific policy. Detailed models

geared toward specific policies should consider the insights and limitations identified in the

baseline models.
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Large-range exploration of the parameters is needed because the actual parameter values

are not well delimited by empirical measurements and are often essentially unknown; and

because unexpected effects or magnitudes of effects can occur in different otherwise unex-

plored and relevant regions of the parameter space.

We construct a simple susceptible-infectious-recovered (SIR) epidemic model consisting of

two interacting populations, one representing the relatively robust majority of society and the

other the vulnerable minority. The different health states of individuals in the two populations

are represented by their different recovery times upon infection, as is well established for respi-

ratory diseases [41, 42]. We investigate the size and duration of epidemics occurring for a

broad range of different within- and between-population contact frequencies representing dif-

ferent segregation or isolation policy-linked behaviours. This approach allows us to make

broad-ranging conclusions about the consequences of segregation of vulnerable people that

apply to all epidemic models based on the SIR foundational assumptions.

Model

We implement a susceptible-infectious-recovered (SIR) model for two populations, indexed as

population “r” and population “v”. The total number of r individuals is Nr and the total num-

ber of v individuals is Nv, and the total population is N = Nr + Nv.

We assign the r population to be the majority population of robust individuals, and the v
population to be the minority population of vulnerable individuals.

Following the usual SIR model structure, a person can be in one of three states: susceptible

to infection (S), infectious (I), or recovered and immune (R). If a susceptible person comes

into contact with an infectious person, the susceptible person can become infectious, and

infectious people eventually recover. The numbers of susceptible, infectious, and recovered

people in group i (where i can be either r or v) at time t are therefore Si(t), Ii(t), and Ri(t),
respectively, and Ni = Si(t) + Ii(t) + Ri(t).

The number of individuals in each of the three epidemiological compartments, in each of

group r and v, evolve according to the following equations:

dSr
dt
¼ � Sr crvbrv

Iv
Nv
þ crrbrr

Ir
Nr

� �

ð1AÞ

dIr
dt
¼ Sr crvbrv

Iv
Nv
þ crrbrr

Ir
Nr

� �

� grIr ð1BÞ

dRr

dt
¼ grIr ð1CÞ

dSv
dt
¼ � Sv cvrbvr

Ir
Nr
þ cvvbvv

Iv
Nv

� �

ð1DÞ

dIv
dt
¼ Sv cvrbvr

Ir
Nr
þ cvvbvv

Iv
Nv

� �

� gvIv ð1EÞ

dRv

dt
¼ gvIv ð1FÞ

Eqs 1A–1F involve three sets of parameters, described below.
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The parameters γr and γv represent the rates at which r and v individuals (robust and vul-

nerable individuals, respectively) recover from infection. Since the v population represents the

minority, vulnerable population: Nv� Nr. Since they are more vulnerable than r individuals, v
individuals take a longer time to recover from infection, such that γv� γr.

We use a value of γr = 75 yrs-1 corresponding to a recovery time of approximately 5 days for

healthy individuals [43, 44], and we consider three values of γv, equal to γr, γr/2, and γr/4,

corresponding to recovery times of approximately 5, 10, and 20 days for the v individuals

[41, 42].

The other two sets of parameters, cij and βij, are intrinsically dependent, such that one set is

actually redundant, which can be understood as follows. βij represents the probability that a

contact between a susceptible i (r or v) person and an infectious j person results in infection of

the susceptible i person, whereas cij represents the frequency (number per unit time) of con-

tacts between an i person and a j person. Therefore, we are free to make the following simplifi-

cation. Without loss of generality, in this paper we set βrr = βvv = βrv = βvr = 1. This means that

the only contacts considered and counted are by definition contacts that are guaranteed to

result in transmission when the contact involves a susceptible i person and an infectious j
person.

There is no reason or advantage to considering other definitions of cij having associated

smaller values of βij; and it would make no difference in the calculated results arising from Eqs

1A–1F. Under this notational and conceptual simplification, the cij are the dominant control

parameters in the model, along with the recovery rates γr and γv. We apply this interpretation

of cij (arising from setting all the β parameters equal to 1) throughout the remainder of the

paper.

