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Abstract

Visible-infrared person re-identification (VI-ReID) is a cross-modality retrieval issue aiming

to match the same pedestrian between visible and infrared cameras. Thus, the modality dis-

crepancy presents a significant challenge for this task. Most methods employ different net-

works to extract features that are invariant between modalities. While we propose a novel

channel semantic mutual learning network (CSMN), which attributes the difference in

semantics between modalities to the difference at the channel level, it optimises the seman-

tic consistency between channels from two perspectives: the local inter-channel semantics

and the global inter-modal semantics. Meanwhile, we design a channel-level auto-guided

double metric loss (CADM) to learn modality-invariant features and the sample distribution

in a fine-grained manner. We conducted experiments on RegDB and SYSU-MM01, and the

experimental results validate the superiority of CSMN. Especially on RegDB datasets,

CSMN improves the current best performance by 3.43% and 0.5% on the Rank-1 score and

mINP value, respectively. The code is available at https://github.com/013zyj/CSMN.

1 Introduction

Person re-identification (ReID) [1] is a technology that employs computer vision algorithms

to locate and retrieve a pre-defined individual from non-overlapping camera views. Previous

studies [2–7] have mainly focused on ReID in visible light, capturing all images of a person

with visible light cameras. However, visible light cameras may not capture a person’s appear-

ance at night. As a result, VI-ReID [8] is proposed.

Compared to single-modality ReID, VI-ReID faces the problem of intra-class variations, such

as illumination and occlusion, and the challenge of significant modality discrepancy. Therefore,

VI-ReID is more challenging. Currently, common methods for VI-ReID mainly include the fol-

lowing aspects: On the one hand, modality-invariant features are extracted to address the cross-

modality problem [9, 10]. However, modality-invariant features are frequently difficult to ensure

quality, leading to the loss of information in pedestrian image representations. On the other hand,

using GAN methods for cross-modality transformation [11–14] can convert cross-modality

matching problems into within-modality matching tasks to improve retrieval accuracy. However,

such methods inevitably increase the computational complexity of the model and introduce noise,

resulting in poor model performance. In addition, some work has been devoted to improving the
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performance of metric learning methods [15–18]. But the above methods only learn the sample

distribution at the instance level and lack handling of outlier samples.

To reduce the discrepancy between the channel semantics within a modality and between

modalities, we designed a novel Channel Semantic Mutual Learning Network (CSMN), which

simultaneously learns channel semantic consistency from two aspects: Intra-Modality Channel

Semantic Mutual Learning(ICSM), which focuses on learning fine-grained information by

increasing the similarity of feature distributions between channels, and Cross-Modality Chan-

nel Semantic Mutual Learning (CCSM), aiming at learning global information by reducing the

distance between feature distributions across modalities. In addition, we proposed a Channel-

level Auto-directed Metric Learning loss (CADM) to optimise intra-class and inter-modality

feature distributions in a more fine-grained manner. Specifically, our approach reduces intra-

class instance discrepancies and aggregates semantic information for the same identity while

also narrowing the gap between modalities by strengthening the correlation between semantic

information for the same identity across different modalities. Additionally, we designed an

auto-guided function to mitigate the generation of noisy samples. Since infrared images can-

not be viewed as normal RGB images, we use the gray-to-color method to convert infrared

images to colored images. Fig 1 shows the overall structure of the model.

In summary, the main contributions of this paper are:

We propose a channel semantic mutual learning network (CSMN) for VI-ReID that treats

modality discrepancy as inter-channel discrepancy and reduces intra-modality channel dis-

crepancy while learning inter-modal channel information to bridge modality discrepancy.

We suggest a channel-level auto-guided double metric loss (CADM) to optimise the sample

distribution intra- and inter-modality through multiple aspects, including reducing the intra-

class instance differences, strengthening the correlation between the same identity across dif-

ferent modalities, and handling outlier samples.

We have conducted numerous experiments on two benchmarks. Specifically, on

SYSU-MM01, CSMN achieves state-of-the-art performance and improves the Rank-1 score of

the current best performance on the RegDB dataset by 3.43%.

