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Abstract

In this study, we propose a simplified model of a socio-environmental system that accounts

for population, resources, and wealth, with a quadratic population contribution in the

resource extraction term. Given its structure, an analytical treatment of attractors and bifur-

cations is possible. In particular, a Hopf bifurcation from a stable fixed point to a limit cycle

emerges above a critical value of the extraction rate parameter. The stable fixed-point

attractor can be interpreted as a sustainable regime, and a large-amplitude limit cycle as an

unsustainable regime. The model is generalized to multiple interacting systems, with chaotic

dynamics emerging for small non-uniformities in the interaction matrix. In contrast to sys-

tems where a specific parameter choice or high dimensionality is necessary for chaos to

emerge, chaotic dynamics here appears as a generic feature of the system. In addition, we

show that diffusion can stabilize networks of sustainable and unsustainable societies, and

thus, interconnection could be a way of increasing resilience in global networked systems.

Overall, the multi-systems model provides a timescale of predictability (300-1000 years) for

societal dynamics comparable to results from other studies, while indicating that the emer-

gent dynamics of networks of interacting societies over longer time spans is likely chaotic

and hence unpredictable.

Introduction

Socio-ecological systems are facing a multitude of problems related to the sustainable use of

natural resources. Thus, developing tools for understanding and managing such complex sys-

tems is more crucial than ever to avoid ecosystem or social collapse [1]. Broadly, societal col-

lapse can be defined as a “rapid and significant loss of an established level of socio-political

complexity” [2, 3]. Theories on the mechanisms behind the phenomenon of collapse have not

converged to a unifying framework, in part because they have historically been mostly qualita-

tive in nature, and not aimed at a quantitative formulation that can help clarify problems and

resolve tensions [4]. A number of models have been developed to address the long-term socio-

environmental dynamics in different cases, such as Easter Island [5–10], the Maya civilization

[11, 12], and other instances [13–18]. More theoretical approaches have developed models
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focused on illustrating important concepts such as sunk-cost effects [19, 20], inequality [21],

or sustainability more generally [22, 23].

This paper explores the dynamics of networks of socio-ecological systems by means of

numerical simulation and investigates the conditions under which collapse occurs or is averted

and overall sustainability can be achieved. More specifically, we propose a simplified model of

a socio-ecological system that accounts for population, resources, and wealth, with a quadratic

population contribution in the resource extraction term. The quadratic interaction is meant to

represent the cooperative effects in the population (via self-interaction) working towards

extracting resources and producing goods. While the model exemplifies the dynamics of a

socio-ecological system, it is meant to capture general features over the long term and not

reflect any specific real case study [24].

Given the structure of the model, an analytical treatment of attractors and bifurcations is

possible, with a Hopf bifurcation from a stable fixed point to a limit cycle emerging above a

critical value of the extraction rate parameter. The stable fixed point attractor can be inter-

preted as a sustainable regime, and the large amplitude limit cycle as an unsustainable regime.

The model is then generalized to multiple interacting systems with chaotic dynamics emerging

for small non-uniformities in the interaction matrix.

The chaotic behavior is described using usual numerical techniques, making use of the

phase portrait, Poincaré map, and calculating the largest Lyapunov exponent. Certain choices

of the interaction matrix lead to the synchronization of the systems in the network. In this

case, the dimensionality of the problem reduces from 3N (where N is the number of nodes in

the network) to 3, and a chaotic attractor can be represented.

We introduce diffusion in the population variable, which can be seen as a type of migration

under population pressure. We show that diffusion can stabilize networks of sustainable and

unsustainable societies, and that interconnection could be a way to increase resilience in the

global system. The work thus aims to contribute to “Global Systems Science,” which previous

work has advocated for [25].