The within-group contact frequencies, crr and cvv are independent of one another. The

between-group contact frequencies crv and cvr are also independent. However, we impose the

following relationship between crv and cvr, modulated by the coefficient λ:

crv ¼ l
cvrNv

Nr
ð2Þ

A value of λ = 1 corresponds to a strict proportionality between crv and cvr determined purely

by the relative sizes of the populations of the two groups, as would be common to impose in

the sliding definition of contact in which βij are undetermined [39].

In the present paper, λ = 1 effectively means that pairwise contact events that are of a physi-

cal proximity and duration sufficient to guarantee infection of a susceptible v person by an

infectious r person are also sufficient to guarantee infection of a susceptible r person by an

infectious v person. However, in principle, λ can take values less than 1, due to the more resis-

tant health status of r individuals compared to v individuals. Since, given the relative sizes of

the populations Nr and Nv, crv is much smaller than cvr and typically much smaller than crr in

our analyses, we use a value of λ = 1 in the main text of this paper. In the S1 Appendix, we

show that our results are robust against smaller values of λ.

We also define cr = crr + crv and cv = cvv + cvr to be the total contact frequencies of r and v
people, respectively. The majority, robust (r) population is typically younger and more socially

active than the minority, vulnerable (v) population, such that the frequency of all person-to-

person contacts is generally higher in the r group than the v group [45]. However, when cr and

cv represent the frequency of only those types of contacts that are guaranteed to result in infec-

tion of a susceptible individual (as per our simplifying assumption that βrr = βvv = βrv = βvr = 1,

in the present article), then it is not unreasonable to consider that cv can be greater or signifi-

cantly greater than cr, due to the frailer health status of the v individuals.
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Results

We examine the epidemic outcomes for the robust (r) and vulnerable (v) populations for a

large range of possible contact frequencies and recovery rates. For specificity, we use a total

population of N = 107 individuals, with a representative value Nr/N = Pr = 0.95, such that the r
population constitutes 95% of the entire society, and the v population is 5%, approximately

corresponding to the percentage of people over 80 years of age in Canada and in European

Union countries [46, 47]. The simulations are “seeded” with 100 infectious individuals inserted

proportionally into each of the two groups, such that Ir(t = 0) = 95 and Iv(t = 0) = 5.

The actual proportion of people residing in care homes or facilities in Canada is approxi-

mately 1.3% [48], which corresponds to a value of Pr closer to 0.99. We verified that the results

are the same on varying Pr (including Pr = 0.99), λ, and seeding magnitude and distribution,

which is shown in the S1 Appendix.

We define the attack rate among population i as the proportion of initially-susceptible i
people who become infected during the epidemic:

Ai ¼ ðSiðt0Þ � Siðtf ÞÞ=Siðt0Þ; ð3Þ

where Si(t0) is the number of susceptible i people at the beginning of the epidemic and Si(tf) is

the number of susceptible i people remaining once there are no longer any infectious people in

either of the two groups (r or v).

In order to examine the impact of policies that isolate or segregate the v individuals from

the r group, we introduce the index x equal to the share of a v individual’s contacts that are

with r people:

x ¼ cvr=cv; ð4Þ

When x = 0, v individuals only ever have contacts with other v individuals, and when x = 1, v
individuals only ever have contacts with r people. In this way, x, represents the degree of segre-

gation versus intermingling of the r and v groups. Complete segregation is x = 0. Complete r-v
intermingling, while avoiding all v-v contacts, is x = 1.

Fig 1 shows the evolution of the epidemic (number of new cases per day, over time) in the r
and v groups, for different values of x. In this example, cr is slightly larger than γr (in order that

cr / γr (“R0”)� 1.1 > 1 such that an epidemic would occur in the r group if it were completely

isolated from the v group) and cv is 25% larger than cr. γv = γr/4, such that v people take four

times as long to recover from infection as r people.

