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Abstract

Objective

To describe a study protocol for investigating the functional association between posture,

spinal balance, ambulatory biomechanics, paraspinal muscle fatigue, paraspinal muscle

quality and symptoms in patients with symptomatic lumbar spinal stenosis (sLSS) before

and 1-year after elective surgical intervention.

Design

Single-centre prospective, experimental, multimodal (clinical, biomechanical, radiological)

study with three instances of data collection: baseline (study visit 1), 6-month follow-up

(remote) and 1-year follow-up (study visit 2). Both study visits include an in vivo experiment

aiming to elicit paraspinal muscle fatigue for postural assessment in a non-fatigued and

fatigued state.

Experimental protocol

At baseline and 1-year follow-up, 122 patients with sLSS will be assessed clinically, perform

the back-performance scale assessment and complete several patient-reported outcome

measure (PROMs) questionnaires regarding overall health, disease-related symptoms and

kinesiophobia. Posture and biomechanical parameters (joint kinematics, kinetics, surface
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electromyography, back curvature) will be recorded using an optoelectronic system and ret-

roreflective markers during different tasks including overground walking and movement

assessments before and after a modified Biering-Sørensen test, used to elicit paraspinal

muscle fatigue. Measurements of muscle size and quality and the severity of spinal stenosis

will be obtained using magnetic resonance imaging (MRI) and sagittal postural alignment

data from EOS radiographies. After each study visit, physical activity level will be assessed

during 9 days using a wrist-worn activity monitor. In addition, physical activity level and

PROMs will be assessed remotely at 6-month follow-up.

Conclusion

The multimodal set of data obtained using the study protocol described in this paper will

help to expand our current knowledge on the pathophysiology, biomechanics, and treatment

outcome of degenerative sLSS. The results of this study may contribute to defining and/or

altering patient treatment norms, surgery indication criteria and post-surgery rehabilitation

schedules.

Trial registration

The protocol was approved by the regional ethics committee and has been registered at

clinicaltrials.gov (NCT05523388).

Introduction

Spinal claudication due to lumbar spinal stenosis (LSS) is a clinical syndrome of the ageing

human spine. LSS is characterized by age-related degeneration of the lumbar discs [1], facet

joints (FJs) [2], and hypertrophy of the ligamentum flavum [3,4], leading to pain [5], limited

function [6], and compromised quality of life [7]. Symptomatic LSS (sLSS) is an often severely

disabling condition [8], the most common reason for spinal surgery in patients over 65 years

of age [9,10], and represents a major financial burden to the health care system and society

[11]. SLSS has been associated with disability [12], atrophy and fatty infiltration of paraspinal

muscles [13], decreased physical activity [14], walking capacity [12,15], altered gait patterns

and postural balance [15–19], as well as changes in sagittal balance of the spine [20]. However,

the natural course and the pathophysiological processes of sLSS are not fully understood.

The overall function of the spine is determined by the interrelationship between the pelvis,

the sacrum and the local curvatures of the lumbar, thoracic and cervical spine [21]. In a healthy

spine, the local curvatures result in a state of physiological alignment that requires minimal

muscle activity to maintain upright stance [22]. The resulting state is referred to as global spi-

nal balance [23]. In this state, global and local loads on the spine have minimal effects on the

diameter of the spinal canal during static posture and dynamic motion. However, global spinal

balance in patients with sLSS may be compromised due to the narrowing in the spinal canal

[20]. To evade typical pain symptoms caused by the narrowing, it is believed that patients

adopt a compensated posture, typically decreasing the lumbar lordosis in an attempt to open

the spinal canal.

Clinical observations have shown that the presence and intensity of symptoms depend on

the body’s posture (e.g., exacerbated when standing, relieved when sitting or lying) or activity

(e.g., exacerbated when walking, relieved when bending forward) [24]. These observations sug-

gest an influence on function and the importance of a physiological alignment of the spine.
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Hence, understanding the relationship between spinal kinematics and functional disability is

one of the key factors to understand the natural course of this disease. Although these observa-

tions clearly demonstrate that spinal motion plays a critical role in clinical presentation of LSS,

to date dynamic in vivo spinal kinematics during activities of daily living in patients with sLSS

are largely unknown. Based on clinical observations and our previous work [25–29], the fol-

lowing research questions were raised and will be answered in this project:

• Are patient reported outcome measures (PROMs) related to severity of stenosis, spinal align-

ment, segmental instability, muscle degeneration, dynamic compensation, muscle fatigue

and spinal posture and motion?

• Do radiologically described changes in muscle quality correlate with fatigue exercise dura-

tion and paraspinal muscle fatigue during the modified Biering-Sørensen test?

• Does paraspinal muscle fatigue affect posture and gait biomechanics in patients with sLSS?

• Do PROMs, spinal alignment, muscle degeneration, dynamic compensation, muscle fatigue,

physical activity level, and spinal posture and motion improve after spinal stenosis surgery?

• Do pre- to postoperative changes in PROMs correlate with pre- to postoperative changes in

spinal alignment, muscle degeneration, dynamic compensation, muscle fatigue, physical

activity level, and spinal posture and motion?

