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Abstract

SARS-CoV-2 infections in animals have been reported globally. However, the understand-

ing of the complete spectrum of animals susceptible to SARS-CoV-2 remains limited. The

virus’s dynamic nature and its potential to infect a wide range of animals are crucial consid-

erations for a One Health approach that integrates both human and animal health. This

study introduces a bioinformatic approach to predict potential susceptibility to SARS-CoV-2

in both domestic and wild animals. By examining genomic sequencing, we establish phylo-

genetic relationships between the virus and its potential hosts. We focus on the interaction

between the SARS-CoV-2 genome sequence and specific regions of the host species’

ACE2 receptor. We analyzed and compared ACE2 receptor sequences from 29 species

known to be infected, selecting 10 least common amino acid sites (LCAS) from key binding

domains based on similarity patterns. Our analysis included 49 species across primates,

carnivores, rodents, and artiodactyls, revealing complete consistency in the LCAS and iden-

tifying them as potentially susceptible. We employed the LCAS similarity pattern to predict

the likelihood of SARS-CoV-2 infection in unexamined species. This method serves as a

valuable screening tool for assessing infection risks in domestic and wild animals, aiding in

the prevention of disease outbreaks.

1. Introduction

Corona virus disease 2019 (COVID-19) is a highly contagious zoonoses caused by the Severe
Acute Respiratory Syndrome Corona virus 2 (SARS-CoV-2). Since the first detection in Wuhan

in December 2019, COVID-19 has rapidly spread globally [1], but the origin of the coronavirus

is still unknown. Bats and pangolins have been considered possible natural hosts for
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SARS-CoV-2, but there is no conclusive evidence [2, 3]. The range of SARS-CoV-2 hosts not

only humans but also expanding other mammals such as pet cats and minks, which were

infected in March and April of 2020 in Belgium and Spain, respectively [3, 4]. Subsequently,

SARS-CoV-2 infection was detected in ferrets, dogs, golden hamsters, white-tailed deer, rhesus

macaques, tigers, lions and so on, as reported by the World Organization for Animal Health

(WOAH) [5, 6]. An increasing number of mammals are infected with the new coronavirus,

indicating the risk of cross-species transmission of SARS-CoV-2. Cross-species transmission

of SARS-CoV-2 may lead to the evolution of new hosts and further spread of the virus [7].

This poses a serious threat to global public health and biodiversity.

The SARS-CoV-2 viral genome specifically binds to receptors on the surface of host cells,

which is a key link in viral infection [8]. So far, the virus has been infecting new species consist-

ing of a specific homologous target receptor capable of binding the SARS-CoV-2 genome. The

recognition of SARS-CoV-2 receptors is an important determinant of its transmission between

species [9–11]. The specific receptor of the new coronavirus is angiotensin-converting enzyme

2 (ACE2), which is widely expressed in animals as a cell surface receptor. The abundance of

ACE2 receptors in any organs of the body, including the brain, heart, kidney, nasopharynx,

lymph nodes, small intestine, colon, stomach, thymus, skin, spleen, bone marrow, liver, blood

vessels, and oral and nasal mucosa, renders them susceptible to infection by SARS-CoV-2 [12–

14].

The researcher has extensively studied SARS-CoV-2 in order to determine its host range

[15, 16]. However, animals at high risk of contracting SARS-CoV-2 cannot be accurately pre-

dicted by phylogenetic relationships based on comparisons of the entire ACE2 gene [15, 17].

In-Vivo experiments animal infection provide the best opportunity to understand the suscepti-

bility of SARS-CoV-2 across mammals [18]. However, conducting In-Vivo studies on a wide

array of animals, particularly wildlife, presents a considerable complexity demanding

increased manpower and resources. Additionally, ethical concerns arise when performing

experiments on the diverse range of wild animals. Therefore, our attention has been turned to

the analysis of the key binding domain of ACE2 to SARS-CoV-2 to predict the high-risk sus-

ceptible animals [10, 19–24].The analysis of receptor similarity methods is often used to pre-

dict the transmission of the virus between species [25]. Myeongji Cho’s sequence-based

approach suggests that it may be possible to identify virus transmission between hosts without

requiring complex structural analysis [17]. This method has been used to study the host range

of the new coronavirus by predicting the homology of receptor key amino acid sequences, and

key binding site methods [15, 16, 26, 27]. On this basis, we proposed a new screening approach

that involved screening and combining the important Last Common Amino acid Sites (LCAS)

in ACE2 from known susceptible hosts, which served as a standard method to evaluate the risk

of SARS-CoV-2 infection with unknown species. It can be used as a screening tool and has

important scientific implications for discovering potential susceptible hosts of the SARS-CoV-

2 virus and assessing its possible transmissibility across species.