As can be seen in Fig 1, x (the degree of separation or intermingling) has a large effect on

the size and duration of the epidemics occurring in both the r (robust, majority) and v (vulner-

able, minority) groups.

When x = 0, v individuals only ever come into contact with other v’s, and the number of

new cases per day in the v group rapidly surges, peaks, and decays, and essentially all of the v
population becomes infected (Av� 1, inset of Fig 1). An epidemic also occurs in the r group,

but the attack rate is smaller (Ar, inset) and it takes significantly longer for the epidemic to

transpire (see the dashed blue line in the extreme lower-right corner of Fig 1).

In Fig 1, as x is increased above 0, a larger and larger share of v contacts are with r individu-

als. In the v group, the epidemic size (peak value of new cases per day and attack-rate)

decreases with increasing x and the duration of the epidemic increases. Going from x = 0.5 to

x = 0.75 and x = 1, Av is significantly decreased, to the point where less than half of the suscep-

tible, vulnerable v population becomes infected. On the other hand, increasing x above 0 ini-

tially increases Ar and significantly shortens the time it takes for the number of new r cases per

PLOS ONE Standard epidemic model predictions regarding segregating and isolating vulnerable people into care homes

PLOS ONE | https://doi.org/10.1371/journal.pone.0293556 October 30, 2023 5 / 17

https://doi.org/10.1371/journal.pone.0293556


day to surge and decay. When x = 1, the epidemic curves for the r and v populations have their

peaks at approximately the same time, and the attack rates become similar for the two groups.

Fig 1 illustrates the important effect of x on the epidemic outcomes in the two populations.

In particular, it is apparent that larger x (more contacts with robust individuals) can produce

significantly better (lower attack rate) results for the minority vulnerable population. This is

important if it is a general feature because the vulnerable individuals in the real world have

higher risk of dying on being infected [49–51], which is the motivation for wanting to protect

them. Larger values of x result in epidemics of longer duration in the vulnerable population,

but with significantly lower peak numbers of new cases per day and smaller attack rates. The

attack rate in the robust population, Ar, increases with increasing x up to a maximum around

x = 0.75, then decreases as x is increased to 1 (complete intermingling of v with r). There is

thus a trade-off that can occur, in which increasing x decreases Av but increases Ar.

Next, we present figures showing results across our large range of possible and reasonable cr and

cv values, for different degrees of segregation vs. intermingling, x, between the r and v groups, and

for the different values of γv representing different degrees of vulnerability of the v population.

Fig 2 contains a collection of panels showing how the attack-rates Ar and Av change as cr
and cv are varied. Each panel corresponds to a choice of x and γv.

The panel in the upper-left corner of Fig 2 corresponds to x = 0 and γv = γr/4 = 18.75. Since

x = 0, there is complete segregation between the r and v groups. In this case, an epidemic

emerges in the r group when cr> γr and in the v group when cv> γv, and this can be seen by

the fact that Ar> 0 when cr> 75, for all values of cv, and Av> 0 when cv> 18.75, for all values

of cr. Thus, when x = 0, we see the usual transition to an epidemic, which occurs in a one-pop-

ulation SIR model when R0 = c/γ>1, in each group.

The panels in the second through fifth rows of Fig 2 correspond to x> 0, progressively

increasing up to x = 1 (fifth row). For many values of cr, increasing x results in a shift upwards

(to higher cv values) of the red contour lines, indicating a decrease in Av for fixed cv.