In addition to the above mathematical considerations, we also present a novel interpreta-

tion of the dynamics in the Appendix in S1 Text As mentioned, systems reaching a steady state

can be considered sustainable, but by analyzing the evolution of marginal costs and benefits,

we can also conclude that they behave rationally (in economic parlance). On the other hand,

systems where large amplitude limit cycles appear have marginal costs that exceed the mar-

ginal benefits, to the point where all net benefits are lost. Thus, these systems can be said to

behave irrationally, and the framework presented provides a way to quantify long-term sunk-

cost effects [19].

The paper proceeds as follows. In the next section, we briefly review the main methodologi-

cal advances related to chaotic behavior in networked socio-ecological systems. Afterwards, we

present the model for a single socio-environmental system and analyze it. We then explore the

dynamics of multiple socio-ecological systems connected with different topologies. Finally, we

draw the main conclusions of the paper.

Background

Socio-ecological systems are typically complex and adaptive [26], where human and natural

components interact [27]. They are known for exhibiting unpredictable behavior [28, 29], with

sensitivity to initial conditions being one of the primary reasons for this behavior [30, 31]. This

sensitivity is due to the presence of multiple feedback loops, both positive and negative, which

can amplify small perturbations and lead to vastly different outcomes over time. For this rea-

son, it is typically difficult to model trends pertaining to such systems [32], and it takes a long
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time to assess the effect of actions on these systems [33]. A classic example of this phenomenon

is the Lorenz attractor [34], where even small differences in the initial conditions of a simple

mathematical model could lead to vastly different long-term behaviors. Conversely, no matter

how much information is available on a system, if the dynamics are complex enough, it is com-

monly accepted that long-term predictions cannot be made. Unfortunately, even an apparently

simple system of low dimensionality can be complex enough to generate this kind of behavior

[35]. Moreover, socio-environmental systems are subject to unforeseeable events, such as natu-

ral disasters [36], emergent social inequality and technological breakthroughs [37, 38], which

can introduce additional unpredictable features.

Ecosystem systems can be modeled as a dynamical system by means of a set of ordinary dif-

ferential equations [39–41] that describe the flow of biomass throughout the class of entities

that compose the system [42] or more generically, the exchange and consumption of stylized

resources [43]. More precisely, this set of elements and connections can be modeled as a net-

work, which behaviors can be chaotic [44].

Recently, it has been demonstrated that the emergence of chaos in a given networked sys-

tem can be attributed to several key factors. First, an increase in dissipation within an ensemble

characterized by a fixed coupling force and a set number of elements can initiate the onset of

chaotic behavior [45, 46]. Additionally, modifications of network structure have the potential

to engender chaos or even hyperchaos, exemplifying the sensitivity of these systems to alter-

ations in their composition [25, 45–51].

It is well-known that chaotic behavior of network models could derive not only from the

nodes’ dynamics but also from the structure of the connections [52], especially in relation to

links’ orientation [53] and when the behavior is dissipative [48]. Also, the coupling strength

between the elements plays a pivotal role in the manifestation of chaos, exhibiting a highly spe-

cific and nuanced influence on the overall dynamical behavior [46, 54]. Lastly, the heterogene-

ity of the components seems to play a role in the way chaotic dynamics arise [47, 55, 56].

Moreover, in ecological networks, chaotic behaviors are found for a wide set of dynamical pro-

cesses, including percolation [57].

To the best of our knowledge, the emergence of chaos in socio-ecological networks mostly

depends on three aspects. Firstly, the effect of coupling strength, which appears to be rele-

vant both in ecological systems, where the unit of analysis is the biomass, and the relation-

ships between nodes are competition or cooperation [45, 58], in social systems, where the

link signifies stylized wealth relationships of various kinds [59–61], and in mixed socio-

ecological systems [62]. Secondly, the effect of system efficiency, which counter-intuitively

can have a negative effect on the stability and robustness of the system [63]. Similarly, the

presence of chaos appears to be a necessary element for the functioning of resilient socio-

ecological systems [64]. Thirdly, recent works used simulations to show how ecological-net-

work stability is affected by their topology and functional dynamics, finding that size and the

rate of connection affect the stability of a system [65], but that it cannot be solely determined

by them [66].

