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Abstract

Urban economic competitiveness is a fundamental indicator for assessing the level of urban
development and serves as an effective approach for understanding regional disparities.
Traditional economic competitiveness research that relies solely on traditional regression
models and assumes feature relationship theory tends to fall short in fully exploring the intri-
cate interrelationships and nonlinear associations among features. As a result, the study of
urban economic disparities remains limited to a narrow range of urban features, which is
insufficient for comprehending cities as complex systems. The ability of deep learning neural
networks to automatically construct models of nonlinear relationships among complex fea-
tures provides a new approach to research in this issue. In this study, a complex urban fea-
ture dataset comprising 1008 features was constructed based on statistical data from 283
prefecture-level cities in China. Employing a machine learning approach based on convolu-
tional neural network (CNN), a novel analytical model is constructed to capture the interrela-
tionships among urban features, which is applied to achieve accurate classification of urban
economic competitiveness. In addition, considering the limited number of samples in the
dataset owing to the fixed number of cities, this study developed a data augmentation
approach based on deep convolutional generative adversarial network (DCGAN) to further
enhance the accuracy and generalization ability of the model. The performance of the CNN
classification model was effectively improved by adding the generated samples to the origi-
nal sample dataset. This study provides a precise and stable analytical model for investigat-
ing disparities in regional development. In the meantime, it offers a feasible solution to the
limited sample size issue in the application of deep learning in urban research.

Introduction

Scholars have long argued that competition between local governments in China over eco-
nomic development is one of the keys to understanding China’s economic system. Fierce eco-
nomic competition among Chinese cities has led to the promotion of economic
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competitiveness as a starting point for most local government policies [1]. In such a situation,
amore efficient and accurate method of distinguishing differences in urban economic compet-
itiveness is essential, whether it is government policymaking and performance evaluation or
industrial capital and population movement decisions.

The existing research on urban economic competitiveness can be categorized into two
directions. One of which is to explore the factors affecting competitiveness and their intrinsic
relationships, including human capital, education system, and infrastructure, which have been
proven to effectively influence urban economic competitiveness [2, 3]. These causal relation-
ships are typically validated through traditional mathematical models such as regression mod-
els. Another research direction is to construct a system of quantifiable indicators to assess and
rank the competitiveness of economies at the same level within a region [4]. This type of
research analyzes and selects the influencing factors using an explanatory framework, and cal-
culates the weighting parameters by applying variance weighting, entropy weighting, and prin-
cipal component scoring methods.

These methods assume a linear relationship between the dependent variable and the inde-
pendent variables. While the dependent variable is influenced by a single independent variable,
it is also affected by the interaction effects among multiple independent variables. Therefore,
traditional approaches require the artificial determination of the relationship between urban
economy and urban characteristics, as well as the interaction effects among urban characteris-
tics, before analyzing urban economic competitiveness. However, cities are complex systems
composed of factors such as infrastructure, environment, and population [5]. Without a com-
plete understanding of how various urban characteristics interact within this system, it is
extremely challenging to specify the interrelationships among factors in the model. This limita-
tion restricts traditional methods to examining only a limited set of influencing factors for eco-
nomic competitiveness and prevents the capture of complex nonlinear relationships and
interaction effects among these factors.

The development of deep learning neural networks has provided a new approach to address
this dilemma. By considering complex urban features as input variables and using indicators
such as urban economic level and variations in urban development as output labels, it becomes
possible to incorporate urban features into the processing architecture of neural networks [6].
On the other hand, neural networks can automatically perform nonlinear modeling of complex
interaction patterns among input features [7]. This automated learning approach enables effi-
cient and accurate analysis of problems based on intricate urban features, without the need for
assumptions regarding the interrelationships of urban features based on existing theories [8].