2 Related work

2.1 Single-modality ReID

Single-modality ReID attempts to retrieve a specific person from a library of images obtained

from different cameras during the day, where the images obtained have the same modalities.

Fig 1. The figure shows the overall structure of the model.

https://doi.org/10.1371/journal.pone.0293498.g001
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Person re-identification (ReID) methods have greatly improved as deep learning technology

has advanced. Many methods have focused on building local-based models to fully explore

fine-grained features in a person’s images [19–21]. Fu et al. [10] learned local features at differ-

ent scales using a pyramid structure and eventually obtained multi-scale fused features. Lian

et al. [20] designed an attention-aligned network for feature learning that uses channel and

spatial attention. Wang et al. [21] proposed a multi-branch network where one branch cap-

tures global representations and the other branch focuses on local information. In addition,

attention models [22–26] are essential for designing novel network architectures that highlight

salient regions and alleviate misalignment to learn robust features.

2.2 Visible-infrared person re-identification

VI-ReID is to match and identify the same pedestrian between different cameras, not different

modalities. Wu et al. [8] published SYSU-MM01dataset and proposed a model to extract

modality-shared person features. Dai et al. [27] suggested that cmGAN reduces the modality

differences between visible and infrared images. Thus, dual-stream networks have been widely

used to address modality discrepancy problems [16, 28]. Ye et al. [16] proposed a model to

address intra-class variation caused by viewpoint non-variation. Ye et al. [28] proposed a novel

DDAG learning method for VI-ReID by mining modal contextual cues. However, the methods

above focus on reducing modality differences at the instance level. At the same time, this paper

aims to learn more discriminative clues at the channel level, enabling semantic consistency

between channels.

2.3 Metric learning

Metric learning plays a crucial role in inter-sample similarity measures for Re-ID. Ye et al.

[16] provided a loss to learning discriminative feature representations using a two-stream

network [29]. They also introduced a major constraint to enhance performance [30]. To

reduce intra- and cross-modal variation, Hao et al. [31] proposed a network with classifica-

tion and recognition constraints. Zhao et al. [32] introduced the hard pentaplet loss to

improve VI-ReID performance. Wu et al. [33] designed a novel loss for focal modality-

aware that guides inter-modal similarity learning with intra-modal similarity. However, the

above methods only use the Euclidean metric, which cannot learn modality-shared discrim-

inative features from multiple perspectives. And ignore the impact of noisy samples on

model performance.

3 Method

In this section, as shown in Fig 1, we introduce CSMN, which consists of three parts: Modal-

ity-specific, Modality-shared and Loss, with the Modality-specific containing two essential ele-

ments: 1) Intra-modality Channel Semantic Mutual Learning (ICSM), which reduces

differences between instances by learning semantic information among channels of instances

within the same modality. 2) Cross-modality Channel Semantic Mutual Learning (CCSM),

which learns the relationships between channels of different modalities and aggregates seman-

tic information of the same identity at the channel level. Then the features learned from differ-

ent branches go through Modality-shared for further feature learning. In terms of metric

learning, we design Channel-level Auto-guided Double Metric loss (CADM), which optimizes

the distribution of samples within and between modalities.
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3.1 Intra-Channel Semantic Mutual Learning

RGB image channels contain different semantic information and have certain correlations. As

depicted in Fig 2, modality-specific features are extracted by specific feature layers. As visible

light and infrared images are captured based on different imaging principles, modality-specific

features correspond to different semantic information for the same identity. Since infrared

images are obtained based on the temperature distribution on the surface of objects, they can-

not be treated as ordinary three-channel images. In this paper, we attribute the differences

between modalities to differences between channels. Hence, the key to this problem is to

ensure the identity correlation of channel features and reduce semantic changes between chan-

nels. Since the extended three-channel infrared image exhibits heterogeneity in the R/G/B

channels, we aim to train the network to learn R/G/B channel distributions similar to those of

visible images. To reach this goal, we made an Intra-Modality Channel Semantic Mutual