2. Materials and methods

2.1 SARS-CoV-2 susceptible host collection

Reported SARS-CoV-2 infected species information were collected from the World Organiza-

tion for Animal Health (WOAH) (https://www.woah.org/en/what-we-offer/emergency-

preparedness/covid-19/) and literature [5, 28–31]. The naturally infected host species and

experimentally infected host species information were separately summarized to understand

the primary distribution of SARS-CoV-2 infection.
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2.2 ACE2 receptor sequence collection

The protein sequences of ACE2 from mammalian species were gathered from the National

Center for Biotechnology Information (NCBI) Protein Database (https://www.ncbi.nlm.nih.

gov/) and Uniprot (UniProt). Queried for records containing “ACE2” as gene name and

“Mammalia” as taxonomic class. Next, for selection by taxon, one complete ACE2 amino acid

sequence per species was retained and extracted in FASTA format. Then, for sequence files,

protein IDs were renamed as follow: ACE2_NCBI gene accession ID_ Species name.

2.3 ACE2 receptor data processing

The downloaded sequence file in FASTA format was imported into MAFFT [32] for sequence

alignment and duplicate sequences were removed. Output in the same FASTA format. Then

import the aligned sequences into BioEdit [33]. Find the human ACE2 receptor sequence in

the sequence file and drag it to the first line. Using the human ACE2 sequence as a reference,

delete sequences with missing or additional amino acid sites. Finally, rename the sequences,

naming them with ’species_ sequence number’. All data were output in FASTA format.

2.4 LCAS selection

The collected ACE2 sequence species were distinguished into two parts: known susceptible

species and unknown species. The key amino acid region of the human ACE2 receptor

sequence that strongly binds to SARS-CoV-2 was screened from the literature [9, 10, 15, 19,

20, 34, 35]. Import the amino acid sequences of known susceptible species into BioEdit [33]

and highlight the sites of the key amino acid domains that are screened out. Then paste the

highlighted amino acid sites into a new Excel spreadsheet. Finally, using the human ACE2

receptor amino acid sequence as a standard, select the amino acid sites that are completely

identical in all known species, which are the least common amino acid sites (LCAS). Docu-

mented the finalized LCAS set in an organized format for subsequent analyses. This compre-

hensive selection of amino acid sites represents the least common denominators across

susceptible species, forming a robust foundation for further investigations.

2.5 Analysis of potentially susceptible hosts

The ACE2 sequences of unknown species was imported into BioEdit tool and highlighted the

LCAS (Least Common Amino acid Sites) sites. The identical pattern of LCAS amino acid sites

of known susceptibility were compared and analyzed with unknown species sequence into a

new Excel spreadsheet for systematic analysis. Species displayed entirely identical LCAS pat-

terns were categorized as potentially vulnerable hosts; nonidentical sequence species were cate-

gorized as non-potential susceptible hosts.

The MEGA11 software adjacency method (Neighbor Joining Method NJ) was used to con-

struct a phylogenetic tree of potentially susceptible hosts. The average distance of each species

in the NJ phylogenic tree was constructed between 0 and 1. We perform a bootstrap test with

1000 replicates to build a phylogenetic tree.

3. Result

3.1 Collection of SARS-CoV-2 susceptible hosts

The list of animals infected with SARS-CoV-2 was collected from WOAH reports and litera-

ture. The results reveal that a total of 63 species were infected with SARS-CoV-2, including 38

species from 16 families that were infected from natural sources (Table 1) and 25 species from
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12 families that were infected under experimental conditions (Table 2). Known susceptibility

host statistics (Fig 1).

3.2 Collection of the ACE2 receptor sequence

We collected 407 ACE2 protein receptor sequences from various species from the Uniprot

database. We scrutinized 86 complete ACE2 protein sequences after eliminating incomplete

and duplicate sequences. In addition, we obtained 23 complete ACE2 protein sequences from

Table 1. Animals naturally infected with SARS-CoV-2.