This study primarily investigates the association between postural and ambulatory biome-

chanics and symptoms in patients with sLSS. In the in vivo experiment, we will use motion

analysis and electromyography (EMG) to study the functional association between paraspinal

muscle fatigue, posture, and gait. Moreover, we seek to explore the effect of sLSS on paraspinal

muscle quality using magnetic resonance imaging (MRI) and the effect of sLSS on sagittal spi-

nal balance using EOS radiography. Finally, the effect of routine surgical intervention on

parameters collected pre-and postoperatively will be evaluated. We will address the following

specific aims:

Specific Aim 1

Establish the relationship between PROMs, spinal alignment and imbalance, dynamic compensa-
tion, severity of stenosis, segmental instability, muscle degeneration and fatigue, and biomechani-
cal parameters in patients with sLSS.

Hypothesis 1.1: PROMs correlate with the extent of dynamic compensation (difference

between static and dynamic spinal alignment) in patients with sLSS.

Hypothesis 1.2: PROMs correlate more strongly with quantitative functional parameters

including muscle fatigue and biomechanical parameters or lumbopelvic range of motion

during forward trunk bending and during walking than with pathomorphological parame-

ters including severity of stenosis, segmental instability, and muscle degeneration.

Hypothesis 1.3: Greater muscle fatigue in patients with sLSS is associated with a greater

dynamic compensation.

A relation between PROMs, spinal alignment and spinal imbalance, muscle degeneration,

dynamic compensation, muscle fatigue, severity of stenosis, and biomechanical parameters is

the basic implicit assumption about the clinical relevance of these factors. This will be checked

by correlating PROMs with clinical parameters including spinal imbalance, severity of steno-

sis, and muscle degeneration and with quantitative functional parameters including dynamic

compensation, muscle fatigue and biomechanical parameters and extent of forward trunk
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bending and lumbopelvic range of motion during walking. In addition, the role of segmental

instability and dynamic compensation will be depicted resulting potentially in a further

subcategorization of patient groups. While the EOS images will allow the study of the anatomi-

cal spinopelvic balance during stance, the motion capture technique will allow the assessment

of both static posture during stance and dynamic posture and spinal balance during gait. The

difference between the static and the dynamic spinal balance may reveal potential compensa-

tion effects during gait, called dynamic compensation. The compensation effects can be further

corroborated by establishing a positive association between PROMs, muscle fatigue and

degeneration, spinal alignment and extent of forward trunk bending and lumbopelvic range of

motion during walking when adjusted for segmental instability. The magnitude of biological

variation can give a hint to the uniformity of compensation effects across patients also consid-

ering potential spinal alignment because of degenerative changes. These analyses may also

imply a reassessment of the results of Hypothesis 1.2, which ignores potential compensation

effects.

Specific Aim 2

Assess PROMs, severity of stenosis, spinal alignment and imbalance, muscle degeneration,
dynamic compensation, muscle fatigue, physical activity level and biomechanical parameters in
patients with sLSS 12 months after spinal stenosis surgery.

Hypothesis 2.1: At follow-up, patients with sLSS will have improved PROMs, less static and

dynamic spinal imbalance and muscle fatigue, and less forward trunk bending and larger

lumbopelvic range of motion during walking than before spinal stenosis surgery.

Hypothesis 2.2: Pre- to postoperative changes in PROMs correlate with pre- to postoperative

changes in static and dynamic spinal imbalance, muscle fatigue and extent of forward trunk

bending and lumbopelvic range of motion during walking in patients undergoing spinal

stenosis surgery.

A relation between postoperative changes in PROMs and changes in spinal alignment, mus-

cle fatigue and degeneration and biomechanical parameters would prove the assumption that

surgery affects parameters that determine patient reported outcome. This is checked by corre-

lating changes in PROMs with changes in spinal alignment, muscle fatigue and biomechanical

parameters.

Materials and methods

Study design

This study is designed as a single-centre, longitudinal observational study. For each patient,

multimodal data including clinical, functional, radiological, and biomechanical data will be

collected before and after routine surgical intervention.

Participants

We plan to enrol 122 patients with sLSS (61 per year) in this study. Patients will be recruited at

the Department of Spine Surgery of the University Hospital Basel. Recruitment and data col-

lection commenced on the 15th of August 2022 and will continue until the recruitment target

is met. Baseline data collection is expected to be completed in August 2024, while follow-up

measurements are expected to be completed by the end of 2025.

The surgical procedure will not be influenced by the study and is not subject of investiga-

tion. All patients will receive–depending on clinical and imaging diagnosis–lumbar
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decompression alone or decompression in combination with fusion. Fusion will be achieved

either by posterolateral fusion with a pedicle screw-rod system with autologous bone apposi-

tion only or by additional implantation of transforaminal lumbar interbody fusion with a cage

filled with autologous bone implanted from posterolateral into the intervertebral space.

Decompression will be performed either as open surgery or microsurgically, and both are per-

formed through a midline approach. Open surgical decompression will be performed through

an interspinous approach with interlaminar flavectomy, while the microsurgical technique

involves unilateral or bilateral fenestration and flavectomy.

Inclusion and exclusion criteria

Inclusion and exclusion criteria are listed in Table 1.

Ethical considerations

The experimental protocol was approved (9th August 2022) by the regional ethics board (Eth-

ics Committee Northwest and Central Switzerland, EKNZ 2022–01170) and registered at clini-

caltrials.gov (NCT05523388). Study participation will be voluntary and written informed

consent will be obtained from all participants prior to participation. Assessing the proposed

study parameters in addition to standard clinical measures will provide additional insight into

the functional limitations and the clinical course of the sLSS in our patients. This study

involves a considerable time commitment for participants. However, the results of the study

assessments will inform ongoing treatment planning, so this time investment may be out-

weighed by the benefits not only to future patients but also to study participants.