Detecting chaos in a system is crucial for understanding its behavior. Ozer and Akin pro-

vide a comprehensive review of the main techniques employed for this purpose in their paper

[67]. The most straightforward approach is time-series observation, which involves visually

monitoring the system’s state variables for signs of irregular or unpredictable behavior.

Another useful method is phase portraits, which offer a two-dimensional representation of the

phase space and can detect chaos by identifying distinct shapes. The Poincaré map simplifies

complex behavior by sampling the phase portrait stroboscopically, replacing an nth-order con-

tinuous-time system with an (n − 1)th-order map [53]. The presence of distinct points in the

Poincaré map indicates chaos, making it ideal for stability analysis. Given the high
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dimensionality of the system we are analyzing, we do not employ the Poincaré map directly

but plot the distance to a given plane and observe the irregular points of intersection.

The power spectrum method analyzes frequency spectra of signals to identify chaos, which

is characterized by wide-band signals that can be easily distinguished from periodic signals.

Another common method to detect chaos is computing the Lyapunov exponents [68, 69],

which measure the exponential attraction or separation in time of two adjacent orbits in the

phase space with close initial conditions. When at least one Lyapunov exponent is positive,

this is a strong indication that chaos is likely present.

Model specification

We propose the following model:

_x ¼ b
z

xþ �
� dx

� �

ð1 � e� z=�Þ

_y ¼ ry 1 �
y
K

� �
� ax2y

_z ¼ ax2y � cz

ð1Þ

for a society with population x, natural resources y and wealth (or capital) z. More generally,

the model can be interpreted as follows: x represents a bulk measure of capacity, such as

extraction capacity, technological capability, state power, or working population. y represents

available resources, which are assumed to be regenerative, while z represents returns. x grows

in proportion to returns per unit capacity and decays at a rate proportional to its size. y grows

logistically and decreases via extraction, in proportion to its current value times the square of

the capacity (a measure of interactions within the social system). The extraction of resources

leads to an increase in z. Table 1 provides details on the parameters of the model and their

interpretations.

Note that the parameter � > 0 serves to regularize the behavior of the model when variables

are close to the origin. The term 1 − e−z/� in the first equation provides a regularization to this

system when z� 0. It ensure that whenever z! 0 it does so more smoothly and does not

destabilize the numerical integration method. Without this term the networked dynamical sys-

tems are more stiff and more prone to numerical instabilities.

The capacity x grows with a return-per-investment dependent net growth rate, and decays

in proportion to its size. Resources y recover logistically and are depleted in proportion to

their current level and the capacity squared. The quadratic capacity term models interaction

between units of extractive capacity (such as people or technology) and reflects the fact that

Table 1. Description of parameters in model (1). The α and σ parameters vary across the different scenarios.

Parameter symbol Parameter name Typical value(s)

b Capacity growth rate 2

d Capacity decay rate 0.05

r Resources regeneration rate 0.05

K Maximum resource level 100

α Extraction rate of resources 2.5 × 10−5

c Returns decay rate 0.05

� Regularisation parameter 0.01

σ Diffusion constant 0.1

https://doi.org/10.1371/journal.pone.0293391.t001
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multiple cooperating units are at play within a extraction-production-distribution chain. The

extraction of resources contributes to the returns z, and they deplete in proportion to their

size. We expect the capacity and returns grow concomitantly, so the depletion term reflects

both higher consumption and natural decay over the lifespan of the goods. In Appendix A in

S1 Text, we provide an economic interpretation of the model and the dynamics of collapse.