Fig 1. Example epidemic curves for different values of the degree of segregation, x. Epidemic curves showing the number of new cases per day in population

v (vulnerable, minority group, solid lines, left y-axis) and population r (robust, majority group, dashed lines, right y-axis), for different values of x, and for the

fixed model parameters indicated above the figure. Inset: attack-rates Ar and Av as functions of x (coloured circles indicate the x values listed in the main figure

legend).

https://doi.org/10.1371/journal.pone.0293556.g001
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Fig 2. Attack rate contour maps. Contour maps of Ar (blue lines, see scale at the upper right) and Av (red lines, see scale at the

upper right) for a range of contact frequencies cr and cv. Each column of panels corresponds to a different γv and each row to a

different x, as indicated.

https://doi.org/10.1371/journal.pone.0293556.g002
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For example, when γv = 18.75 (left column of panels), cr = 20 and cv = 40, the attack rate Av

is large when x = 0. However, as x is increased, the red contour lines shift upward, indicating a

lowering of the attack rate at (cr, cv) = (20, 40), until Av = 0 (no epidemic in the v population)

in the second-last and last panels in the column (x = 0.75 and x = 1).

The positioning of the blue contour lines (Ar) is generally less affected by changes in x than

that of the red contours. This is particularly evident for the case of γv = γr (right column of pan-

els). This is due to the asymmetry in the sizes of the populations of the r and v groups (Nv

being 5% of the total population).

To better appreciate the model results summarized in the contour maps of Fig 2, it is helpful

to simultaneously examine the attack rates for a particular point in the (cr, cv) parameter-space

as x is varied. This is shown in Figs 3–5.

Figs 3–5 show the variation in the attack rates Ar and Av as functions of x, for various (cr, cv)
coordinates. Each panel is for one pair of the (cr, cv) coordinates, with cr increasing (in col-

umns) from left to right, and cv decreasing (in rows) from top to bottom. In this way, one can

visualize the behaviours of the attack rates with x, on the (cr, cv) plane, across a range of cr and

cv values sampled from the phase diagrams shown in Fig 2.

Fig 3. Variation of attack-rates with x, for γv = γr/4. Attack-rates Ar and Av as functions of x, for a range of contact

frequencies cr and cv, for γv = γr/4.

https://doi.org/10.1371/journal.pone.0293556.g003
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As can be seen, when γv = γr/4 (Fig 3), increasing x decreases Av for all values of (cr, cv)
shown in the figure. The decrease in Av can be dramatic, including going from Av = 1 for small

values of x to Av = 0 for large values of x. Increasing x generally increases Ar, and the increase

in Ar is largest for values of cr� γr (such that no epidemic would occur in the r group if it were

completely isolated from the v group) and for intermediate values of x. In many of the panels

of Fig 3, and especially when cr� γr and cv>> γv, there is a maximum value of Ar at a value of

Fig 4. Variation of attack rates with x, for γv = γr/2. Attack-rates Ar and Av as functions of x, for a range of contact frequencies cr and cv, for γv = γr/2.

https://doi.org/10.1371/journal.pone.0293556.g004
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x< 1, which can be explained as follows. For cr� γr and cv>> γv, and for x close to 0, there is

a large attack rate among the vulnerable population. Increasing x above x = 0 causes some r
individuals to come into contact with v individuals, who have a high probability of being infec-

tious, thereby increasing Ar. However, as x is increased further, the vulnerable become more

diluted among the larger robust population, such that their attack rate decreases. The sharply

decreasing attack rate among the vulnerable with increasing x eventually produces conditions

Fig 5. Variation of attack rates with x, for γv = γr. Attack-rates Ar and Av as functions of x, for a range of contact frequencies cr and cv, for γv = γr.

https://doi.org/10.1371/journal.pone.0293556.g005
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in which the probability, during the course of the epidemic, that a susceptible robust person

contacts an infectious person decreases, resulting in a decrease in Ar as x approaches 1. When

cr> γr, increasing x has a very small effect on Ar, because the r group has a much larger popu-

lation than the v group; this is also reflected in the small changes in the blue contour lines in

Fig 2 for cr> γr and for increasing x.