Experimental protocol

Procedures

Data will be collected at three instances: at baseline (on-site study visit 1), at 6-month follow-

up (remote data collection), and at 1-year follow-up (on-site study visit 2) (Fig 1). The same

procedures will be performed during both on-site study visits (Fig 2). During both study visits,

a comprehensive set of clinical, functional, biomechanical and radiological data will be col-

lected. At 6-month follow-up, only PROMs and physical activity data will be collected.

At the beginning of study visit 1, patients will sign the informed consent form. Thereafter,

participants will be asked to complete several PROMs questionnaires, including the Oswestry

Table 1. Inclusion and exclusion criteria applied in this study.

Inclusion criteria Exclusion criteria

• Age > 30 years

• BMI < 35 kg/m2

• Diagnosed sLSS

• Clinical symptoms for at least 6 months

• Intermittent neurogenic claudication with limitations of their walking ability

due to symptoms in the lower back and/or in one or both legs

• Unsuccessful conservative treatment

• Confirmation of the LSS through MRI

• Scheduled for surgery

• Inability to provide informed

consent

• Previous spine surgery

• Use of walking aids

• Other neurologic disorders

affecting gait

• MRI incompatibility

• Pregnancy

BMI–Body mass index; sLSS–symptomatic lumbar spinal stenosis; MRI–magnetic resonance imaging.

https://doi.org/10.1371/journal.pone.0293435.t001
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Disability Index (ODI) [30,31], EQ-5D-5L [32], Swiss Spinal Stenosis Questionnaire [33],

Tampa scale of Kinesiophobia [34–36] and Spine Tango COMI [37].

In a next step, radiological data (MRI and EOS) will be collected. MRI of the lumbar and

abdomen regions will be performed with patients lying supine with extended legs. Upright

standing biplanar (sagittal and frontal) EOS images of the full body including the entire spine,

pelvis, and lower extremity will be acquired. Ahead of the radiography, 15 radiopaque refer-

ence markers are placed on anatomical landmarks. For the duration of the radiography,

patients will be asked to assume a specific position, which entails the elevation of the elbows to

around 90˚. Patients are asked to clench their fists and hold their hands to the sides of their

cheeks. The position described ensures that the upper limbs do not obscure the spine during

the radiography. This posture, called “EOS posture” will be referenced using a custom-made

pose frame. After the radiography, the 3D back surface will be scanned using ArtecEva with

the radiopaque reference markers still attached. For this purpose, patients will be brought back

into the EOS position using the pose frame. After the scan, the reference markers will be

removed and the patients prepared for the functional biomechanical analysis.

Preparations include a clinical assessment of active and passive range of motion of ankle,

knee, and hip joints. Key muscles will be neurologically examined according to Janda [38,39],

Fig 1. Schedule of enrolment and assessments.

https://doi.org/10.1371/journal.pone.0293435.g001
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and patients will be asked to perform a single-leg stance to test for Trendelenburg signs. Next,

patients will undergo a motion assessment using the Back Performance Scale [40,41]. Reflec-

tive skin markers will be placed on previously defined anatomical landmarks (Fig 3), and sur-

face electrodes for EMG will be placed on selected muscles. During the subsequent

biomechanical assessment, participants will complete posture, movement, and overground

gait assessments in a non-fatigued and in a fatigued state.

For the measurement of the static spinal alignment, participants will be instructed to stand in

a natural upright posture with feet hip-width apart, arms hanging relaxed at their sides. In a next

step, patients complete five different motion assessments. For the forward flexion assessment,

patients will be instructed to stand in a natural upright posture with feet hip-width apart, arms

hanging relaxed at the sides, and slowly bend forward at a self-selected speed until the end of the

range of motion is achieved, then return to the upright position with knees extended throughout

the task. For the pick-up assessment, patients will be asked to grasp and lift a lightweight object

(empty box) from the floor. For the trunk torsion assessment, patients will be asked to hold the

same object and slightly rotate their body from side to side with arms extended, without moving

their feet. Next, data will be captured in a sequence in which the patient will be asked to sit

down on a chair, relax for a few seconds, and stand up again. The final movement assessment is

called lateral bending, in which the patient will stand in an upright position and will be

instructed to bend laterally, while reaching for the knee. For the overground gait analysis,

patients will walk back and forth on a walkway at their preferred walking speed.

Paraspinal muscle fatigue will be induced with a modified Biering-Sørensen test [42]. A

modified version of the test will be used as we deemed the horizontal trunk position (trunk in

Fig 2. Study flow chart.

https://doi.org/10.1371/journal.pone.0293435.g002
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line with pelvis and legs) of the standard Biering-Sørensen test to be too demanding for

patients with sLSS. We will therefore use a Roman chair (45˚ inclination, trunk in line with

pelvis and legs) in our modified version (Fig 4; approximately 70% demand of standard hori-

zontal position; torquelumbopelvic,modified = cos(45˚)* torquelumbopelvic,original [43]). The test will

be only performed within tolerable pain levels and until the participant decides to support the

torso with hands and arms. The duration of the fatigue exercise from start to termination will

be measured. To observe the effects of paraspinal muscle fatigue on posture, movement, and

gait, the assessments will be repeated immediately after the modified Biering-Sørensen test.

