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Abstract

Disentanglement research is a critical and important issue in the field of image editing. In

order to perform disentangled editing on images generated by generative models, this paper

presents an unsupervised, model-agnostic, two-stage trained editing framework. This work

addresses the problem of discovering interpretable, disentangled directions of edited image

attributes in the latent space of generative models. This effort’s primary objective was to

address the limitations discovered in previous research, mainly (a) the discovered editing

directions are interpretable but significantly entangled, i.e., changes to one attribute affect the

others and (b) Prior research has utilized direction discovery and direction disentanglement

separately, and they can’t work synergistically. More specifically, this paper proposes a two-

stage training method that discovers the editing direction with semantics, perturbs the dimen-

sion of the direction vector, adjusts it with a penalty mechanism, and makes the editing direc-

tion more disentangled. This allows easy distinguishable image editing, such as age and

facial expressions in facial images. Experimentally compared to other methods, the proposed

method outperforms them both qualitatively and quantitatively in terms of interpretability,

disentanglement, and distinguishability of the generated images. The implementation of our

method is available at https://github.com/ydniuyongjie/twoStageForFaceEdit.

Introduction

Generative Adversarial Networks [1] (GANs) have emerged as the dominant generative learn-

ing paradigm, showing clear superiority in the quality of generating realistic, diverse images

[2–6]. BigGAN [2] and StyleGAN2 [5] are actually the best models in terms of realism, variety,

and clarity of image generation, and a lot of research has considered both models. However,

the GAN model does not provide an inherent way to understand and manipulate these gener-

ating factors. In fact, the GAN model functions are emphasized as a "black box" in many appli-

cations. Thus, researchers are investigating the GAN latent space’s structure to develop a

method that can discover interpretable and disentangled attribute editing directions.

Methods for discovering the direction of attribute editing in the latent space of GANs are

divided into supervised and non-supervised branches. The supervised methods are able to dis-

cover editing directions in the latent space that are consistent with supervisory control factors

[4,7,8]. Supervision is in the form of labels assigned to the generated images, either by explicit
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human annotation or by the use of pretrained semantic classifiers such as linear support vector

machines. More recent works [9–11] manipulate editing directions in a well-aligned latent

space with some controllable manipulations (e.g., zoom, translation) in image space. Super-

vised methods are limited by many factors, such as the assumption that the latent space has

editing operations specified by supervised conditions, the accuracy of human annotation, the

fact that the number of editing directions is less than or equal to the number of semantic classi-

fiers, etc.

Another research direction for discovering editing directions in the latent space of genera-

tive models is unsupervised methods. The SeFa [12] method decomposes the weights of the

first layer of the StyleGAN into feature vectors, which are the editing directions, and then iden-

tifies the specific semantics of the directions in a post-processing way. GANSpace [13] per-

forms PCA on the intermediate vector matrix, formed by a large number of samples, in the

latent space of the generative model. Thus, it obtains a set of non-orthogonal editing directions

and performs hierarchical editing on the generator to achieve a certain degree of disentangled

attribute editing. Like other methods, the method is a very demanding training process that

requires sampling a large number of random latent codes and regressing latent directions.

Added to that, Voynov et al. [14] proposed an unsupervised method to discover editing direc-

tions in the latent space by relying on the classification loss of the classification network, which

theoretically can discover almost all interesting directions in the latent space. To sum up, the

evaluation of the above methods basically relies on subjective visual inspection or laborious

human labeling.

Learning disentangled representations generates several advantages for many computer

vision tasks, such as controllable image generation [12,15,16], image manipulation [17], and

adversarial attacks [18,19]. In recent years, unsupervised disentanglement learning has

attracted substantial attention. Moreover, many disentanglement methods [12,15,16,20–22]

have been proposed. Zhu et al. [16] encouraged GANs to learn disentangled representations

during training through Variation Predictability (VP) loss and proposed a VP metric to quan-

titatively evaluate disentanglement. Added to that, the Hessian Penalty [15] encourages learn-

ing a disentangled representation by minimizing the off-diagonal entries of the output’s

Hessian matrix with respect to its input. Finally, OroJaR [23], introduced by Wei et al., is basi-

cally the same as the Hessian Penalty principle. To sum up, most of the research nowadays

belongs to the integrative method, that is, the relevant disentanglement mechanism is inte-

grated into the model training process.