Family Genus Species Reference

Hominidae Homo Homo sapiens [36]

Gorilla Gorilla gorilla gorilla [36]

Felidae Felis Felis catus [36]

Puma Puma concolor [36]

Panthera Panthera uncia [36]

Prionailurus Prionailurus viverrinus [36]

Panthera Panthera tigris jacksoni [37]

Panthera leo persica [37]

Panthera pardus [38]

Panthera tigris [37]

Panthera leo [36]

Acinonyx Acinonyx jubatus [37]

Lynx Lynx lynx [36]

Lynx canadensis [36]

Mustelidae Neovison Neovison vison [36]

Mustela Mustela putorius furo [39]

Aonyx Aonyx cinerea [36]

Lutra Lutra lutra [36]

Cervidae Odocoileus Odocoileus virginianus [36]

Odocoileus hemionus [36]

Hyaenidae Crocuta Crocuta crocuta [36]

Hippopotamidae Hippopotamus Hippopotamus amphibius [36]

Myrmecophagidae Myrmecophaga Myrmecophaga tridactyla [36]

Viverridae Arctictis Arctictis binturong [36]

Procyonidae Nasuella Nasuella olivacea [36]

Nasua Nasua nasua [40]

Cercopithecidae Mandrillus Mandrillus sphinx [36]

Canidae Canis Canis lupus familiaris [36]

Vulpes Vulpes vulpes [36]

Bovidae Bos Bos taurus [41]

Capra Capra hircus [42]

Trichechidae Trichechus Trichechus manatus manatus [36]

Atelidae Ateles Ateles fuscieps [40]

Lagothrix Lagothrix lagothricha [40]

Rhinocerotidae Ceratitherium Ceratitherium simum [40]

Cebidae Saimiri Saimiri sciureus [36]

Mico Mico leucippe [36]

Mico melanurus [30]

https://doi.org/10.1371/journal.pone.0293441.t001
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Table 2. Animals experimentally infected with SARS-CoV-2.

Family Genus Species Reference

Mephitidae Mephitis Mephitis mephitis [31]

Procyonidae Procyon Procyon lotor [31]

Tupaiidae Tupaia Tupaia belangeri chinesis [43]

Canidae Nyctereutes Nyctereutes procyonoides [44]

Canis Canis latrans [40]

Caviidae Cavia Cavia porcellus [5]

Leporidae Oryctolagus Oryctolagus cuniculus [45]

Circetidae Mesocricetus Mesocricetus auratus [46]

Cricetulus Cricetulus griseus [47]

Phodopus Phodopus sungorus [28]

Phodopus campbelli [28]

Phodopus roborovskii [28]

Myodes Myodes glareolus [40]

Neotoma Neotoma cinerea [28]

Cercopithecidae Chlorocebus Chlorocebus aethiops [48]

Macaca Macaca fascicularis [36]

Macaca mulatta [49]

Papio Papio hamadryas [28]

Culicoides Culicoides sonorensis [40]

Pteropodidae Rousettus Rousettus leschenaultii [39]

Rousettus aegyptiacus [40]

Muridae Peromyscus Peromyscus leucopus [50]

Peromyscus maniculatus [31]

Danionidae Danio Danio rerio [40]

Cebidae Callithrix Callithrix jacchus [40]

https://doi.org/10.1371/journal.pone.0293441.t002

Fig 1. (a) COVID-19 reported species infected by natural and experimental condition and (b) Percentage of animal

species in families infected with COVID-19.

https://doi.org/10.1371/journal.pone.0293441.g001
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the NCBI database. Finally, 109 ACE2 protein sequences from 45 families were selected for

further evaluation to predict the potential risk host for SARS-CoV-2 infection (Table 3).

3.3 Processing of ACE2 receptor data

We classified 109 ACE2 receptor sequences by dividing them into two groups: the known vul-

nerable hosts group (29 species in 10 families) and the unknown susceptible hosts group (80

species in 35 families) (Tables 1 and 2). We screened 29 species of ACE2 receptor sequences

from 109 as known to be sensitive to SARS-CoV-2. The key regions of the ACE2 receptor

sequence in the human ACE2 receptor have been selected for further study (Table 4).

3.4 Screening of LCAP

The key regions of the ACE2 receptor sequence in the human ACE2 receptor was compared to

the known susceptible to SARS-CoV-2 (Table 4). As a result of the comparison, the 10 most

common amino acid sites—19, 28, 31, 35, 41, 45, 53, 68, 355 and 357—were identified and

used them to further screen the potential risk host for SARS-CoV-2 (Fig 2).