Learning (ICSM) module, as shown in Fig 2, which uses the colours red, blue, and green to

show how similar the channel feature distributions are to each other. Our method focuses on

maximizing the intra-modality channel-level semantic consistency within each modality. We

represent channel-level consistency as the logical distribution similarity between channel fea-

tures. It can be formulated as follows:
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where LICMC represents the semantic consistency between the three channels, and ICSM aims

to minimize the semantic difference between channels. To achieve the above goals, the follow-

ing formula is used to optimize the parameters θv and θt:

ðŷvŷtÞ ¼ arg minðLICMCðyv; ytÞÞ ð2Þ

Fig 2. Channel semantic mutual learning.

https://doi.org/10.1371/journal.pone.0293498.g002
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3.2 Cross-Modality Channel Semantic Mutual Learning

In addition, to reduce the differences between modalities, we propose the Cross-Modality

Channel Semantic Mutual Learning (CCSM) method, which aims to maximize the inter-

modality channel semantic consistency. This method uses inter-modality semantic consistency

to aggregate features from different modalities under the same identity. We further reduce the

inter-modality channel semantic differences based on the modality-specific semantic consis-

tency features. Since the modality-specific extractors θv and θt extract features within each

modality, the extracted modality-specific features are independent. The following formula can

represent the features of each modality:

Cv ¼ ð1=
XSv

i¼1
wv

i Þ∗
XSv

i¼1
wv

i ∗f
v
i ð3Þ

Ct ¼ ð1=
XSt

i¼1
wt

iÞ∗
XSt

i¼1
wt

i∗f
t
i ð4Þ

where St and Sv represent the number of samples in the infrared and visible images and repre-

sent the weights of the i-th feature vector in different modalities, which are adjusted to reduce

the influence of outliers. Cv and Ct are batch-computed. CCSM aims to learn semantic infor-

mation between modalities rather than identity information. Using metric learning enables

the alignment of the distance between Cv and Ct, and the features θv and θt will have more

semantic consistency information. In CCSM, the goal is to maximize the inter-modality

semantic consistency between visible and infrared image features:

Lccsm ¼ Lðyv; ytÞ¼ kCv � Ctk
2

ð5Þ

Fig 3 shows the collaborative processing process of ICSM and CCSM. The combination of

the two can not only reduce the differences between instances of the same identity within each

modality and improve the matching accuracy of the same identity between modalities.

3.3 ADM

Most existing metric learning methods are at the instance level, a coarse-grained learning

method that is also vulnerable to the influence of noisy samples. To learn fine-grained features

and reduce the impact of noisy samples on the feature space, we propose channel-level auto-

guided double metric loss (CADM). We obtain semantically consistent features fv and fr from

Fig 3. The diagram depicts the single and double metric learning methods. Where C(p) and C(n) represent the

cosine values between the positive and negative samples.

https://doi.org/10.1371/journal.pone.0293498.g003
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the modality-specific extractors θv and θt respectively. Then we use a weight-shared feature

extractor θs to obtain rich semantic features [f Rv
i ; f

Gv
i ; f Bv

i ], ½f Rt
i ; f

Gt
i ; f

Bt
i � 2 RB�C�H�W . Since dif-

ferent metric learning methods will learn different the hardest samples. For the Euclidean met-

ric, p1 and a in Fig 3(A) are the pair of positive samples, and n1 and a are the pair of negative

samples, but for the cosine metric in Fig 3(B), p2 and a are only the pair of positive samples,

and n2 and a are the pair of negative samples. So, to learn the sample distribution from multi-

ple perspectives, we propose a double metric loss(DM), which introduces a cosine metric that

takes the direction of the feature vector into account based on the Euclidean metric:
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Additionally, to deal with noisy samples, we introduce an auto-guided function. Specially,

we utilize the Euclidean metric to calculate the similarity between samples and construct the

corresponding similarity matrix. We initially extract the positions of all positive and negative

samples from the distance matrix using the Euclidean metric to generate a position mask. The

position mask calculates the distances between each sample in the distance matrix. All sample

distances are then combined using the proposed auto-guided function. The following is the

auto-guided function.