Inspired by Voynov’s work [14] and the Hessian Penalty [15], we propose an unsupervised,

model-agnostic, two-stage training framework for disentangled editing. The two stages are:

a. Direction discovery: given a trained generative model G and using the classification and

regression losses of a classification network, discover all directions in the latent space with

editing capabilities;

b. Disentanglement learning: The dimension of the discovered editing direction is subjected

to a minor perturbation, and the sum of squares of the off-diagonal elements of the Hessian

matrix between the perturbation-generated image and the perturbation is minimized to

accomplish disentanglement of the editing direction.

Fig 1 shows an example of exciting and disentangling obtained using the proposed method.

The images with borders in Fig 1 are the original images. The left side of this original image

represents the decreasing negative editing direction, and the right side represents the gradually

increasing positive direction. As can be seen from Fig 1, our method can disentangle other

image attributes while modifying some attributes.
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Inspired by SeFa [12] and InterFaceGAN [7], we propose some methods to quantitatively

evaluate disentanglement and to automatically identify the semantics of the discovery direc-

tions. One of the methods consists of traversing the discovered editing directions, generating

image sequences, using different trained kinds of attribute classifiers to score different attri-

butes of the image sequence, and calculating the average Pearson’s correlation between attri-

bute scores and traversal indices. Arrange the correlation coefficients of each attribute in all

directions in descending order, and each attribute is the semantics of the direction with the

largest correlation coefficient, which can automatically determine the correspondence between

image attributes and editing directions without manual identification. The contrast between

different attribute correlation coefficients in one editing direction can quantitatively show the

degree of disentanglement in that direction. Based on the realized experimental simulations,

the directions discovered after the two-stage training are more interpretable and disentangled

than other methods. It is found that the semantics of the automatically determined editing

direction are largely consistent with the manual annotation.

To sum up, the main contributions of this paper can be summarized as follows:

a. We propose an unsupervised, model-agnostic, two-stage training strategy. The method dis-

covers all editing directions in the latent space of a pre-trained generative model in the first

stage and then employs a penalty mechanism to disentangle the discovered directions in the

Fig 1. Examples of disentangled editing directions discovered by our method.

https://doi.org/10.1371/journal.pone.0293496.g001
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second stage. Thus, disentanglement of discovery directions is improved, i.e., modifying an

image attribute corresponding to semantics in one direction will have as minimal impact

on other attributes as possible;

b. We propose methods to automatically determine the semantics of directions and to quanti-

tatively evaluate the performance of the directional disentanglement. Using the pre-trained

image attribute classifier to score various attributes of the generated image sequence, calcu-

lating the average Pearson’s correlation between the attribute score and the image editing

path, and determining the semantics of the direction by sorting the result of the attribute

correlation coefficient are the main steps that are required to apply these methods. The

comparison of the correlation coefficients of different attributes in an editing direction can

quantitatively evaluate the degree of disentanglement in this direction;

c. Using the new method on the generative model StyleGAN2 and comparing it with other

methods both qualitatively and quantitatively, it is found that our method can not only dis-

cover meaningful semantic directions but also have better disentanglement performance.

Finally, this paper is divided as follows: In the next section, several related works to the pro-

posed issue are presented and analyzed, whereas Section 3 shows the methodology of work

applied in this paper. In Section 4, the experimental details, results, and some discussion and

analysis are presented, and Section 5 summarizes the obtained conclusions and recommends

some future research directions.

Related work

Discovering editing directions in the latent space

The discovery of editing directions in the latent space has two branches: the supervised method

and the unsupervised method. Radford et al. [24] were the first to discover the phenomenon

that latent codes exhibit the features of arithmetic operations. By modifying these latent codes,

it is possible to change several expressions and add certain accessories to the face. Due to this

discovery, image editing became much easier and got extensive research attention. InterFace-

GAN [4] uses the ResNet-50 network [25] to train an auxiliary attribute prediction model

based on the CelelbA dataset [26] to predict attributes for the sampled 500 thousand generated

images. Five linear SVMs were trained using a set of data pairs that included attribute scores

and latent encoding. The hyperplane of each SVM is the editing direction of the associated

attribute. As a result, InterFaceGAN can only determine the editing direction of five binary

attributes and necessitates the use of an auxiliary attribute prediction model and SVM training.

StyleSpace [27], another technique relying on human supervision, uses the pre-trained image

segmentation network to identify and edit local semantic regions in the style channel; thus,

accurate editing for the local face regions is possible; however, it is difficult to generalize this

method to other generative models because it goes deep into the interior of a specific model.