A neural network is a computational model that simulates the structure of a biological ner-
vous system. It has developed over the years, with the invention of backpropagation algo-
rithms, regularization techniques, varieties of activation functions, and improvements in
computer performance, neural networks acquired the potential for large-scale data applica-
tions. Recently, the rise of deep learning neural networks with more hidden layers and increas-
ingly complex model architectures has led to revolutionary advancements in computer vision
and natural language processing, making neural networks the core technology driving the
development of artificial intelligence. Among the numerous models derived from deep neural
networks, CNN has emerged as one of the most influential innovative technologies in the field
of deep learning, owing to its powerful feature extraction capability. The basic principle of a
CNN is to use a multilayer convolutional structure to extract data features and compose a
high-dimensional feature map for recognition and classification. The application of convolu-
tion and pooling computations effectively reduces the number of model weight parameters
and improves the anti-interference capability [9]. This multilayer convolutional structure
allows for the identification of the most prominent features within the data, providing CNN
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with exceptional feature extraction capabilities and computational efficiency, which has
resulted in the widespread application of CNN in the field of feature engineering [10]. The uti-
lization of CNN for feature extraction has demonstrated remarkable performance and exten-
sive applicability in various domains, including urban pollution prediction [11], traffic flow
analysis [12], land use classification [13], and others. Hence, it is plausible to believe that in
economic research based on complex urban features, CNN possess the capability to extract the
core features from data and achieve precise classification of economic competitiveness. This
ability has also been a key consideration in selecting the model for this study.

The key to machine learning methods lies in modeling and extracting features from the
data to achieve effective model construction and data learning. As a consequence, the size of
the sample becomes a fundamental factor influencing the performance of machine learning
models like CNN [14]. However, in the case of a specific region, the number of cities remains
fixed. Even by combining data from different years, the amount of data available is still limited.
In such circumstances, traditional solutions predominantly focus on optimizing model archi-
tecture and training methods. However, the generalization ability and practical effectiveness of
these methods are not particularly remarkable. The emergence of generative adversarial net-
work (GAN) provides another solution to this problem, that is expanding the training sample
size by generating realistic data. GAN, which was invented by Goodfellow et al. [15], is a gener-
ative modeling framework consisting of a generator and discriminator in competing states.
The generator is responsible for generating fake data and tricking the discriminator, whereas
the objective of the discriminator is to accurately distinguish between real and fake data. The
generator progressively enhances its performance through competition with the discriminator.
Upon completion of training, the discriminator becomes capable of producing pseudo-realis-
tic data that closely resembles the original data, while also incorporating additional data fea-
tures. By utilizing these generated data samples to expand the sample size of the original data,
the performance of the CNN model is further improved. Shorten and Khoshgoftaar [16] com-
pared a variety of approaches to improve model performance, where GAN demonstrated
excellent performance and potential for diverse applications. In regions of research where
additional data samples are limited due to the number of cities, this approach of utilizing GAN
for data augmentation exhibits innovativeness and practicality. This also constitutes another
focal issue to be demonstrated in this study.

This study presents a deep learning neural network classification model based on CNN.
The model takes complex urban features as input data and city economic competitiveness level
as the target label. The central objective of this research is to investigate the feasibility of accu-
rately classifying the levels of economic competitiveness based on intricate urban characteris-
tics. Simultaneously, the generative capability of GAN is employed for data augmentation to
investigate whether increasing the training sample size and balancing the sample distribution
can further improve the classification accuracy of CNN. In terms of experimental data, feature
engineering constructed an urban feature system containing 1008 independent variables, and
the experimental data used were collected from 283 prefecture-level cities in China for the
period 2012 to 2019 (eight years), which resulted in a combined sample size of 2264.

Research contributions and innovations
The primary contributions of this study are summarized as follows:
1. In this study, we constructed a complex urban feature system comprising 1008 city indica-

tors and applied deep learning neural networks to explore the intrinsic relationships within
these features. This approach expands the investigation of urban economic development
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disparities beyond limited influencing factors and emphasizes the comprehensive utiliza-
tion of extensive urban statistical data.