P xð Þ ¼

0; x < 0

x
2d
þ d; 0 < x < 2d

x; x > 2d

ð8Þ

8
>><

>>:

where d is the constant slope that controls the auto-guided function. δ is a very small constant

that ensures the function value is greater than zero.

The CADM can finally be expressed as:

Lcadm ¼ Le þ b � Lc þ c � Lp ð9Þ

Where c are the auto-guided function loss coefficients of Lp.Therefore, the final expression of

the loss function is as follows:

Ltotal ¼ LICMC þ Lccsm þ Lcadm ð10Þ

4 Experiment

4.1 Experimental settings

4.1.1 Dataset and setting. We evaluate the performance of our proposed approach on

the VI-ReID task through experiments on two widely used benchmark datasets,

SYSU-MM01 [8] and RegDB [34]. The SYSU-MM01 dataset, the largest VI-ReID dataset,

comprises four visible and two near-infrared cameras. The training set consists of 22,258

visible images and 11,909 thermal images of 395 individuals. The test set has 96 distinct

identities, with 3,803 thermal images used as queries and 301 visible images used as galler-

ies. We used single-shot outdoor and indoor search modes in our experiments. The data-

set’s configuration details can be found in [35]. The RegDB dataset consists of images
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captured by one visible camera and one far-infrared camera. It contains 412 identities, each

represented by 20 images (10 visible and 10 infrared) per person. According to the current

VI-ReID settings [36], 206 identities are chosen randomly for training, and the remaining

206 identities are allocated to the test set.

4.1.2 Evaluation metrics. To assess the performance of our method, we use cumulative

matching characteristics (CMC), mean average precision (mAP), and mean inverse

negative penalty (mINP) [36]. mAP evaluates the retrieval system’s performance when a gal-

lery set contains multiple matched images. CMC measures the probability that the

top-ranked retrieval results have the correct image of the person. mAP evaluates the retrieval

system’s performance when a gallery set contains multiple matched images. Furthermore,

mINP considers the most difficult match to calculate the amount of work for inspectors.

4.1.3 Implementation details. We use CAJL [37] as the baseline network. The pre-trained

weights of ImageNet are used to initialize the network parameters. We employ a PK sampling

design with P = 8 and K = 4 parameters. We use zero-padded, randomly cropped images

(288 × 144) as training data to supplement the original dataset. The SGD optimizer is used

during the optimization process’s learning phase. The learning rate is reduced from its initial

value of 0.1 after 20 and 50 iterations. There are 100 training epochs in total. All tests were per-

formed on an Nvidia 3090 GPU with PyTorch 1.6 and cuda11.0.

4.2 Ablation study

To verify the effectiveness of ICSM, CCSM, DM, and CADM, we conducted detailed experi-

ments on the RegDB and SYSU-MM01dataset.

4.2.1 Effectiveness of Intra-Channel Semantic Mutual Learning (ICSM). As shown in

Table 1, taking the visible to infrared mode as an example, based on the Base model, using

only LICSM achieved a Rank-1 score of 86.5% and an mAP score of 77.25%. This improved the

Rank-1 score of the baseline model by 1.47%. The experimental results show that ICSM can

learn fine-grained features among channels within a modality, reducing the differences

between channels within the same modality.

4.2.2 Effectiveness of Cross-Modality Channel Semantic Mutual Learning(CCSM).

Unlike ICSM, CCSM learns global information between modalities to aggregate samples of the

same identity across modalities. As shown in Table 1, LCCSM represents the loss between

modalities. Taking the visible-to-infrared mode as an example, using only LCCSM on the Base

model increased the Rank-1 score and mAP score by 2.98% and 0.85%, respectively. Addition-

ally, we observed that using both LCCSM and LICSM on the Base model further improved the

model’s performance. Specifically, compared to Base + LICSM, the Rank-1 and mAP scores

improved by 1.61% and 2.81%, respectively. The Rank-1 score of Base + LCCSM was improved

by 0.1%, and the mAP score was improved by 0.07%. From the experimental results, CCSM

can effectively reduce the differences between modalities, and combining ICSM and CCSM

further enhances the model’s performance.