When γv = γr/2 (Fig 4), increasing x generally decreases Av, similar to the results in Fig 3,

and x has a smaller effect on Ar compared to the results in Fig 3. The only parameter values for

which Av increases with x are in the extreme lower-right corner of Fig 4, for which (cr, cv) =

(100, 25) and (125, 25). For these two pairs of (cr, cv) values, cv< γv, such that the contact fre-

quency of v individuals is so low that an epidemic would not occur among the vulnerable if

they were completely excluded from the majority group. Furthermore, for (cr, cv) = (100, 25)

and (125, 25), cr is much greater than cv, which is unrealistic given our interpretation of cij
implied by our simplifying assumption βrr = βvv = βrv = βvr = 1 (see the Model section). We

note that a similar, small increase in Av versus x also occurs in the case of γv = 18.75 when cv<
γv and cr>> cv, as can be seen in the left column of panels in Fig 2, e.g. when cv� 15 and cr =

120.

When γv = γr (Fig 5), x has little effect on Ar, due to the differences in population sizes of

the r and v groups. Increasing x can decrease Av significantly when cv>> cr (panels in the

upper-left corner of Fig 5) and can increase Av significantly when cr>> cv (panels in the

lower-right corner of Fig 5). This asymmetry occurs because of the asymmetry in population

sizes Nr and Nv, causing crv<< cvr (when λ = 1) such that it is much less likely for any given r
person to come into contact with a v person than vice-versa. Similarly, in the right column of

panels in Fig 2, increasing x has a large effect on the red (Av) contour lines and essentially no

effect on the blue (Ar) contour lines.

In summary, increasing x for fixed cv and cr decreases the attack rate in the vulnerable

group across all realistic values of the contact frequencies, when v represents a minority vul-

nerable population (here making up 5% of the total population and having a recovery time

twice or four times as long as for the robust majority). This means that the vulnerable popula-

tion is harmed by isolation from the robust population and benefits from mixing with or dilu-

tion within the robust population, in terms of risk of infection during the course of the

epidemic or pandemic.

In S1 Appendix, we show that the same results hold when varying Pr, λ, and the seeding

magnitude and distribution.

Discussion

Using a general two-population epidemic model, we have shown that increasing the degree of

intermingling of the minority vulnerable (v) population with the majority robust (r) popula-

tion reduces the attack-rate among the vulnerable. The advantage to the vulnerable group of

intermingling with the robust group increases as the vulnerability of the minority group

increases, that is, as their disease recovery time increases. Increasing the share of a vulnerable

person’s interactions that are with other vulnerable people, by confining them together in the

same facility, increases the likelihood of infection of the vulnerable person during the course of

the epidemic or pandemic, because infected vulnerable people remain infectious for a long

time, relative to robust people.

The only exception to this general rule occurs if the contact frequency for vulnerable indi-

viduals is so small that no epidemic would occur in the vulnerable group if it were completely

segregated from the robust majority of society, while the frequency of guaranteed infection-

causing contacts for robust people is large enough to produce an epidemic in that group and is
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also much higher than that of vulnerable individuals. We expect this exception to be irrelevant

in reality because it is unrealistic for cr>> cv, given the definition of the contact frequencies cij
as representing contacts of sufficient physical proximity and duration such that a susceptible i
person is guaranteed to be infected by an infectious j person (see the Model section).

Our results also show that a trade-off can occur in which increasing x (reducing segregation

of v from r, increasing intermingling of v with r) causes Av to decrease and concomitantly

causes Ar to increase. This trade-off occurs in the region of parameter space where γv<< γr, cv
> γv, and cr� γr (e.g., see the panel of Fig 3 with (cr, cv) = (75, 125)). In this region of parame-

ter space, no epidemic occurs in the r population when it is completely separated from the v
population (x = 0). It is also the region of parameter space where increasing x produces the

largest decrease in Av. Thus exposing the robust population to the vulnerable and thereby risk-

ing causing an epidemic among the robust, which would otherwise not occur in this limited

region of the possible parameter space, is a desirable ethical choice (regarding the policy-

imposed value of x) in a compassionate society, since vulnerable individuals are exponentially

more at risk of dying than robust people from respiratory disease [49–51]. In other words, seg-

regation (x! 0) is contrary to protecting the vulnerable, including in circumstances in which

there can be the said trade-off to the disadvantage of the robust who experience an epidemic.