Plumerault et al. [11] proposed an algorithm that translates the image Is, generated by the

latent code z, into another image Ir through the transformation Tδ of the intensity δ, where I2
obtained the latent code zt through the GAN inversion. Based on the basic hypothesis that the

parameter δ of a specific factor of variation can be predicted from the coordinate of the latent

code along an axis μ, the direction μ of the transformation Tδ in the latent space is solved by

identifying the values of the (z, zt, δ). The method focuses on image editing mostly limited to

domain-agnostic factors (e.g., zoom scale or translation).

SeFa [12] finds the most important eigenvectors by decomposing the weights of the pre-

trained generative model’s first layer and sorting them by eigenvalues. The eigenvectors
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vectors represent editing directions, and the specific semantics of these directions will be rec-

ognized by humans afterwards. GANSpace [13] samples a lot (106) to obtain the correspond-

ing intermediate latent W matrix. The basis obtained by performing PCA on the matrix W is

the searched editing directions, which have rich semantic information. Eliezer et al. [9]

obtained a closed-form expression corresponding to the transformation of the weights W and

b of the first layer without applying any type of training or optimization. Voynov et al. [14] put

the discovered editing directions into an external matrix via reconstructor classification and

regression losses. The model-agnostic characteristics of this method make it applicable in

many domains [15,23,28], even though they evaluate the performance of their method using

human assessors’ judgments. Finally, Wang et al. [29] integrated these approaches by treating

them as special cases of computing the spectrum of the Hessian for the LPIPS [30] model with

respect to the input.

Supervised methods often require costly human labeling or training of specific auxiliary

networks, vast quantities of sampling, and a limited number of directions to discover. Unsu-

pervised methods can discover practically all editing directions; however, the identified direc-

tions are typically entangled with each other.

Disentanglement learning

StyleSpace [27] provides a comprehensive description of entanglement learning where each

latent dimension controls only a single visual attribute (disentanglement), and each attribute is

controlled by only a single dimension (completeness). Two kinds of methods, i.e., the post-

processing and the integration methods, have been mainly investigated for finding disentan-

gled representations in GAN.

The integration method incorporates disentanglement learning into the model training pro-

cess in such a way that the generative model has inherent disentanglement characteristics. Info-

GAN [31] achieved the disentangled representations by maximizing the mutual information

between the input latent variables and the output of the generator. Zhu et al. [16] presented a

variation predictability loss that encourages disentanglement by maximizing the mutual infor-

mation between latent variations and their corresponding image pairs. In addition, GAN-Con-

trol [32] encodes attribute information into sub-spaces of latent encoding z and trains the GAN

model using factorized contrastive loss defined by the contrastive learning. In the process of

training a new model from scratch, the Hessian Penalty is able to disentangle several crucial

generative factors. To sum up, these studies provide comprehensive theoretical insights; In con-

trast to state-of-the-art GANs, however, they are typically applied to experimental or low-reso-

lution datasets and generate inferior results in terms of quality and diversity.

The post-processing techniques are used to locate and identify interpretable directions in

the pre-trained GAN’s latent space. Currently, the research community pays very little atten-

tion to post-processing methods, and many researchers tend to treat disentanglement learning

as an incidental characteristic of the direction discovery. Hessian Penalty and Orthogonal

Jacobian Regularization [15,23] were used as direction discovery tools on the BigGAN model,

and a small number of editing directions, including rotation, scaling, and color transforma-

tion, were found. However, our work uses the Hessian Penalty as a proprietary tool for

disentanglement rather than direction discovery.

Proposed method

An overview of our proposed method is shown in Fig 2.

Our primary objective is to develop strategies that simultaneously discover editing direc-

tions and disentangle them in the latent space of generative models. After theoretical
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Fig 2. Overview of the proposed method.

https://doi.org/10.1371/journal.pone.0293496.g002
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investigation and experimental verification, a two-stage training method was proposed. The

first stage consists of discovering semantically meaningful editing directions in the latent space

and storing them in an external matrix A, and the second stage uses a Hessian Penalty to

locally adjust the discovered editing directions to disentangle the directions from each other.

The major focus of the two-stage training manipulation is the matrix A that is placed outside

the generative model. Hence, the proposed method is model-agnostic and can be easily

adapted for usage in different generative models.