Table 1. Ablation experiments regarding LICSM and LCCSM were studied on the RegDB dataset, where Base refers to CAJL [34].

Methods RegDB(Visible to Infrared) RegDB(Infrared to Visible)

Base LICSM LCCSM Rank-1 mAP mINP Rank-1 mAP mINP
p

85.03 79.14 65.33 84.75 77.82 61.56
p p

86.50 77.25 64.89 85.67 76.02 59.34
p p

88.01 79.99 65.59 85.98 77.08 62.42
p p p

88.11 80.06 65.75 86.21 77.12 62.54

https://doi.org/10.1371/journal.pone.0293498.t001
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4.2.3 Effectiveness of Double Metric Loss (DM). As shown in Table 2, we conducted a

series of experiments on the methods based on Euclidean and cosine metrics to demonstrate

that the double metric consisting of Euclidean and cosine metrics can effectively improve the

baseline performance. It should be noted that our experiments were conducted based on Base

+LICSM+LCCSM. Baseline1 only uses the Euclidean metric, whereas Baseline2 only uses the

cosine metric. The DM-based baseline model outperformed Baseline1 on the RegDB dataset

by 0.53% and 0.39% on Rank-1 and mAP, respectively, and by 0.41% and 0.05% on the

SYSU-MM01 dataset. The experimental results show that DM can learn the feature distribu-

tion from multiple perspectives in a fine-grained manner, thereby improving the performance

of the model.

4.2.4 Effectiveness of Channel-level Auto-guided Double Metric Loss (CADM). We

compared our proposed method with commonly used loss functions, as shown in Table 3,

and found that CADM outperformed other loss functions, specifically CELoss by 5.09% at

Rank-1 and TripletLoss by 4.19% on the RegDB dataset. In addition, Rank-1 score over

1.02% of DM. On the SYSU-MM01 dataset, the Rank-1 score of the proposed method is

0.92% higher than that of DM. Experimental results show that CADM can effectively handle

abnormal samples.

4.3 Parameter analysis

Furthermore, we examined different b’s effects on DM on the RegDB dataset. As shown in Fig

4, b = 0 is equivalent to using only the Euclidean metric, and the performance of DM gradually

improves as b increases. When b = 1, DM performs optimally; however, as b increases, DM’s

performance decreases. This indicates that the two metrics have an equal impact on model per-

formance, demonstrating their complementarity.

As shown in Table 4, on the RegDB and SYSU-MM01 datasets, we tested the effect of differ-

ent weights c on the loss of the auto-guided function. When c is small, experimental results

show that CADM performance is poor, even worse than DM performance. The weight coeffi-

cients are so small that the model parameters do not converge sufficiently. The CADM’s per-

formance is optimal when the weight coefficient c is set to 1. In this case, CADM outperforms

DM by 1.02%/2.74% on dataset RegDB on Rank-1/mAP and 0.92%/0.74% on dataset

SYSU-MM01. When c exceeds 1, the CADM’s performance decreases rather than increases.

Table 2. DM ablation experiment.

Method Metric RegDB SYSU-MM01

Euclidean cos Rank-1 mAP Rank-1 mAP

Baseline1
p

88.11 80.06 69.88 66.89

Baseline2
p

87.86 79.77 69.95 66.34

DM(ours)
p p

88.20 80.83 70.29 66.94

https://doi.org/10.1371/journal.pone.0293498.t002

Table 3. Comparison of our proposed loss with other common loss functions.