In a similar spirit to other models [7], the system (1) has a wealth (or capital) variable, that

can be interpreted as the number of cultural artefacts of that society, such as buildings and

food reserves. Furthermore, the model has the general structure of the Easter Island model

[10] or HANDY model [21], and its dynamics echoes those models as well. However, the struc-

ture and analysis of the model is much simpler, which allows us to better highlight its eco-

nomic interpretation. More importantly, the quadratic capacity in the extraction terms allows

the introduction of interactions between multiple regions. This feature of the model allows for

rich dynamical behaviour in higher dimensions. The systems of differential equations were

solved using the 4th order Runge-Kutta method.

Model analysis

The fixed points of the system (1) are the origin O = (0, 0, 0), the point N = (0, K, 0) and

E = (xeq, yeq, zeq), where:

xeq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
a

1 �
yeq
K

� �r

yeq ¼
cd
ab

zeq ¼
d
b
x2

eq

ð2Þ

The long-term behaviour depends on the α parameter. Let:

a? ¼
cd
Kb

ð3Þ

If α< α? then the point N is a stable fixed point but for higher α a trans-critical bifurcation

occurs and E becomes stable. At α = 2α? the capacity (or population) is at the maximum sus-

tainable level. The system shows a supercritical Hopf bifurcation for the extraction rate given

by:

ac ¼
2cd þ ðcþ 2dÞ2

4Kb
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
8rcdðcþ 2dÞ

½2cd þ ðcþ 2dÞ2�2

s !

ð4Þ

Fig 1 shows the dynamics of the system (1) when most of the parameters are kept constant

except for the extraction rate α, which is varied. A limit cycle emerges for α> αc, as highlighted

by the analysis. In Fig 1(D), we can see that the amplitude of the oscillations reduces with

increasing α.

For the extraction rate in the interval α? < α< αc, the system (1) reaches a steady state, and

we refer to systems in this regime as sustainable because the population, resources, and wealth

do not collapse to zero values. On the other hand, for most α> αc, the system (1) has oscilla-

tions that approach the origin, and we label these systems as unsustainable.
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Dynamics on networks

We generalize the system (1) to a network model in the following way:

_xi ¼ b
zi

xi þ �
� dxi

� �

ð1 � e� zi=�Þ � s
XN

j¼1

xjBij

_yi ¼ ryi 1 �
yi
K

� �
� aixiyi

XN

j¼1

xjAij

_zi ¼ aixiyi
XN

j¼1

xjAij � czi

ð5Þ

The matrix B is the Laplacian for the undirected network we are investigating (the node

degrees are on the diagonal, −1 for each edge connection, otherwise zero), and in the case

where xi represent populations, B is meant to represent migration as diffusion. For generality,

we consider the extraction network and migration networks to be separate. We use the matrix

A to represent the interaction between multiple societies with regards to extraction of

resources.

Emergence of chaos

We first consider the case where there is no diffusion, so B = 0, and A is a matrix with entries

equal to 1/N, where N is the number of subsystems. Let 1N be a N-length column vector of 1s.

Fig 1. Trajectories converging to different attractors: (A) inner stable fixed point for α = 2α?, (B) limit cycle for α =

2αc, (C) oscillations spread out over time and reduce in amplitude, α = 5αc. (D) Bifurcation diagram showing

minimum and maximum value of the population (or more generality the capacity) for increasing values of α. The

vertical lines (dotted) indicate the α? and 2α? values. The initial conditions we took are (x0, y0, z0) = (1, 100, 1).

https://doi.org/10.1371/journal.pone.0293391.g001
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Then, we can write A ¼ 1N1T
N=N. In this case the dynamics of the system (5) is the same as for

the system (1), namely all the subsystems are synchronised and have the same bifurcations

shown in Fig 1(D).

Nevertheless, if we take A ¼ 1N1T
N=N þ dI where δ is a small perturbation (we take δ =

10−2/N) and α> 3αc, then we see the emergence of chaotic behaviour. All the N subsystems

still synchronise but are no longer attracted to the limit cycle in Fig 1(B) and 1(C). Instead, the

trajectories follow the chaotic attractor in Fig 2(A).