After completing model training, the columns of matrix A represent the disentanglement

editing directions. In order to verify the effectiveness of our method, images are generated

after random sampling in the latent space of the pre-trained StyleGAN2 model, and the gener-

ated images are edited using the editing direction in matrix A. So all images in this paper are

completely synthesized from the beginning. The images and figures in this article have

been authorized by all authors to be freely available without restriction.

Discovering editing directions

The main task of the first stage is to discover meaningful editing directions in the latent space,

which correspond to the dashed box on the top in Fig 2.

Randomly sampling a latent code z* N (0, Id) from the latent space where |z| denotes the

dimensionality of the vector z. For the StyleGAN2 model, |z| = n = 512.Input z into the genera-

tive model G to obtain the original image Iorigin = G(z). Then, a direction index k is generated

in the interval {1,. . ., m} using a discrete uniform distribution where m is the number of direc-

tions expected to be discovered, and one-hot encoding, with k serving as an index, yields the

direction extraction vector ek = (0,. . ., 1k, . . ., 0). After that, a random shift magnitude ε is gen-

erated over a continuous uniform distribution [−s, s] where ekAε extracts the kth column from

the matrix A as a candidate direction, and each column of the matrix A2R|z|×m represents a

direction vector. Hence, G(z + ekAε) generates the altered image Ialter. The two images are con-

nected on the channel and fed to the reconstructor R composed by ResNet-18, which produces

two outputs ðk̂; ε̂Þ:k̂ is a prediction of direction index k and ε̂ is a prediction of shift magni-

tude ε. Adjusting A and R by minimizing the loss function leads to have Eq (1).

min
A;R

E
z;k;ε

LðA;RÞ ¼ min
A;R

E
z;k;ε
½Lclsðk; k̂Þ þ lLregðε; ε̂Þ� ð1Þ

For the classification term Lcls(�, �), the cross-entropy function is used, and for the regres-

sion term Lreg(�, �), the mean absolute error is used. In all experiments, we use a weight coeffi-

cient λ = 0.25, which is taken from Voynov’s experimental values.

Directional disentanglement learning

The main task of the second stage is to disentangle the discovered direction vectors, which cor-

respond to the dashed box on the bottom of Fig 2. After the first stage of training, each column

in matrix A represents an editing direction. The optimal direction of disentanglement is to

select one of the columns; when moving in this direction, only one attribute of the generated

image is modified, while the others remain unchanged.

To simplify the problem, consider one dimension of the image Ialter first. The function F: R|

z|!R is a scalar function that maps z to a dimension of the image Ialter. Let any off-diagonal

element Hij of the Hessian matrix H of the function F with respect to z be 0, as given in Eq (2).

Hij ¼
@2F
@zi@zj

¼
@

@zj

@F
@zi

� �

¼ 0; i 6¼ j ð2Þ
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Where the inner derivative with respect to zi represents the effect of a perturbation on the

output of the function F, whereas, if the outer derivative with respect to zj of the inner deriva-

tive is zero, it means that @F
@zi

is independent of zj. In other words, as we change zi, zj has no

effect on how the function F output changes and vice versa.

Summing the squares of all non-diagonal elements of the H matrix, one can write:

LHðFÞ ¼
Xjzj

i¼1

Xjzj

j6¼i
H2

ij ð3Þ

For the whole image Ialter has w × h dimensions, and all LH(F) functions form a set. For the

generator G, take the maximum in the set to get the function:

LHðGÞ ¼ max
i

LHi
ðFÞ ð4Þ

Minimizing the function of Eq (4) yields to the overall Hessian Penalty, which requires each

non-diagonal element to be minimum, allowing each dimension of the output image to be dis-

entangled relatively to each dimension of the input; Thus, one can conclude that the Hessian

Penalty has a stronger disentangle capability than the OroJaR method, which controls the Jaco-

bian matrix in a holistic manner.

However, it is impractical and slow to compute the Hessian matrices in Eq (4) during train-

ing when the dimensionality of the generated image is large. Thus, we can express Eq (4) in a

different manner that admits unbiased stochastic approximations as represented in Eq (5) [15].

LHðGÞ ¼ Varvðv
THvÞ ð5Þ

Where v are Rademacher vectors (each entry has equal probability of being −1or +1).