Loss RegDB SYSU-MM01

Rank-1(%) mAP(%) Rank-1(%) mAP(%)

CenterLoss 83.56 77.96 68.01 65.98

CELoss 84.13 78.34 68.94 66.13

TripletLoss 85.03 79.14 69.88 66.89

DM(Ours) 88.20 80.83 70.29 66.94

CADM(Ours) 89.22 83.57 71.21 67.68

https://doi.org/10.1371/journal.pone.0293498.t003
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One possibility is that it only amplifies the gradient when it is very large while the model

parameters have already been optimized to their maximum.

4.4 Visualization analysis

To demonstrate the effectiveness of our proposed method more intuitively, we use heat maps

to display the features learned from pedestrian images. The heat maps of pedestrian images in

different modalities are shown in Fig 5(A) and 5(B), respectively. The heat map obtained from

the CSMN below focuses more on identity-related information than the heat map obtained

from the baseline (CAJL [37]) network above, as shown in the figure. This suggests that the

CSMN is not particularly sensitive to some distressing information (light, occlusion, etc.). As a

result, the model has a high degree of generalizability.

4.5 Comparison to the state-of-the-art methods

We compared CSMN with the existing state-of-the-art VT-ReID methods on two benchmark

datasets. Tables 5 and 6 show the detailed results for different evaluation metrics.

Fig 4. The figure shows the effect of variation in b on the DM performance on RegDB. Rank-1 is represented by the

long blue bar, mAP by the long orange bar, and mINP by the long gray bar. The red "—" line represents the rank1

baseline, the green "—" line represents the mAP baseline, and the black "-" line represents the mINP baseline.

https://doi.org/10.1371/journal.pone.0293498.g004

Table 4. The effect of different values of c on the performance of CADM on the RegDB and SYSU-MM01 datasets.

Methods c RegDB SYSU-MM01

Rank-1 mAP mINP Rank-1 mAP mINP

Base - 85.03 79.14 65.33 69.88 66.89 53.61

DM 0 88.20 80.83 66.02 70.29 66.94 54.07

CADM 0.5 86.95 78.89 64.56 68.32 64.96 51.83

CADM 0.9 88.38 80.87 67.40 70.34 66.92 54.02

CADM 1 89.22 83.57 65.93 71.21 67.68 54.12

CADM 1.25 88.59 79.77 66.16 70.65 67.01 53.97

CADM 1.5 86.26 79.34 65.84 68.47 65.70 51.93

https://doi.org/10.1371/journal.pone.0293498.t004
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As shown in Table 5, on the RegDB dataset. SCFNet [45] also designs loss functions to

reduce the impact of outlier samples on the spatial features and achieves excellent retrieval

accuracy. However, our method achieves better results. Specifically, the proposed method out-

performs SCFNet by 3.43% in Rank-1 and 1.66% in mAP scores. For the SYSU-MM01 dataset,

as shown in Table 6, CSMN achieves state-of-the-art performance. CSMN outperforms the

CAJL [37] by 1.33% in Rank-1 and 0.51% in mINP in the more complicated full search mode.

To alleviate the strict constraints of traditional triplet loss, the HCTri [39] method, which also

improves the loss function, proposes hetero-center triplet loss. Our proposed CSMN, on the

other hand, outperforms HCTri on Rank-1 and mAP by 9.53% and 10.17%, respectively.

These findings imply that CSMN can effectively reduce the differences between modalities and

channels within a modality. On the other hand, CADM can learn the sample distribution in a

more fine-grained manner and deal with outlier samples.

Fig 5. Heat maps extracted by the baseline network (CAJL) and CSMN are displayed on top and bottom,

respectively. Note that the pedestrian images is similar but not identical to the original image and is therefore for

illustrative purposes only. (a) Comparison of heat maps extracted by the DCMN and the baseline network (CAJL) in

infrared modality. (b) Comparison of heat maps extracted by the CSMN and the baseline network (CAJL) in visible

modality.

https://doi.org/10.1371/journal.pone.0293498.g005
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5 Conclusion

This paper proposes a CSMN framework for visible-thermal person re-identification, which

considers cross-modality differences as differences between channels. We reduce the differ-

ences between channels in two aspects: On the one hand, we propose ICSM, which learns fine-

grained features among channels within a modality to maximize the consistency between

channels and minimize the differences between them. On the other hand, we propose CCSM,

Table 5. Comparison to the state-of-the-art methods on the RegDB dataset.