3.5 Analysis of potentially susceptible hosts

In this study, ACE sequences from 80 unknown species were compared to 10 LCAS, and their

similarity pattern was examined. The ACE2 receptor sequences of 49 species across25 families

were entirely similar to the 10 LCAS of known sensitive species, suggesting their potential sus-

ceptibility to SARS-CoV-2 (Table 5). Thirty-one species from 21 families were considered

non-potential susceptible hosts because they were not related to the 10 LCAS (Table 6). Poten-

tial susceptible hosts are primarily located in the orders Primates, Carnivora, Rodentia, and

Artiodactyla, indicating that closely related animals are more likely to be infected with the

novel coronavirus. It illustrates the evolutionary links between potentially susceptible risk

hosts (Fig 3).

4. Discussion

We performed a comparative analysis of the ACE2 receptor-specific protein sequences of 109

species. The important 10 key amino acid sites that were commonly located in known SARS-

CoV-2 susceptible species as reference standards for the analysis and used them to identify the

potential risk host. The results reveal that 49 species were potentially susceptible hosts, and 31

species were non-susceptible hosts. Most of the potential susceptible hosts are distributed in

the same order as the known susceptible hosts, indicating to some extent that closely related

species are more susceptible. Particularly, two target species (Manis pentadactyla and Manis

javanica), which appeared in the prediction results, have not been reported before. This indi-

cates that while focusing on closely related species, it is necessary to pay attention to other tar-

get species and protect animals on a larger scale. The rising number of wild and domestic

animals infected with SARS-CoV-2 challenges us to rethink outbreak control strategies in the

post-epidemic era and prepare for future emerging infectious diseases.

However, not all closely related species are potentially susceptible. The key amino acids at

position 41 of the ACE2 receptors in Capuchinidae, night monkeys, and marmosets differ

from those in humans. A large number of studies have confirmed that 41-position amino acid

mutations may break key hydrogen bonds, reducing the binding capacity of SARS-CoV-2 to

ACE2 [17, 51]; Bats are generally considered to be the main natural hosts of the new coronavi-

rus, but the 35 amino acids of Rhinolophus macrotis and Rhinolophus ferrumequinum of the

Rhinolophidae family are different from humans [35]. The mutations in E35K can reduce the
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Table 3. List of ACE2 receptor sequences species used for prediction.

Family Genus Species Sequences

Hominidae Homo Homo sapiens Q9BYF1

Pongo Pongo abelii H2PUZ5

Gorilla Gorilla gorilla G3QWX4

Pan Pan paniscus A0A2R9BKD8

Pan troglodytes A0A2J8KU96

Cercopithecidae Papio Papio anubis A0A096N4X9

Cercocebus Cercocebus atys A0A2K5KSD8

Macaca Macaca mulatta F7AH40

Macaca fascicularis A0A2K5X283

Macaca nemestrina A0A2K6D1N8

Mandrillus Mandrillus leucophaeus A0A2K5ZV99

Theropithecus Theropithecus gelada XP_025227847

Piliocolobus Piliocolobus tephrosceles A0A8C9GER2

Rhinopithecus Rhinopithecus roxellana A0A2K6NFG7

Chlorocebus Chlorocebus sabaeus A0A0D9RQZ0

Chlorocebus aethiops AAY57872

Colobus Colobus angolensis A0A2K5JE65

Felidae Felis Felis catus Q56H28

Neofelis Neofelis diardi A0A7G6KLV6

Lynx Lynx canadensis A0A667IF49

Lynx pardinus A0A485NF12

Panthera Panthera pardus A0A6P4TH77

Panthera leo A0A8C8Y6V3

Panthera uncia XP_049499444

Acinonyx Acinonyx jubatus A0A6J1YZV2

Puma Puma concolor A0A6P6IQM4

Puma yagouaroundi XP_040324138

Prionailurus Prionailurus viverrinus XP_047700804

Prionailurus bengalensis XP_043425608

Mustelidae Neovison Neovison vison A0A7T0Q2W2

Mustela Mustela pulourius Q2WG88

Mustela nigripes A0A7G6KLV4

Mustela erminea XP_032187677

Melogale Melogale moschata A0A7D5FYI0

Arctonyx Arctonyx collaris A0A7D5FU09

Enhydra Enhydra lutris A0A2Y9KLV0

Canidae Canis Canis lupus dingo A0A8C0JTU4

Nyctereutes Nyctereutes procyonoides B4XEP4

Vulpes Vulpes vulpes A0A3Q7RAT9

Chrysocyon Chrysocyon brachyurus A0A7G6KLV7

Speothos Speothos venaticus A0A7G6KLV5

(Continued)
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Table 3. (Continued)