In order to quickly compute vTHv in Eq 5, we can do this via a second-order central finite

difference approximation:

vTHv �
1

g2
G z þ gvð Þ � 2G zð Þ þ G z � gvð Þ½ � ð6Þ

Directly optimizing A∗ ¼ arg minA Ez;ek;ε
LHðGðz þ εAekÞÞ, where Hessian Penalty is now

achieved using ek instead of z; thus, Eq (6) will allow to write Eq (7).

vTHv �
1

g2
Gðzþ ðεAek þ gvÞÞ � 2Gðzþ εAekÞ þ Gðzþ ðεAek � gvÞÞ½ � ð7Þ

Eq (7) implies a minor perturbation γv on the k-th column (Aek) of the orientation matrix

such that the variance between the perturbed image and the original image is minimized and

the editing direction in the matrix A is adjusted in such a way that the direction is disentan-

gled. The variables γ and ε are hyperparameters to adjust the intensity of the perturbation,

which in practice is γ = 0.1 and ε = 1.

Base on the StyleGAN2 model, as the W space has superior disentanglement qualities than

the Z space, the above training is also applicable to the W space, and the output effect is better

visualized than that on the Z space. Thus, our experiments are carried out in the W space.

Advantages of two-stages over one stage

Each column in matrix A represents an editing direction, and the loss function of the first

stage training does not explicitly restrict the direction vectors to being different from each

other. To prevent the model from collapsing quickly into a small number of directions, i.e., the

number of valid editing directions finally obtained is much smaller than the number found by
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the plan, and the remaining directions are parallel to the resultant ones; thus, the column vec-

tors of matrix A are unit-normed and orthogonal by applying Gram-Schmidt processing [15]

after each iteration. The orthogonalization prevents the collapse of the method, but it makes

the final editing direction less precise. So far, there is no relevant evidence to verify that the

editing direction must be necessarily orthogonal. For instance, the editing direction found by

GANSpace is non-orthogonal. If a Hessian Penalty with a weak prior is also used in the first

stage, the orthogonal operation will completely cancel out its fine-tuning of the editing direc-

tion. This is one reason for adopting the two-stage training protocol.

In more details, the first stage extracts the directions in matrix A by indexing ek, treating the

columns in matrix A as a whole, and the granularity of the operation is to compute the vector.

The Hessian penalty is effectively obtained through the perturbation of each dimension in the

direction vector; thus, the dimension is the granularity of the Hessian Penalty operation. Since

the two operations are at different levels, they are performed in two different stages. If one-stage

is used, the editing direction in matrix A is basically a random vector without any semantics at

the beginning of the algorithm and adjusting it with the Hessian Penalty to modify the editing

direction is not in accordance with the idea of Hessian Penalty. Added to that, it will create a

conflict with the direction discovery, which will make the classification prediction less accurate

and the convergence slower. In the next section, experimental results will verify our idea.

Experiments

In this section, we start to implement the proposed method and compare it with other meth-

ods using both qualitative and quantitative approaches.

The pre-trained model StyleGAN2 with a resolution of 256×256 can be obtained from the

GitHub website (https://github.com/rosinality/stylegan2-pytorch). All images in the experi-

ments are generated by this model, so all images are available without restriction.

Implementation details

The experiments were carried out on a single V100 32G card from the V-Series, and the gener-

ation model employed the StyleGAN2 model trained on FFHQ [5], which is currently state-of-

the-art in the field of face generation. To increase the size of the batch during training, the res-

olution of the generated images is set to 256×256 pixels. Five distinct types of experiments

were developed to test our method. They are described here below:

1. Voynov’s method is not implemented on StyleGAN2, which is reimplemented and symbol-

ized by the abbreviation SDD (Single Discovery Directions);

2. Peebles et al. [15] employ the Hessian Penalty as direction discovery on BigGAN and reim-

plement it on StyleGAN2 using SHP (Single Hessian Penalty) notation;

3. Integrating Voynov’s technique with Hessian Penalty together in one training stage is called

HDP (Hybrid Discovery and Penalty). Due to the addition of the Hessian Penalty con-

straint to the HDP, the complete loss function of the model is shown in Eq (8):

min
A;R

E
z;k;ε

LðA;RÞ ¼ min
A;R

E
z;k;ε
½Lclðk; k̂Þ þ lLreðε; ε̂Þ þ gLHðGÞ� ð8Þ

Where γ = 0.5, λ = 0.25;

4. In order to compare Hessian Penalty and OroJaR in terms of disentanglement learning, a method

using OroJaR was implemented in the second stage, denoted by DTJ (Discovery To OroJaR);
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5. Our method utilizes the DTH (Discovery to Hessian Penalty) notation.