In Fig 2(B) the distance to the plane
PN

1
xi þ yi þ zi ¼ Nðxeq þ yeq þ zeqÞ is plotted and is a

way to represent the Poincare map of the system (5). We see the distance has a periodic behav-

iour up to a point and then becomes aperiodic. Fig 2(C) shows the bifurcation diagram for the

x1 variable where we see the emergence of multiple extrema when α> 3αc, which is indicative

of chaos. In Fig 2(D) the spectra of the x1 time series is shown, contrasting the case of periodic

behaviour (with well-separated peaks) and that of chaos (with a high density of peaks). Fig 2

(E) shows two trajectories starting from initial conditions differing in all components by 10−9.

In Fig 2(F), we plot the distance between these trajectories and notice a exponentially growing

divergence, indicating a positive Lyapunov exponent, as expected for a chaotic system.

The largest Lyapunov exponent for the parametrization we employed is estimated to be

3.4(2) × 10−3. The inverse of the exponent gives a timescale of 290±30 years, which is compati-

ble with the average lifespan of empires of 220 years [70]. Different parameter choices (of α
and A) give rise to other timescales in the range of 300 to 1000 years.

This suggests that societal dynamics has a time horizon of predictability within these

bounds, and these theoretical estimates also agree with the duration of different complex socie-

ties and empires [71]. The emergence of unstable behaviour on different networks is well doc-

umented in the scientific literature [51, 55, 72] and our results fall in this domain.

Inducing sustainability in a network

Next, we consider the case where A = IN, so the subsystems are independent in their extraction

efforts, and we have different topologies for migration (via diffusion) to take place. In Fig 3, we

see the different networks considered on the left side and the ratio of the maximum and mini-

mum total population on the right side.

The diffusion parameter σ is varied in the interval [0, 0.3] and the population ratio is plotted

throughout. A sustainable society (white node) always has a fixed extraction rate of α = 2α?
and for unsustainable societies (black nodes), we consider different extraction rates higher

than αc by factors of 1.5, 2 and 2.5 respectively.

For the chain network in Fig 3(A), we see that if α/αc = 1.5 for the black nodes, then there is

a range for higher values of σ with a max/min population ratio of 1 (see Fig 3(B), solid line).

This indicates that there is no limit cycle and that all populations in the network reach a fixed

point. If α/αc is increased, oscillations appear, with the ratio between the maximum and mini-

mum total population beyond 2 or 3. In Fig 3(C), we have a ring topology with only one sus-

tainable society. As shown in Fig 3(D), a similar situation arises, where for α/αc = 1.5 there is a

range where the system reaches a fixed point, whereas for higher extraction rates, large oscilla-

tions appear.

For the star topology in Fig 3(E), despite all the neighbors of the white node being unsus-

tainable, there still exists a range of σ for α/αc = 1.5 in Fig 3(F), where a fixed point appears for

the entire network (i.e., global sustainability exists for the whole network). Higher extraction

rates for the black nodes again lead to large oscillations.

In Fig 3(g), we investigate whether coupling sustainable societies leads to stronger sustain-

able outcomes. As shown in Fig 3(h), the range where a global sustainable outcome is reached
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Fig 2. (A) Chaotic attractor for the synchronized system (5) with N = 3, A ¼ 1N1T
N=N þ dI and α = 10αc. (B) Distance to the plane

PN
1
xi þ yi þ zi ¼ const:,

meant to represent intersections giving the Poincaré map. (C) Bifurcation diagram showing the extrema of the x1 variable where α is varied. (D) Spectrum of the

time series of x1 showing the difference between the frequencies prevalent in two regimes: periodic (with well-separated peaks) versus chaotic (high density of

peaks). (E) Divergent trajectories for initial conditions differing by 10−9 (in all components). (F) Estimate of the largest Lyapunov exponent, giving 3.4(2) × 10−3.