Our analysis focuses on the two dominant and most fundamental features present in all epi-

demic models: the contact frequencies and recovery rates. On this simplest-possible yet suffi-

ciently realistic foundation, we establish that segregating the vulnerable into care homes

virtually always produces negative results in epidemic models. Not surprisingly, therefore,

researchers using complex agent-based models have found that segregation of vulnerable indi-

viduals produces worse outcomes both for that group and for the society overall [52].

Others have used simple epidemiological models to study segregation of “high-transmis-

sion-risk” and “low-transmission-risk” groups [39, 53, 54]. However, because such studies are

focused on different transmission rates due to different behavioural and contact characteristics

of the two groups–such as sexual preferences, cultural lifestyle factors, and willingness to

become vaccinated–they do not consider the impact of different recovery rates for the two

populations, which is crucial in the context of segregation of vulnerable individuals from the

robust majority. Those studies, therefore, do not directly address the problem of society’s vul-

nerable sector regarding infectious diseases.

Segregation based on vaccination status has also been studied recently using simple models

[55–58]. In this application, Hickey and Rancourt found that the effect of the segregation on

increasing or decreasing the contact frequencies in the segregated groups is crucial and can

cause the predicted epidemic outcomes to be worse for both the vaccinated and unvaccinated,

compared to no segregation [55]. This highlights the importance of contact frequencies, which

are necessarily impacted by segregation policies, and which again play a pivotal role in the

present analysis.

Isolation policies intending to protect the vulnerable reduce their contacts with the outside

world, for example by barring visitors from entering care homes and by reducing the fre-

quency of interaction between care home staff and residents. The care home isolation policies

are also designed to reduce the number of epidemiological contacts between the care home

residents themselves. However, since transmission of respiratory diseases is air-borne via

long-lived suspended aerosol particles [59, 60] and occurs in indoor environments [61], con-

fining many vulnerable people in the same facility in-effect increases the per-individual fre-

quency of infectious contacts, because they are breathing the same air and ventilation is

imperfect. Indeed, virtually all studied outbreaks of viral respiratory illnesses have occurred in

indoor environments [61–65] and care homes for the elderly are known to be “ideal environ-

ments” for outbreaks of infectious respiratory diseases, due to the susceptibility of the residents
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living in close quarters [8, 11, 12]. A policy that decrease cvr, for example by barring younger

family members from entering care homes to visit their elderly relatives, causes the isolated

vulnerable people to spend more time in the care home, breathing the same air as the other

residents. This in-effect increases cvv.
For constant cr, decreasing cv reduces the attack rate in the vulnerable group, regardless of

the value of x, as can be seen from Fig 2. However, the sought decreasing of cv is imposed by

isolating the vulnerable (from society, loved ones and each other), which has important nega-

tive health consequences [6, 7, 66–69]. Psychosocial factors, including depression, lack of social

support, and loneliness are known to play key roles in the negative health effects of isolation

[70–74]. Proposed psychosocial factors uncovered by participatory qualitative research include

dissonance between expectations and reality [75, 76], which could be significant for vulnerable

elderly patients with no prior life experience relevant to the isolation measures applied during

the COVID era, which had no historical precedent.

Whereas governments used theoretical epidemic models to justify most public health poli-

cies during the COVID era, within a tunnel vision of reducing risk of infection with a particu-

lar virus, they appear not to have considered what those same models predict about infection

rates under conditions of care home segregation; and they appear to have disregarded the

exponential increase of infection fatality rate with age [49–51]. Care home segregation policies

may have been responsible for many deaths attributed to COVID-19 in Western countries.

We conclude that segregation and isolation of the vulnerable into care homes as a strategy

to reduce the risk of infection during the course of an epidemic or pandemic is contrary to the

most relevant immediate considerations from epidemiological models, in realistic conditions

in which vulnerable people are highly susceptible and take longer to recover. The model

parameter space, within possible parameter values, is one where it is virtually never epidemio-

logically advantageous to segregate and isolate frail people.
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