Family Genus Species Sequences

Circetidae Peromyscus Peromyscus maniculatus A0A6I9KY05

Phodopus Phodopus sungorus A0A7T0LP11

Phodopus roborovskii A0A7T0PYW5

Mesocricetus Mesocricetus auratus A0A1U7QTA1

Cricetulus Cricetulus griseus XP_003503283

Microtus Microtus ochrogaster A0A8J6FZ33

Microtus oregoni XP_041495910

Arvicola Arvicola amphibius XP_038172229

Cebidae Cebus Cebus imitator A0A2K5PYM0

Saimiri Saimiri boliviensis A0A2K6SBD4

Sapajus Sapajus apella A0A6J3II99

Callithrix Callithrix jacchus F7CNJ6

Camelidae Lama Lama glama A0A8F0WA13

Camelus Camelus dromedarius A0A5N4C2M1

Camelus ferus XP_006194263

Camelus bactrianus XP_010966303

Equidae Equus Equus caballus F6V9L3

Equus przewalskii XP_008542995

Equus asinus A0A8C4KQS2

Equus quagga XP_046528602

Hylobatidae Nomascus Nomascus leucogenys G1RE79

Hylobates Hylobates moloch XP_032612508

Hyaenidae Crocuta Crocuta crocuta A0A6G1ARU3

Otariidae Callorhinus Callorhinus ursinus A0A3Q7N3M7

Eumetopias Eumetopias jubatus XP_027970822

Zalophus Zalophus californianus A0A6J2EID0

Manidae Manis Manis pentadactyla A0A7D5TP47

Manis javanica XP_017505746

Pteropodidae Rousettus Rousettus leschenaultia D8WU01

Rousettus aegyptiacus A0A7J8EHI0

Rhinolophidae Rhinolophus Rhinolophus macrotis E2DHI3

Rhinolophus ferrumequinum A0A671F9Q9

Ursidae Ailuropoda Ailuropoda melanoleuca A0A7N5K7A3

Bovidae Bos Bos taurus Q58DD0

Capra Capra hircus A0A452EVJ5

Monodontidae Monodon Monodon monoceros A0A8C6FDA8

Delphinapterus Delphinapterus leucas A0A2Y9M9H3

Tarsiidae Carlito Carlito syrichta A0A1U7TY97

Condylura Condylura cristata XP_012585871

Cervidae Odocoileus Odocoileus virginianus A0A6J0Z472

Chinchillidae Chinchilla Chinchilla lanigera A0A8C2UPB0

Dipodidae Jaculus Jaculus jaculus A0A8C5JWR5

Bathyergidae Heterocephalus Heterocephalus glaber A0A0N8EUX7

Fukomys Fukomys damarensis XP_010643477

Vombatidae Vombatus Vombatus ursinus A0A4X2M679

Tayassuidae Catagonus Catagonus wagneri A0A8C3WSW9

Orycteropodidae Orycteropus Orycteropus afer A0A8B7ASS9

(Continued)
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binding capacity of SARS-CoV-2. Jun Lan et. al. found that ACE2 of Rhinolophus ferrumequi-
num cannot mediate the entry of the new coronavirus [52]. It suggests that not all bats are sus-

ceptible to the new corona virus. Assessing the susceptibility of various bat species to the new

coronavirus is the first step in the traceability process for bats, which can significantly reduce

the challenges in tracing the new coronavirus. Paguma larvata, which showed inconsistency

on LCAS, was not entirely consistent in the predictions, but recent studies have shown that it

can be infected with the new coronavirus in vitro [18], which may be related to other factors

inherent in the animal. Therefore, further research and analysis is needed on whether civet

cats can be naturally infected and spread the new coronavirus.

In this study, a minimum number of key amino acid loci were selected based on the LCAS

of known susceptible hosts, which greatly reduces the complexity of the work and allows for

rapid and more accurate prediction of potentially susceptible hosts for the new coronavirus.

Genetic variations in the host receptor ACE2 may also contribute to susceptibility or resistance

against the viral infection, depending on how the variations in spike protein influence the

cross-species transmission of the virus. Studies have proved that after genetic mutations in

S19, K31, E35, Y41, K68, and D355, the binding capacity of the virus to the receptor decreases

[34, 35]. The predicted results are almost consistent with the results of other studies [26], indi-

cating the accuracy of the results. The predicted results are almost consistent with the results

of other studies [2], indicating the accuracy of the results. This method is simple and accurate,

which can provide ideas to predicting the potential susceptible hosts in the early stages of dis-

ease outbreaks. It supports protective preventive measures for potential hosts in advance to

control future outbreaks and reduce animal infections. The constant mutation of coronavirus

increases its ability to bind to the ACE2 receptor as well as resist the immune response [53].