Finally, at the end of study visits 1 and 2, participants will be given activity monitors to wear

on their wrist for 9 consecutive days.

For the 6-month follow-up, activity monitors will be mailed to participants. Participants

will be asked to wear the activity monitor for 9 days and to complete the same digital

PROMs.

Fig 3. Placement of retroreflective marker and electromyography electrodes for the biomechanical assessment. Anterior (left), lateral

(middle) and posterior (right) view.

https://doi.org/10.1371/journal.pone.0293435.g003
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Outcome assessment

3D joint kinematics & kinetics. Marker data will be recorded at 120 Hz using a 3-dimen-

sional motion capture system with 10 infrared cameras (Vicon Vero 2.2, Vicon Motion Sys-

tems Ltd, Oxford, UK). The set of reflective markers consists of 71 skin markers, including a

full-body marker set (53 markers) based on the conventional gait model (CGM) 2.3 [44,45],

enhanced by a detailed trunk/spine marker set with 19 markers applied over the spinous pro-

cesses of the following vertebrae: C7, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, L1, L2,

L3, L4, L5 and S1 (Fig 3). Ground reaction force (GRF) data will be recorded using two force

plates (Kistler force plate 9260AA6, Kistler AG, Winterthur; sampling rate 2400 Hz) embedded

in the walkway. Marker and force plate data will be recorded during a static posture assess-

ment, selected movement assessments, and overground walking. Spatio-temporal gait parame-

ters will be computed from the marker and force plate data. Joint kinematic and kinetic

trajectories will be computed using pyCGM2.3 [44,45], normalized to gait cycle, and peak val-

ues and ranges will be computed for each setting, leg, and participant.

Electromyographic data. EMG data will be collected during all static and movement tri-

als using a 16-channel EMG system (myon AG, Schwarzenberg, Switzerland, sampling rate

2400 Hz). EMG surface electrodes will be placed bilaterally on the erector spinae (longissimus),

Fig 4. Setup for the modified Biering-Sørensen test.

https://doi.org/10.1371/journal.pone.0293435.g004
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erector spinae (iliocostalis), multifidus, gluteus medius, vastus medialis, tibialis anterior and

gastrocnemius medialis muscles following the guidelines of the SENIAM project (Surface Elec-

troMyoGraphy for the Non-Invasive Assessment of Muscles) [46].

Patient reported outcome measures. Disability related to sLSS will be assessed with the

ODI, Swiss Spinal Stenosis questionnaire and Spine Tango Core Outcome Measures Index for

the back (COMI-back). Both the ODI and the Swiss Spinal Stenosis questionnaire are appro-

priate outcome measures for the treatment of sLSS [47]. The ODI is a self-administered ques-

tionnaire consisting of ten items that quantify a patient’s perceived level of functional

disability and is considered the gold standard of low back functional outcome tools [31]. In

this study, the validated German version of the ODI [30] will be used. The Swiss Spinal Steno-

sis Questionnaire assesses the intensity of symptoms, physical function, and patient satisfac-

tion following treatment [33]. Spine Tango is the international spine registry for quality

control and analysis of outcomes of surgical and non-surgical procedures. The COMI-back is

the preferred instrument used in the international spine registry Spine Tango of the European

Spine Society. It is a short instrument designed to measure the multidimensional effects of

back disorders by evaluating the key patient outcomes (pain, function, symptom-specific well-

being, quality of life, disability) [37]. Quality of life and overall health will be assessed with the

EQ-5D-5L [32]. It includes five questions/dimensions (mobility, self-care, usual activities,

pain, depression) with Likert scales and a visual analogue scale asking patients to rate their

general health status from 0 (worst imaginable health status) to 100 (best imaginable health sta-

tus). The final EQ index is a number between 0 and 1, with 0 indicating the worst possible

health status and 1 indicating the best possible health status. Kinesiophobia will be assessed

using the Tampa scale of Kinesiophobia [34–36], a 17-item self-report questionnaire based on

ratings of fear of exercise, fear of physical activity, and fear avoidance. It consists of two sub-

scales. While activity avoidance focuses on reflection of activities that may increase pain or

cause injury, somatic focus examines reflection of beliefs and underlying serious conditions.

Spinopelvic and sagittal spinal balance assessed using EOS. Radiological spinopelvic

and sagittal spinal balance parameters will be obtained using the EOS system (EOS imaging

Inc, Cambridge, Massachusetts, USA). The parameters will be calculated semi-automatically

using the sterEOS software. Trained radiology technicians follow a workflow in which anatom-

ical landmarks, such as the upper endplate of a particular vertebra, are marked. Once all

required landmarks are marked, the established pelvic and sagittal spinal balance parameters

are calculated automatically by the sterEOS software: pelvic tilt (PT), pelvic incidence (PI),

sacral slope (SS), pelvic obliquity, pelvic rotation, sagittal vertical axis (SVA), spino-sacral

angle (SSA), lumbar lordosis (LL) and thoracic kyphosis (TK) (Fig 5) [48]. LL is calculated as

the angle between the tangents at the superior L1 and inferior L5 vertebral endplates. Similarly,

TK is calculated as the angle between the tangents at the superior T4 and inferior T12 vertebral

endplates. SVA is measured as the horizontal distance between the C7 plumb line and the pos-

terior-superior corner of the S1 vertebra. SSA is defined as the angle between the line connect-

ing the centre of the C7 vertebra and the centre of the S1 endplate and the line parallel to the

superior S1 endplate. As a quality control measure, all images will be double rated. If two rat-

ings differ by more than 5˚, a third radiological technician will rate the images. The final report

used for analysis is sent to the patient archive system of the University Hospital Basel.