The range of the shift variable magnitude ε is set to [–6, 6] for all methods, and the direc-

tional discovery number m is set to 256. The perturbation variable magnitude γ for the Hessian

Penalty and OroJaR methods is set to 0.1. The number of iterations for the three methods of

SHP, HDP, and HDP is equal to 105. The first stage of both DTH, DTJ methods employs the

model trained by SDD method where the second stage iteration number is also equal to 105.

The batch size for SDD is 32, 18 for all three SHP, DTH, and DTJ methods, and 12 for HDP.

Methods SDD, SHP, and HDP all initialize the matrix A with the standard normal distribu-

tion, and each iteration of the algorithm orthogonalizes the columns of the matrix. In the first

stage of DTH and DTJ training, the initialization and operation of matrix A are identical to the

method described above, and the second stage of training is initialized with the matrix A
obtained from the first stage.

To quantitatively evaluate the preceding methods, the editing direction was traversed first:

Using a fixed latent code z, a sequence of images is generated by traversing a fixed step in the

positive and negative directions along a particular edit direction, producing one image per

step; Subsequently, various pretrained classification networks are applied to score multiple

attributes of each image in the image sequence.

The proposed attributes and pretrained classification networks are listed here below:

a. the width and height of the face, using [33];

b. the age, race, and gender score using FairFace [34];

c. an identity score for each image of the sequence that expresses the similarity between the

original image (central image of the sequence) and each of the remaining images, using

ArcFace [35];

d. More expressions for the face, e.g., au_1_Inner_Brow_Raiser, au_9_Nose_Wrinkler,

au_12_Lip_Corner_Puller, etc., using DISFA [36,37].

Each image sequence corresponds to an editing direction. Calculate the Pearson correlation

coefficient between the sequence score and sequence index for each attribute; as the evaluation

standard, the mean value of the corresponding Pearson correlation coefficient was calculated

after 200 distinct samples. then, the magnitude of the correlation coefficient of each attribute

in the editing direction is compared to evaluate the disentanglement performance of that edit-

ing direction.

Qualitative evaluation of face editing

By displaying the effects of different ways on face editing, the comparison demonstrates that

our method is better than other methods in terms of disentanglement. Each method discovers

a collection of editing directions, and for each editing direction, the traversal produces an

image sequence. Thus, the visualization of this sequence illustrates the change in image attri-

butes. For fair comparison, all methods use the same step length and the same number of

steps.

Fig 3 shows the results of editing the image attribute au_12_Lip_Corner_Puller by various

methods. If the size of the image is too small for detailed observation, please zoom in it for

viewing or go to the source code website to view the original image and GIF animation.

Each row in Fig 3 represents a method. The number in brackets to the right of the method

name is the index for the editing direction. The image with the border in the middle is the

original image. The left side of the original image depicts the negative direction, and the right
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side denotes the positive direction. The SDD method is entangled with the age, skin color, lens

color, and other attributes of the face while editing the attribute au_12_Lip_Corner_Puller.
The SHP method is entangled with lens color, age, but it performs better than the SDD method

to address the entanglement, but the same step duration modifies the au_12_Lip_Corner_Pul-
ler attribute to a smaller level. The application of the HDP method on au_12_Lip_Corner_Pul-
ler engenders minimal modifications as it is entangled with skin color, eyebrows, wrinkles and

other attributes. As for the DTJ’s modification of the au_12_Lip_Corner_Puller attribute, it is

the largest of the first four rows, but it is entangled with skin color, age, and seriously entangled

with whether to wear glasses. Finally, the DTH method has the biggest edit magnitude for the

corresponding attribute and is almost completely disentangled from other attributes. In com-

parison, our method works best for direction discovery and disentanglement.

Fig 4 shows the editing results of various methods for the image attribute

au_1_Inner_Brow_Raiser.
The method with the largest editing range for the attribute au_1_Inner_Brow_Raiser is

DTH, and the method with the smallest editing range is HDP. The SDD method is entangled

with skin color, hair, yaw, etc. whereas the SHP is entangled with age, skin color and the HDP

is entangled with skin color, eyes, and beard. As for the DTJ method is entangled with hair.