For example, N501Y can form a new interaction with the ACE2 receptor Y41, and it is widely

Table 3. (Continued)

Family Genus Species Sequences

Viverridae Paguma Paguma larvata Q56NL1

Elephantidae Loxodonta Loxodonta africana G3T6Q2

Sciuridae Sciurus Sciurus vulgaris A0A8D2JNG0

Balaenopteridae Balaenoptera Balaenoptera musculus A0A8B8WGR5

Balaenoptera acutorostrata A0A452CBT6

Phocaenidae Phocoena Phocoena sinus A0A8C9CHJ8

Physeteridae Physeter Physeter catodon XP_023971279

Indriidae Propithecus Propithecus coquereli A0A2K6GHW5

Heteromyidae Dipodomys Dipodomys ordii A0A1S3GHT7

Leporidae Oryctolagus Oryctolagus cuniculus G1TEF4

Muridae Rattus Rattus norvegicus Q5EGZ1

Grammomys Grammomys surdaster XP_028617961

Lipotidae Lipotes Lipotes vexillifer A0A340Y3Y6

Phocidae Neomonachus Neomonachus schauinslandi A0A2Y9GEI9

Aotidae Aotus Aotus nancymaae A0A2K5DQ16

Spalacidae Nannospalax Nannospalax galili XP_008839098

Tenrecidae Echinops Echinops telfairi XP_004710002

Herpestidae Suricata Suricata suricatta A0A673UPR4

Rhinocerotidae Ceratotherium Ceratotherium simum XP_004435206

Lemuridae Prolemur Prolemur simus A0A8C8YW84

Delphinidae Tursiops Tursiops truncatus A0A2U4AJL3

https://doi.org/10.1371/journal.pone.0293441.t003
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Table 4. Analysis the similarity of LCAS in conserved loci of known susceptible hosts.

Family Species 19 20 24 27 28 30 31 34 35 37 38 41 42 45 53 68 79 82 83 90 322 325 330 353 354 355 357 393