Sagittal spinal balance assessed using motion capture. The curvature of the lumbar and

thoracic spine during standing and walking will be computed from the marker data using

MATLAB™ (R2022b, The Mathworks Inc., Massachusetts, USA). A cubic polynomial function

will be fitted to the marker positions in each time frame to approximate an S-shaped spinal

curvature with TK and LL curves [49]. The method for calculating sagittal spinal balance

parameters from marker data is based on the calculation methods for radiological sagittal
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spinal balance parameters and was established and tested in a previous pilot study (EKNZ

Project ID 2021–02012) [50,51]. The set of marker-based sagittal spinal balance parameters

includes LL, TK, sagittal vertical axis (SVA), spino-sacral angle (SSA), and spine inclination

(SI) (Fig 6).

Dynamic compensation. Dynamic compensation is defined as the difference between

static sagittal spinal alignment during stance and dynamic sagittal spinal alignment during a

predefined gait event. Dynamic sagittal spinal balance can be defined as sagittal spinal balance

Fig 5. Example of an EOS radiography (left: frontal plane; right: sagittal plane) with measures provided by the

sterEOS software.

https://doi.org/10.1371/journal.pone.0293435.g005
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during left/right midstance, left/right heel-strike and/or left/right toe-off. Depending on the

research question, we will adapt the workflow and use the most appropriate gait event to calcu-

late dynamic sagittal spinal balance.

Sagittal spinal alignment assessed using the optically captured 3D back surface (Artec

EVA). Artec EVA is a CE-approved optical device used in many human studies for digital

reconstruction of surface topography (Artec Europe S.à r.L, Luxembourg, Luxembourg). The

device provides a fast, touch- and radiation free technique for scanning the surface of the

body. The scanner creates a 3D CAD surface model which can be evaluated directly on a com-

puter screen and requires no additional preparation of the patient (Fig 7). Topography analysis

of the surface can reveal asymmetries of the back shape and underlying structures, but also

allows calculation of various external postural parameters such as sagittal spinal balance and

trunk inclination, as well as kyphotic, lordotic and cervical angles of the back. Recent advances

in the study of spinal deformities with noninvasive technologies showed a promising result for

mild to moderate cases in patients with adolescent idiopathic scoliosis [52]. The use of such

technology in this study may lead to important conclusions about the status of the external

shape and postures of patients with sLSS, comparable to standard EOS images. To achieve a

better match between the digital surface and the corresponding radiographs, a pose frame (alu-

minum structure) will be used to reference the posture (elbows) of the subject in both optical

and radiological acquisition. The optical surface models will be evaluated together with the

EOS images at the ETH Zurich.

Muscle fatigue. Muscle fatigue will be quantified using two parameters. First, the duration

of the modified Biering-Sørensen test will be measured with a stopwatch. Time will be stopped

from the time the patients start the exercise by no longer supporting the torso with their hands

until the termination of the exercise by supporting the torso. Second, muscle fatigue will be

assessed as the decrease in median EMG frequency over the duration of the Biering-Sørensen

test [53,54].

MRI outcome parameters. MRI images will be obtained using a 0.55 T MAGNETOM

Free.max MRI scanner (Siemens Healthcare, Erlangen, Germany). Our MRI protocol will

Fig 6. Marker positions (sagittal plane) and calculation of sagittal spinal balance parameters [49] SVA–sagittal

vertical axis; LL–lumbar lordosis; TK–thoracal kyphosis; SSA–spino-sacral angle.

https://doi.org/10.1371/journal.pone.0293435.g006
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include the following sequences, set up according to conventional clinical protocols: T1, T2

TSE sagittal, T2 TSE transversal, T2 STIR coronal; VIBE 2-point Dixon transversal. To assess

paraspinal and abdominal muscle degeneration, we will quantify muscle atrophy and fatty

infiltration. The primary sequence acquired for fat/water quantification will be the VIBE

Dixon sequence. For L1 to L5, we will measure the cross-sectional area (CSA) of the abdominal

and paraspinal muscles on each side, including the multifidus, erector spinae (longissimus and

iliocostalis) and transversus abdominis muscles, and the CSA of the vertebral body. The rela-

tive CSA (rCSA) will be calculated as the ratio between the CSA of the muscles and the CSA of

the vertebral body and is calculated for each level and side. The CSA of the lean muscle in the

region of interest will be defined as LeanCSA and measured on each side. The ratio of

LeanCSA to paraspinal muscle CSA will be defined as functional CSA (LeanCSA/CSA), pre-

sented as % muscle CSA, and calculated for each level and side. Total CSA, rCSA and LeanCSA

will be computed as average CSA (aCSA), average rCSA (arCSA) and average LeanCSA

(aLeanCSA) across all levels considering the muscle as a single unit for each side [55]. The

severity of stenosis will be classified according to Schizas [56]. Segmental instability will be

determined as the relative displacement in anteroposterior position of two adjacent segments

between the upright standing radiograph and the supine MRI of more than 3 mm [57].