By showing the editing effects in Figs 3 and 4, the HDP method has the smallest magnitude

of editing for the relevant attributes, indicating that the editing direction discovered is not

accurate. This occurrence is consistent with the analysis of the conflict between

Fig 3. Editing results of different methods for the image attribute au_12_Lip_Corner_Puller.

https://doi.org/10.1371/journal.pone.0293496.g003
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disentanglement learning and direction discovery in the training process presented in section

3.3 as it further demonstrates the need to use two-stage training. In terms of disentanglement,

DTH and DTJ beat SDD and SHP methods, again demonstrating the need for disentangled

learning in the second stage. Finally, SDD outperforms SHP in the editing magnitude of

related attributes but has the largest number of other attributes coupled with it, indicating that

the SDD method is more suitable for direction discovery while the SHP method is more suit-

able for disentanglement learning.

Quantitative evaluation of disentanglement

Concerning the quantitative evaluation, a sequence of images is formed by taking the same

number of steps along the positive and negative directions of the editing direction, and the

attributes of each image are scored using the pre-trained network to obtain the scoring matrix

Score2Rk×a×s, where k denotes the number of directions, a denotes the number of attributes,

and s represents the length of the image sequence. The Pearson’s correlation was calculated for

each attribute to get the correlation coefficient matrix Corr2Rk×a. The n Corr matrices are

obtained by multiple sampling in the latent space and their average value is represented by

Corravg2Rk×a. The column attributes of Corravg are sorted in a descending order, and the

semantics of the first ranked corresponding direction represents the attribute. An overview of

the greatest correlation coefficients of some attributes is provided in Table 1A–1E.

Fig 4. Editing results of different methods for the image attribute au_1_Inner_Brow_Raiser.

https://doi.org/10.1371/journal.pone.0293496.g004
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The magnitude of the Pearson correlation coefficient represents the relationship between

the score of the image attribute and the score index. Since the step size remains constant as

one moves along the editing path, a correlation coefficient that is high indicates a larger change

in the attribute. Table 1A displays that our method yields the maximum correlation coefficient

of 0.55 for the attribute au_12_Lip_Corner_Puller. Observing Fig 3, we can see that our

method has the greatest modification range for this attribute. Fig 4 and Table 1 also illustrate

this phenomenon.

Table 1. Comparison of Mean Pearson’s correlation for all methods.

gender age Brow_Raiser Cheek_Raiser Lip_Puller Lips_part

gender 0.33 0.12 0.04 0.04 0.01 0.03

age 0.03 0.45 0.11 0.05 0.18 0.02

Brow_Raiser 0.05 0.11 0.52 0.17 0.07 0.06

Cheek_Raiser 0.02 0.06 0.09 0.45 0.2 0.12

Lip_Puller 0.03 0.01 0.11 0.11 0.55 0.21

Lips_part 0.01 0.07 0.03 0.22 0.2 0.51

(a) Mean Pearson’s correlation for a subset of attributes in DTJ.

gender age Brow_Raiser Cheek_Raiser Lip_Puller Lips_part

gender 0.35 0.11 0.16 0.13 0.07 0.05

age 0.03 0.42 0.19 0.08 0.16 0.01

Brow_Raiser 0.04 0.13 0.46 0.13 0.08 0.06

Cheek_Raiser 0.03 0.11 0.15 0.39 0.17 0.12

Lip_Puller 0.05 0.01 0.16 0.08 0.43 0.2

Lips_part 0.03 0.08 0.08 0.024 0.21 0.45

(b) Mean Pearson’s correlation for a subset of attributes in SDD.

gender age Brow_Raiser Cheek_Raiser Lip_Puller Lips_part

gender 0.3 0.09 0.19 0.16 0.04 0.09

age 0.03 0.34 0.16 0.09 0.13 0.02

Brow_Raiser 0.02 0.19 0.46 0.22 0.1 0.14

Cheek_Raiser 0.03 0.2 0.13 0.43 0.28 0.16

Lip_Puller 0.03 0.02 0.03 0.25 0.4 0.31

Lips_part 0.01 0.12 0.05 0.24 0.33 0.41

(c) Mean Pearson’s correlation for a subset of attributes in SDD.

gender age Brow_Raiser Cheek_Raiser Lip_Puller Lips_part

gender 0.24 0.07 0.02 0.01 0.11 0.03

age 0.02 0.33 0.14 0.06 0.13 0.18

Brow_Raiser 0.07 0.12 0.4 0.12 0.06 0.02

Cheek_Raiser 0.02 0.03 0 0.37 0.27 0.14

Lip_Puller 0.02 0.03 0.11 0.3 0.34 0.27

Lips_part 0.01 0.02 0.05 0.23 0.28 0.32

(d) Mean Pearson’s correlation for a subset of attributes in SHP.