Hominidae Homo
sapiens

S T Q T F D K H E E D Y Q L N K L M Y N N Q N K G D R R

Gorilla
gorilla gorilla

S T Q T F D K H E E D Y Q L N K L M Y N N Q N K G D R R

Felidae Panthera
pardus

S T L T F E K H E E E Y Q L N K L T Y N N Q N K G D R R

Panthera leo S T L T F E K H E E E Y Q L N K L T Y N N Q N K G D R R

Panthera
uncia

S T L T F E K H E E E Y Q L N K L T Y N N Q N K G D R R

Felis catus S T L T F E K H E E E Y Q L N K L T Y N N Q N K G D R R

Puma
concolor

S T L T F E K H E E E Y Q L N K L T Y N N Q N K G D R R

Prionailurus
viverrinus

S T L T F E K H E E E Y Q L N K L T Y N N Q N K G D R R

Lynx
canadensis

S T L T F E K H E E E Y Q L N K L T Y N N Q N K G D R R

Acinonyx
jubatus

S T L T F E K H E E E Y Q L N K L T Y N N Q K K G D R R

Cercopithecidae Chlorocebus
sabaeus

S T Q T F D K H E E D Y Q L N K L M Y N N Q N K G D R R

Chlorocebus
aethiops

S T Q T F D K H E E D Y Q L N K L M Y N N Q N K G D R R

Macaca
fascicularis

S T Q T F D K H E E D Y Q L N K L M Y N N Q N K G D R R

Macaca
mulatta

S T Q T F D K H E E D Y Q L N K L M Y N N Q N K G D R R

Canidae Vulpes vulpes S - L T F E K Y E E E Y Q L N K L T Y D N Q N K G D R R

Nyctereutes
procyonoides

S - L T F E K Y E E E Y Q L N K L T Y D N Q N R G D R R

Hyaenidae Crocuta
crocuta

S T L T F E K Y E Q E Y L L N K L T Y D N Q N K G D R K

Mustelidae Neovison
vison

S T L T F E K Y E E E Y Q L N K H T Y D N E N K H D R R

Mustela
putorius furo

S T L T F E K Y E E E Y Q L N K H T Y D N E N K R D R R

Mustela
erminea

S T L T F E K Y E E E Y Q L N K H T Y D N E N K R D R R

Cervidae Odocoileus
virginianus

S T Q T F E K H E E D Y Q L N K M T Y N H Q N K G D R R

Circetidae Cricetulus
griseus

S I Q T F D K Q E E D Y Q L N K L N Y N H Q N K G D R R

Phodopus
roborovskii

S I Q S F D K Q E E D Y Q L N K L N Y N H K N K E D R R

Mesocricetus
auratus

S I Q T F D K Q E E D Y Q L N K L N Y N Y Q N K G D R R

Phodopus
sungorus

S I Q T F D K Q E E D Y Q L N K L N Y N H K N K E D R R

Peromyscus
maniculatus

S I Q I F D K Q E E D Y Q L N K L N Y N H Q N K G D R R

Bovidae Bos taurus S T Q T F E K H E E D Y Q L N K M T Y N Y Q N K G D R R

Capra hircus S T Q T F E K H E E D Y Q L N K M T Y N Y Q N K G D R R

Leporidae Oryctolagus
cuniculus

S T L T F E K Q E E D Y Q L N K L T Y N S Q N K G D R R

https://doi.org/10.1371/journal.pone.0293441.t004
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present in mutants [54]. Especially the mutated Omicron strain S residue Y501 stacking inter-

action with the T-shaped π–π of Y41 in the ACE2 residue. The Q493R and Q498R mutations

introduce two new salt bridges, such as E35 and E38, respectively replacing hydrogen bond

formation and remodeling the electrostatic interactions with the ACE2 receptor of Wuhan-

Hu-1 RBD. S477N leads to the formation of new hydrogen bonds between the asparagine side

chain and the ACE2 S19 backbone amine and carbonyl groups [53, 55, 56]. These interactions

illustrate that key amino acid sites on the ACE2 receptor are important for viral binding. we

only considered key amino acid sites of virus-receptor interactions to predict susceptibility.

However, the viral entry into host cells and replication were influenced by many other factors,

such as cathepsin TMPRSS2 or CTSL1, and ADAM-17 [57]. Therefore, key amino acid sites

alone are not sufficient.

5. Conclusions

In summary, we used a simple and accurate method to provide valuable insights into potential

hosts at the early stages of disease outbreaks. We predicted 49 species as potentially susceptible

hosts and 31 species as non-susceptible hosts. Notably, Manis pentadactyla and Manis javanica

species were predicted, emphasizing the importance of considering a broader range of species

in outbreak control. The research underscores the significance of genetic variations in the

ACE2 receptor and how they influence susceptibility or resistance to viral infection. This infor-

mation supports proactive preventive measures for potential hosts, aiding in outbreak control

and reducing the risk of animal infections. However, it is crucial to acknowledge the study’s

limitations and emphasize the ongoing need for research and validation to enhance our com-

prehension of cross-species transmission and preparedness for emerging infectious diseases.

The prediction of SARS-CoV-2 infection risk species through key amino acid sites alone are

not sufficient. Therefore, a comprehensive approach involving surveillance, laboratory valida-

tion, and clinical observation is essential to confirm the predicted potential susceptibility of

Fig 2. The key structural domains in ACE2 from known SARS-CoV-2 susceptible species.

https://doi.org/10.1371/journal.pone.0293441.g002
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Table 5. LCAS of potentially susceptible hosts.