Manual testing for muscle strength. Selected muscles of the legs will be assessed accord-

ing to Janda’s M5/5 strength levels [38,39]. In a seated position: hip flexion / iliopsoas (L2),

knee extension / quadriceps femoris (L3). In the supine position: foot extension (lift up) / tibia-

lis anterior (L4), lifting the big toe / extensor hallucis longus (L5), foot extension (press down)

Fig 7. 3D optical digitalization with Artec EVA, https://www.artec3d.com, process (left), software output (right).

https://doi.org/10.1371/journal.pone.0293435.g007
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/ gastrocnemius (S1). To test for Trendelenburg signs [58], the patient will be asked to stand

on one leg. If the pelvis drops to the contralateral side, the test is positive and indicates weak-

ness of the gluteus medius muscle, which is primarily innervated by the L5 nerve root.

Physical activity level. Physical activity level will be assessed using an activity monitor

(GENEActiv Original, Activinsights, Kimbolton, United Kingdom; sampling rate 50 Hz,

dimensions 0.043 x 0.040 x 0.013 m) worn on the non-dominant wrist for 9 days at three occa-

sions: (9 days after first study visit 1; 9 days at 6-month follow-up; and 9 days after study visit

2). The GENEActiv activity monitor has been widely used in scientific research and has been

shown to be reliable and valid [59]. Physical activity will be computed for the middle 7 days of

the 9-day wear-times to assess normal activity. The recorded accelerometer data will be pro-

cessed in RStudio (RStudio Team (2023) RStudio: Integrated Development for R. RStudio,

Inc., Boston, MA URL http://www.rstudio.com/) using the GGIR script [60].

Back performance scale. The Back Performance Scale [40] is an assessment consisting of

a series of five movement activities that require trunk mobility. It is routinely used by physical

therapists to assess patients with back problems. The activities (sock test, pick-up test, roll-up

test, fingertip-to-floor test, and lift test) all require mobility in the sagittal-plane and are scored

from 0 (can be performed easily) to 3 (hard/limited to perform). The test has good inter-tester

agreement and good test-retest reliability [41].

Surgical information. Information about the surgical procedure will be extracted from

the patient records and surgery reports. Parameters of interest include whether the patient was

treated with decompression alone or along with vertebral fusion. Moreover, the number of

decompressed and/or instrumented vertebral levels will be recorded. In the case of instrumen-

tation, we will consider fusions with or without cage. Depending on the patient’s treatment,

the cohort may be divided into sub-cohorts.

Data management

All study data will be entered into and managed using REDCap (Research Electronic Data

Capture) hosted at our clinic [61,62]. REDCap is a secure, web-based software platform

designed to support data capture for research studies.

Statistical analysis

Statistical analyses will be performed using RStudio (RStudio Team (2023) RStudio: Integrated

Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/). Baseline vari-

ables will be reported using mean and standard deviation or median and interquartile range

for continuous variables and as counts and percentages for categorical variables. For Specific

Aim 1, the primary outcome parameter is the ODI, and the secondary outcome parameter is

dynamic compensation (Table 2). Correlation analysis will be used to analyse the relationship

between PROMs and continuous variables, including dynamic compensation, spinal align-

ment and imbalance, segmental instability, muscle degeneration and fatigue, and biomechani-

cal parameters. To measure the association between categorical variables (e.g., stenosis

severity) and PROMs, we will perform an analysis of variance (ANOVA).

For Specific Aim 2, the primary outcome parameter is the pre- to postoperative change in

the ODI, and the secondary outcome parameter is the pre- to postoperative change in dynamic

compensation. Pre- to postoperative differences in PROMs, dynamic compensation, severity

of stenosis, spinal alignment and imbalance, muscle degeneration, muscle fatigue, and bio-

mechanical parameters will be assessed by comparing means using paired t-tests for continu-

ous variables and by comparing frequencies using the chi-square test for the categorical

variables. Associations of pre- to postoperative changes in PROMs with pre- to postoperative
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changes in static and dynamic spinal imbalance, muscle fatigue, and extent of trunk bending

and lumbopelvic range of motion during walking will be assessed by computing the pre- to

postoperative difference for each variable for each patient and evaluating the correlation

between these computed differences. In the statistical methods described here, a normal distri-

bution of all parameters is assumed. If this assumption is violated in the data, we will use more

appropriate statistical methods (e.g., nonparametric methods).

Sample size calculation

We expect that about half of our patients will present with segmental instability. To assess the

correlation between PROMS and continuous covariates, a sample size of 83 is required to detect

a correlation of 0.3 at 80% power and 5% significance level. To assess the correlation between

PROMS and categorical covariates with 3 levels of the covariate a sample size of 111 (37 within

each level) is required to detect a correlation of 0.3 at 80% power and 5% significance level. We

hypothesize that the postoperative change in the mean of PROMS at the 12-month follow-up

with other covariates is 20%. Between PROMS and continuous covariates a sample size of 34

will be required to detect the difference in mean of 20% with a standard deviation of 40% (effect

size = 0.5) and a power of 80% at 5% significance level. Between PROMS and categorical covari-

ates a sample size of 107 will be required to detect the difference in mean of 20% with a standard

deviation of 40% (effect size = 0.5) and a power of 80% at 5% significance level. By considering

the highest number needed for the study hypothesis, we need 111 patients in this study. Consid-

ering a 10% drop-out rate, 122 subjects will be enrolled in the study.