Method Venue Visible to Infrared Infrared to Visible

Rank-1 mAP mINP Rank-1 mAP mINP

Zero-Pad [8] ICCV-17 14.80 15.95 - 16.63 17.82 -

HCML [16] AAAI-18 24.44 20.08 - 21.70 22.24 -

HSME [17] AAAI-19 50.85 47.00 - 50.15 46.16 -

D2RL [38] CVPR-19 43.40 44.10 - - - -

AlignGAN [13] ICCV-19 57.90 53.60 - 56.30 53.40 -

Hi-CMD [39] CVPR-20 70.93 66.04 - - - -

AGW [36] arXiv-20 70.05 66.37 50.19 70.49 65.90 51.24

DDAG [28] ECCV-20 69.34 63.46 49.24 68.06 61.80 48.62

HAT [40] TIFS-20 71.83 67.56 - 70.02 66.30 -

GMRN [41] ICIP-21 78.25 71.00 - - - -

MCLNet [42] ICCV-21 80.31 73.07 57.39 75.93 69.49 52.63

CAJL [37] ICCV-21 85.03 79.14 65.33 84.75 77.82 61.56

SCFNet [43] CVPR-22 85.79 81.91 - 86.33 82.10 -

DML [44] TCSVT-22 77.60 84.30 - 77.00 83.60 -

DSCNet [45] TIFS-23 85.39 77.30 - 83.50 75.19 -

CSMN Ours 89.22 83.57 65.93 86.89 82.34 63.12

https://doi.org/10.1371/journal.pone.0293498.t005

Table 6. Comparison to the state-of-the-art methods on the SYSU-MM01 dataset.

Method Venue All Search Indoor Search

Rank-1 mAP mINP Rank-1 mAP mINP

Zero-Pad [8] ICCV-17 14.80 15.95 - 20.58 26.92 -

HCML [16] AAAI-18 14.32 16.16 - 24.52 30.08 -

cmGAN [27] IJCAI18 26.97 27.80 - 31.63 42.19 -

HSME [17] AAAI-19 20.68 23.12 - - - -

D2RL [38] CVPR-19 28.90 29.20 - - - -

AlignGAN [13] ICCV-19 42.40 40.70 - 45.90 54.30 -

AGW [36] arXiv-20 47.50 47.65 35.30 54.17 62.97 59.23

DDAG [28] ECCV-20 54.75 53.02 39.62 61.02 67.98 62.61

HAT [40] TIFS-20 55.29 53.89 - 62.10 69.37 -

HCTri [46] TMM20 61.68 57.51 39.54 63.41 68.17 64.26

GMRN [41] ICIP-21 57.67 54.88 - - - -

MCLNet [42] ICCV-21 65.40 61.98 47.39 72.56 76.58 72.10

CAJL [37] ICCV-21 69.88 66.89 53.61 76.26 80.37 76.79

DML [44] TCSVT-22 62.20 49.60 - 66.40 60.00 -

DLRL [47] TIP-22 63.04 60.58 - 67.95 52.12 -

FMCNet [48] TIP-22 66.34 62.51 - 68.15 74.09 -

CSMN Ours 71.21 67.68 54.12 77.32 81.56 77.12

https://doi.org/10.1371/journal.pone.0293498.t006
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which learns global channel features between modalities to aggregate samples of the same

identity across modalities. In addition, to better optimize the sample distribution between and

within modalities, we propose CADM. Unlike methods that learn sample distribution at the

instance level, our method fully exploits the advantages of channel consistency to learn the

sample distribution in a more fine-grained manner. Moreover, we use an auto-guided function

to reduce the generation of outlier samples. Our experiments on two benchmark datasets indi-

cate that CSMN outperforms the existing state-of-the-art methods for VI-ReID.
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