gender age Brow_Raiser Cheek_Raiser Lip_Puller Lips_part

gender 0.24 0.07 0.02 0.01 0.11 0.03

age 0.02 0.33 0.14 0.06 0.13 0.18

Brow_Raiser 0.07 0.12 0.4 0.12 0.06 0.02

Cheek_Raiser 0.02 0.03 0 0.37 0.27 0.14

Lip_Puller 0.02 0.03 0.11 0.3 0.34 0.27

Lips_part 0.01 0.02 0.05 0.23 0.28 0.32

(e) Mean Pearson’s correlation for a subset of attributes in HDP.

https://doi.org/10.1371/journal.pone.0293496.t001
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On the gender attribute, our method’s Mean Pearson’s correlation is lower than that of

DTJ, and our method achieves the highest correlation coefficient for other attributes, whereas

the majority of other methods achieve lesser correlation coefficients. This can be clearly visual-

ized by the non-diagonal elements of each table. Thus, the results of the quantitative evaluation

were consistent with the conclusions drawn from the qualitative comparison.

Fig 5 shows the comparison of the correlation coefficients for some attributes using all the

methods, which can reflect more clearly the disentanglement performance of each method.

The worst result is obtained by training the direction discovery and the disentanglement learn-

ing simultaneously, i.e., HDP. Although the non-diagonal elements of the matrix of the HDP

method are small, the correlation coefficients for the corresponding attributes are also low,

mainly because both components, i.e., disentanglement learning and direction discovery, con-

flict with each other throughout the training process. The experimental results suggest that our

method has greater performance in terms of disentanglement and Hessian Penalty is more

suitable for disentanglement learning than for direction discovery.

As for Fig 6, it shows the comparison of the accuracy rate between the SDD and the HDP

methods during the training process.

Observing Fig 6, the classification accuracy of the SDD method is significantly greater than

that of the HDP method in the early training period, and the reason is that the Hessian Penalty

and the discovery editing direction conflict with each other. In fact, the Hessian Penalty pulls

down the accuracy of SDD method. The degree of oscillation of the two curves reveals that the

Hessian Penalty interferes greatly with the directional discovery. The comparison of the accu-

racy rates verifies, once again, the analysis in Section 3.3 and provides a strong data support

for the two-stage training.

Conclusions

In this paper, we propose a two-stage training method for face editing. The method is unsuper-

vised and model-agnostic, and it provides better performance in disentanglement by Hessian

Fig 5. Comparison of correlation coefficients of attributes in all methods.

https://doi.org/10.1371/journal.pone.0293496.g005
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Penalty. After some theoretical research and experimental validation, it was demonstrated that

the two-stage training generated the best desirable results for face editing in the StyleGAN2

model. Since the fundamental focus of the two-stage operation is the direction matrix placed

outside the generative model, our method is independent of the specific generative model and

can be easily adapted to other models, which was not the case of existent methods.

Finally, by calculating the mean Pearson’s correlation coefficients between the attribute

scores of the image sequences and the indexes of the traversal paths, the disentanglement abil-

ity of the editing directions is quantitatively evaluated, and the ranking of the attribute correla-

tion coefficients can automatically determine the semantics of the editing directions. Although

the two-stage training method increases the training duration, the resulting editing model

does not affect its application in other fields. However, the Hessian Penalty is a relatively weak

method and does not achieve the desired result for the disentanglement of editing direction.

There are various factors that have an impact on direction discovery and direction disen-

tanglement, such as the spatial structure of latent space. Currently, the research is based on the

assumption that the editing direction is linear, and although some exciting results have been

obtained, they are not very satisfactory, and future research on nonlinear editing directions

may be required. There is a hierarchical structure to the majority of generative models, and the

roles and semantics of the different layers are still unclear. It has been observed that the same

editing direction operates differently in different layers, and a study of the semantics of the

hierarchical structure of the generative models may assist in improving the editing of images.

The search for stronger methods of disentanglement and new methods for simultaneous direc-

tion discovery and direction disentanglement in one stage are also the focus of future research.

Fig 6. Comparison of the accuracy of two methods, SDD and HDP, in the training process.

https://doi.org/10.1371/journal.pone.0293496.g006
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