Discussion

The urgent need for a better understanding of sLSS stems both from the profound socioeco-

nomic impact of the disease on our healthcare system and from the aspiration to provide the

Table 2. Primary and secondary outcome parameters for Specific Aims 1 and 2.

Primary outcome parameter Secondary outcome parameter Additional outcome parameters

Specific

Aim 1

• ODI • Dynamic compensation • Sagittal spinal alignment assessed using motion capture, EOS and

optically captured 3D back surface

• Patient-reported outcome (Swiss spinal stenosis score, EQ-5D-5L,

Tampa score, COMI-back)

• Muscle fatigue (EMG, fatigue exercise duration)

• Spatiotemporal gait parameters including joint kinematics/kinetics

• Muscle atrophy, fatty infiltration, muscle CSA

• Severity of stenosis

• Age

Specific

Aim 2

• Change in pre-to

postoperative ODI

• Change in pre-to postoperative

dynamic compensation

• Change in pre-to postoperative. . .

• sagittal spinal alignment assessed using motion capture, EOS and

optically captured 3D back surface

• physical activity level

• patient-reported outcome (Swiss spinal stenosis score, EQ-5D-5L,

Tampa score, COMI-back)

• muscle fatigue (EMG, fatigue exercise duration)

• spatiotemporal gait parameters including joint kinematics/kinetics

• muscle atrophy, fatty infiltration, muscle CSA

• severity of stenosis

ODI–Oswestry disability index; COMI-back–core outcome measures index for the back; EMG–electromyography; CSA: Cross sectional area.

https://doi.org/10.1371/journal.pone.0293435.t002
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best possible treatment to symptomatic patients. The enormous socioeconomic burden this

disease places on our society is reflected in the increasing number of symptomatic patients

receiving surgery. Today, sLSS is the most frequent indication for spine surgery in people over

65 years of age [10]. The main reason for the increased number of surgeries is due to demo-

graphic developments of our society and the fact that individuals aspire higher level of physical

functioning in old age. While the prevalence of acquired LSS is controversially discussed and

difficult to quantify due to the large number of unreported cases, a recent systematic review

and meta-analysis reported a mean prevalence based on radiological diagnosis between 11%

and 38% [63]. As shown by the Framingham study [64] and by Ishimoto and colleagues [65],

the prevalence both of LSS and sLSS increases with age. Ishimoto et al. observed a prevalence

of sLSS in a population resembling the general Japanese population of approximately 10%

[65]. With more than 1.6 million persons over the age of 65 in Switzerland [66], up to 600,000

individuals may have an asymptomatic radiologically narrowed lumbar spinal canal, of whom

up to 160,000 people currently experience signs and symptoms of sLSS. With the continuing

trend of a further aging society, an increasing proportion of persons with an asymptomatic

narrow spinal canal can be expected to become symptomatic and require treatment at some

point.

Although the number of patients requiring treatment is steadily increasing, there is a lack

of studies addressing important questions. For instance, little is known about the association

between clinical, radiological, functional, and patient-reported outcomes. To date, it is unclear

why not all patients benefit from surgery [67] and why some patients with sLSS remain clini-

cally stable while others will either improve (rarely) or worsen (most likely) over time [68].

The experimental protocol used in this study and the resulting holistic biomechanical, clini-

cal, and functional data will contribute to filling these gaps by contrasting and correlating

these aspects. The clinical examinations performed as part of this study, such as the Janda

manual muscle strength assessment, or the test for Trendelenburg signs, can be used to relate

weakness in certain muscles to objective functional parameters such as gait patterns. Together

with the Back Performance Scale, which pragmatically quantifies the level of disability of our

patient group during daily activities, the clinical examinations used in this study complement

our approach towards a patient-specific analysis.

The selection of PROMs questionnaires is also in line with our aim to obtain a picture as

complete as possible. To develop a more accurate picture of patient-reported pain and symp-

toms related to the stenosis, we decided to assess back symptoms with three established rele-

vant questionnaires: the ODI, the Swiss Spinal Stenosis score, and the COMI-back. While we

expect a high correlation among the scores of these three questionnaires, each questionnaire

can also be used to cross-validate the other questionnaires. In addition, we use the Tampa

score and the EQ-5D-5L questionnaire to assess exercise and movement anxiety, depression,

and general quality of life.

One of our previous prospective studies [17] with elective surgery investigated the associa-

tion between functional limitations (ODI) and gait performance (distance of 6-minute walk

test (6MWT) and quality (spatio-temporal parameters and gait asymmetry) in patients with

sLSS. Specifically, the ODI decreased by 17.9% and 23.9%, and the walked distance during

6MWT increased by 21 m and 26 m from baseline to 10-week and 12-month follow-up,

respectively. Gait quality did not change during the 6MWT at any assessment or between

assessments. Compared with the control group, patients walked a shorter distance during the

6MWT, and gait quality differed between patients and the control group at baseline and at

10-week follow-up but not at 12-month follow-up. Change in gait quality explained 39% and

73% of variance in change in ODI from baseline to 10-week and 12-month follow-up, respec-

tively. These results suggest that objective quantitative descriptors of function during daily
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activity are relevant to perceived disability and are responsive to changes elicited by surgical

intervention in patients with LSS.