Order Family Species 19 28 31 35 41 45 53 68 355 357

Primates Hominidae Pongo abelii S F K E Y L N K D R

Pan troglodytes S F K E Y L N K D R

Pan paniscus S F K E Y L N K D R

Cercopithecidae Papio anubis S F K E Y L N K D R

Cercocebus atys S F K E Y L N K D R

Macaca nemestrina S F K E Y L N K D R

Rhinopithecus roxellana S F K E Y L N K D R

Piliocolobus tephrosceles S F K E Y L N K D R

Mandrillus leucophaeus S F K E Y L N K D R

Theropithecus gelada S F K E Y L N K D R

Colobus angolensis palliatus S F K E Y L N K D R

Hylobatidae Nomascus leucogenys S F K E Y L N K D R

Hylobates moloch S F K E Y L N K D R

Lemuridae Prolemur simus S F K E Y L N K D R

Indriidae Propithecus coquereli S F K E Y L N K D R

Carnivora Felidae Lynx pardinus S F K E Y L N K D R

Puma yagouaroundi S F K E Y L N K D R

Prionailurus bengalensis S F K E Y L N K D R

Neofelis diardi S F K E Y L N K D R

Ursidae Ailuropoda melanoleuca S F K E Y L N K D R

Canidae Canis lupus dingo S F K E Y L N K D R

Speothos venaticus S F K E Y L N K D R

Chrysocyon brachyurus S F K E Y L N K D R

Mustelidae Mustela nigripes S F K E Y L N K D R

Melogale moschata S F K E Y L N K D R

Arctonyx collaris S F K E Y L N K D R

Enhydra lutris kenyoni S F K E Y L N K D R

Otariidae Eumetopias jubatus S F K E Y L N K D R

Zalophus californianus S F K E Y L N K D R

Phocidae Neomonachus schauinslandi S F K E Y L N K D R

Rodentia Cricetidae Microtus oregoni S F K E Y L N K D R

Microtus ochrogaster S F K E Y L N K D R

Arvicola amphibius S F K E Y L N K D R

Heteromyidae Dipodomys ordii S F K E Y L N K D R

Sciuridae Sciurus vulgaris S F K E Y L N K D R

Muridae Grammomys surdaster S F K E Y L N K D R

Dipodidae Jaculus jaculus S F K E Y L N K D R

Artiodactyla Lipotidae Lipotes vexillifer S F K E Y L N K D R

Phocoenidae Phocoena sinus S F K E Y L N K D R

Balaenopteridae Balaenoptera musculus S F K E Y L N K D R

Balaenoptera acutorostrata S F K E Y L N K D R

Delphinidae Tursiops truncatus S F K E Y L N K D R

Physeteridae Physeter catodon S F K E Y L N K D R

Camelidae Camelus bactrianus S F K E Y L N K D R

Tayassuidae Catagonus wagneri S F K E Y L N K D R

Monodontidae Monodon monoceros S F K E Y L N K D R

Delphinapterus leucas S F K E Y L N K D R

Pholidota Manidae Manis pentadactyla S F K E Y L N K D R

Manis javanica S F K E Y L N K D R

https://doi.org/10.1371/journal.pone.0293441.t005
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Table 6. LCAS of potentially unsusceptible hosts.

Oder Family Species 19 28 31 35 41 45 53 68 355 357

Primates Cebidae Saimiri boliviensis S F K E H L N K D R

Sapajus apella S F K E H L N K D R

Cebus imitator S F K E H L N K D R

Tarsiidae Carlito syrichta S F K E H L N I D R

Condylura cristata S F T E Y L N M D R

Aotidae Aotus nancymaae S F K E H L N K D R

Cebidae Callithrix jacchus S F K E H L N K D R

Chiroptera Pteropodidae Rousettus leschenaultii S F K E Y L N T D R

Rousettus aegyptiacus S F K E Y L N T D R

Rhinolophidae Rhinolophus ferrumequinum S F K K Y L N K D R

Rhinolophus macrotis S F K K Y L N K D R

Rodentia Muridae Rattus norvegicus S F N E Y L N K D R

Chinchillidae Chinchilla lanigera L F K E Y L N L D R

Bathyergidae Heterocephalus glaber S F N E Y L N I D R

Spalacidae Nannospalax galili L F K E Y L N I D R

Bathyergidae Fukomys damarensis S F T E Y L N K D R

Artiodactyla Camelidae Lama glama S F E E Y L N K D R

Camelus dromedarius S F E E Y L N K D R

Camelus ferus S F E E Y L N K D R

Equidae Equus Equus przewalskii S F K E H L N R D R

Equus quagga S F K E H L N R D R

Equus asinus S F K E H L N R D R

Equus caballus S F K E H L N R D R

Carnivora Viverridae Paguma larvata S F T E Y V N K D R

Herpestidae Suricata suricatta S F Q E Y V N K D R

Otariidae Callorhinus ursinus S F K E Y F N K D R

Tenrecs Tenrecidae Echinops telfairi S F E E Y L N K D R

Proboscidea Elephantidae Loxodonta africana S F T E Y L N R D R

Tubulidentata Orycteropodidae Orycteropus afer A F K E Y L N R D R

Diprotodontia Vombatidae Vombatus ursinus F F T E Y L N R D R

Perissodactyla Rhinocerotidae Ceratotherium simum S F K E Y L N R D R

https://doi.org/10.1371/journal.pone.0293441.t006

Fig 3. (a) The MEGA11 module calculates the IQ-TREE optimal model to build a phylogenetic tree. iTOL shows the

percentage of the total number of species in the outer circle by order, including proportion, and the number of species

in the inner circle by family. (b) Shows the number of species in each order in a two-dimensional bar chart. (c)

Percentage of animal species in the classification orders potential risk for COVID 19.

https://doi.org/10.1371/journal.pone.0293441.g003
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animals to SARS-CoV-2 infection, crucial steps for controlling future outbreaks and contribut-

ing to a more nuanced understanding of cross-species transmission dynamics.
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