https://doi.org/10.1371/journal.pone.0293391.g002
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Fig 3. (Left column) Different topologies of networked socio-environmental systems. The white nodes are systems

with the default parameters from Table 1 and extraction rate 2α?, while the black nodes have extraction rate Coef × ac
(see the legends in the right column). (Right column) The ratio of the maximum and minimum total population on the

attractor for the networked systems on the left. The diffusion constant σ is varied and the black nodes have extraction

rates α/αc = 1.5 (solid line), 2 (dashed line) or 2.5 (dashed-dot line). If the ratio is 1 we get a fixed point.

https://doi.org/10.1371/journal.pone.0293391.g003
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(fixed point) is reduced compared to Fig 3(E) and 3(F), and limit cycles with large amplitudes

arise over most of the parameter space (for σ and α/αc).

The findings suggest that in a random graph (of average degree four), a fraction of 20% of

sustainable systems can lead to a sustainable outcome for the entire network (provided that

sustainable systems are not directly connected to each other). Overall, depending on the topol-

ogy, a relatively small fraction of sustainable societies can either reduce oscillations in the over-

all system or even induce a global sustainable regime.

Conclusion

We have proposed a three-dimensional model of socio-environmental dynamics that accounts

for population, resources, and wealth (or capital). The model is inspired by prior work [10, 21]

but differs in important ways; specifically, it has an overall simpler structure along with a qua-

dratic interaction term that captures the cooperative efforts involved in resource extraction

and production of goods. An analysis of its dynamics shows that societies with an extraction

rate below a critical threshold will reach a steady state. If the extraction rate is above a critical

value, then supercritical Hopf bifurcation leads to the appearance of a limit cycle. The oscilla-

tions are typically large enough to approach the origin; therefore, all variables are periodically

at almost zero values (i.e., the system collapses). Hence, systems with a low extraction rate of

natural resources that reach a steady state are called sustainable, whereas systems with a high

extraction rate that oscillate with a large amplitude are considered unsustainable.

We also provide an economic interpretation of collapse in the Appendix in S1 Text and

show that for sustainable systems, the marginal benefits and costs of growth equalize, leading

to a rational, optimized outcome. However, for unsustainable societies, it is not the marginal

benefits and costs that equalize but the overall cumulative amounts. Hence, according to this

specific economic rationale, unsustainable societies are irrational. This sensitivity to the cumu-

lative benefits and costs indicates a way to quantify long-term sunk-cost effects that are drivers

of collapse [19].

Two extensions of the model to networks are considered: one involving an interaction

matrix in the extraction (and production) terms and another involving diffusion in the popula-

tion variable (akin to migration). If the interaction matrix is uniform, the dynamics matches

the behavior of the single system. However, even small perturbations in the interaction matrix

are sufficient to generate chaotic dynamics (provided that the extraction rate is above a certain

threshold). If only the diagonal terms are altered in the same way, then the systems in the net-

work synchronize, and the overall dimensionality of the system is reduced to three; in this

case, we can visualize the emerging chaotic attractor. The inverse of the Lyapunov exponent

provides timescales consistent with the historical dynamics of empires [70, 71].

For the diffusion case, we find that for a variety of network topologies (chain, ring, and

star), a small fraction of sustainable systems is sufficient to drive the entire network to a steady

state. Similar results have previously been found for Easter Island [10] in the case of two cou-

pled societies but in a more restricted parameter range. The results in the present paper gener-

alize and strengthen the previous findings to multiple societies and larger parts of parameter

space.

Linking sustainable societies does not increase network effects that favour steady states, but

seems to diminish them. Overall, in a random graph (of average degree four), a fraction of

20% of sustainable systems (not directly connected to each other) can lead to a sustainable out-

come for the entire network. Other topologies, community structures, and their impact on the

sustainability of the overall system will be the subject of future work. Thus, our work aims to

contribute to a “Global Systems Science” [25].
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