Among others, this study will provide novel evidence for a possible association between

changes in PROMs and changes in physical activity level assessed using GENEActiv. The in
vivo biomechanical experiment includes a comparison of posture (including spinal curvature)

and gait of the patients before and after a muscle fatigue test. Two aspects are of interest to us.

First, we are aiming to determine if there is a difference in spinal balance between the static con-

dition during stance and the dynamic condition during gait. If such differences are present, we

are interested in the magnitude of this difference, which we refer to as dynamic compensation.

Results of our previous pilot study with 30 participants [50, 51] suggest that dynamic compensa-

tion occurs in young controls, old controls, and patients with sLSS and is age-dependent. The

larger cohort of this study will provide the statistical power to draw conclusions about the asso-

ciation between dynamic compensation, muscle degeneration, severity of stenosis, and PROMs.

In a second step, the relationships between posture, gait, paraspinal muscle fatigue, and

paraspinal muscle endurance will be examined to determine whether posture is altered by

paraspinal muscle fatigue. To elicit paraspinal muscle fatigue, we chose to use and modify the

Biering-Sørensen test (45˚ Roman chair, extended trunk in line with legs) to reduce the diffi-

culty and increase compliance of patients with sLSS scheduled for surgery. The experiment

and the modified Biering-Sørensen test will help to deepen our understanding of different pos-

tural compensation strategies and their relationship with paraspinal muscle fatigue.

The collection of EOS radiographs will provide us with high quality data on the spinal bal-

ance of each of our participants’ spines and the corresponding spinopelvic alignment. Further-

more, postoperative measurements will provide information on whether spinal imbalance has

changed because of the surgical intervention. Finally, radiopaque markers placed on the spine

during the radiograph can be used to verify that the markers used in motion analysis are in the

correct location.

There are several reasons for collecting current MRI images. First, clinically important

parameters such as the exact severity of stenosis on all lumbar segments can be read from the

images. Other important parameters are muscle CSA and the extent of fat infiltration of mus-

cle tissue (qualitative and quantitative). According to Fortin et al., the morphology and fat

infiltration of the multifidus and psoas muscles are related to patients’ functional level and

symptoms [13]. In a previous study [69] it was shown that muscle atrophy and fat infiltration

are more pronounced in patients with sLSS than in healthy controls. Further, fat infiltration of

the lumbar paraspinal muscles is significantly and positively associated with the severity of

lumbar degenerative disease [70]. A recent retrospective study [28] of 165 patients investigated

the association between fat infiltration of paraspinal muscle, sagittal spinopelvic alignment,

and stenosis severity in patients with degenerative LSS. The results suggest that fat infiltration

of paraspinal muscles is associated with sagittal spinopelvic alignment, which does not appear

to be associated with the natural aging process. Patients with more severe fat infiltration had

greater sagittal spinopelvic alignment mismatch. This association appears to be specific to

patients with degenerative spinal deformity, as it was not present in asymptomatic adult per-

sons [71,72]. Overall, these results suggest that fat infiltration of paraspinal muscles might play

an important role in LSS. Because our MRI protocol includes axial VIBE Dixon sequences

with an additional coil on the abdomen, we can assess and quantify the fat fraction and CSA of

not only paraspinal but also abdominal muscles, such as the transversus abdominis. Together

with the multifidus and the pelvic floor muscles, the transversus abdominis forms the anatomi-

cal girdle that is critical for providing spinal stabilization [73,74]. Investigating the relationship

between abdominal and paraspinal muscles will provide additional insights into the patho-

physiology of LSS.
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Together with the actual anatomical reference values from the standing EOS radiography,

and the information regarding the muscle quality and muscle degeneration from the MRI, the

unique data set obtained in this study will be useful for driving state-of-the-art in silico muscu-

loskeletal models with the goal to simulate spinal loads at each vertebral level.

Finding a correlation between PROMs, spinal imbalance, muscle degeneration, dynamic

compensation, muscle fatigue, severity of stenosis, and biomechanical parameters would con-

firm the implicit rationale regarding the assumed clinical relevance of these factors. A correla-

tion between pre- to postoperative changes in PROMs and pre- to postoperative changes in

spinal alignment, muscle fatigue and fatty degeneration, and biomechanical parameters would

confirm the hypothesis that surgery influences parameters that determine patient-reported

outcome. The results of these experiments may help to develop new strategies for both conser-

vative as well as surgical management of patients with sLSS. For instance, specific muscle

strengthening exercises or specific stabilization approaches might be employed that consider

the altered biomechanics of the spine. Finally, the results of this study might serve as a basis for

developing an algorithm to predict surgical outcome. Being able to predict surgical outcome

would be a critical added value to patient care and translate in improved patient satisfaction

while lowering health care costs.
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51. Koch D, Nüesch C, Schären S, Mündermann A, Netzer C. Static and dynamic sagittal spinal balance:

Effect of age and lumbar spinal stenosis. Brain and Spine. 2022; 2:101675. https://doi.org/10.1016/j.

bas.2022.101675

52. Sasa Cukovic CH, Daniel Studer, Gabriel Huwyler, Vanja Lukovic, William R. Taylor. Validation of Inter-

nal Parameters of Adolescent Idiopathic Scoliosis Evaluated using ScolioSIM Solution—Preliminary

Results. VPH2022—Virtual Physiological Human Conference2022. p. 117.
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