2. In terms of the data structure design and model architecture selection, indicator data repre-
senting similar urban features were arranged into rows, where each row corresponded to a dis-
tinct city feature. This organization led to the construction of a well-structured two-
dimensional matrix of urban feature data. A CNN architecture matching the sample dimen-
sions was used, thus enabling hierarchical feature extraction and relationship mining through
local feature learning and high-dimensional mapping, which improved the interpretability
and performance of the model. Experimental results revealed that the CNN achieved classifica-
tion accuracies of 93.78% and 88.44% for the 5-class and 10-class datasets, respectively.

3. To address the constraints of limited sample sizes and uneven distributions in regional dis-
parity research, this study employed DCGAN for data augmentation and further enhanced
the stability of augmentation through generated sample filtering and ensemble generation.
Through these augmentation techniques, the study achieved improvements of 0.44% and
2.00% in the accuracies of the two datasets during the experiments, thereby resulting in
accuracies of 94.22% and 90.44%, respectively. This indicates a wider applicability of the
proposed methods to regional difference studies.

Materials and methods
Construction of complex urban feature system

The competitiveness of the urban economy is a multidimensional comprehensive index, and
research on the factors influencing economic development is enormous; therefore, the selec-
tion of the influencing factors should start from understanding what competitiveness is. Begg
[17] argues that "competitiveness" is a vague concept with two dimensions. On the one hand, it
is equivalent to the "performance” of a city, which intuitively reflects the level of its economic
development, and on the other hand, competitiveness is related to competition. A more com-
petitive city is one that offers better products and services than its competitors. Based on this
concept, the feature system of urban economic competitiveness should contain both direct
and indirect indicators. Direct indicators are indicators of urban economic performance,
which directly measure the level and scale of the urban economy. Indirect indicators are mea-
sures of the resources and services that a city can provide, which are necessary for the sustain-
able and high-quality development of the urban economy.

Similar to these direct and indirect indicators, another explanatory approach to understand-
ing the concept of urban economic competitiveness distinguishes between "input” and "output”
indicators [4]. The economic performance of a city, which includes factors such as residents’
income, economic structure, and local output value, is categorized as "output indicators," repre-
senting the economic development outcomes exhibited by the city. In contrast, factors such as
infrastructure, city size, and education that have significant impacts on economic performance
are considered "input indicators." This explanatory approach elucidates the inherent logical
relationship of competitiveness, which is a complex concept, and provides feasibility for its
quantification. However, excessive focus on economy may lead to a surge in environmental
issues. Balancing resource conflicts between economic growth and environmental protection in
urban development is the core of achieving sustainable economic development; it is also an
important dimension for understanding the concept of economic competitiveness [18].

Based on the previous discussion, the construction of a complex urban feature system in
this study should commence by distinguishing between direct (outputs) and indirect
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indicators (inputs). Considering the resource game between environmental protection and
economic development, and recognizing that environmental indicators have a distinct impact
mechanism compared to other indirect indicators on the economy, it is essential to separate
environmental indicators as a distinct dimension. A city feature system comprising three basic
dimensions: economic (direct indicators), social (indirect indicators), and environmental
(indirect indicators) was formed. Within the economic dimension, macroeconomic perfor-
mance, economic structure, financial performance, market size, and fiscal performance are
widely utilized as foundational metrics [19, 20]. Based on this foundation, the real estate indus-
try, which is a primary source of fiscal revenue for most local Chinese governments and plays
a significant role in monetary and financial policies, was included as an indicator of local eco-
nomic performance [21]. Moreover, while assessing economic competitiveness from the per-
spectives of social equity and sustainable development, the ultimate goal of economic
development was to enhance the living standards of residents [22]. Thus, indicators related to
resident income levels and employment structures also warrant attention.

In the social dimension, the supply of infrastructure, including transportation, water, gas,
electricity, and the Internet, directly affects a city’s attractiveness and competitiveness [23].
Moreover, urban size determines a city’s market potential and resource scale, thereby repre-
senting a crucial factor influencing economic development [24]. In addition to hardware con-
ditions, the high-quality development of a city’s soft power, which is represented by education
and healthcare, can directly improve human capital, innovation capacity, and quality of life,
which has received increasing attention [25].

In the environmental dimension, the existing research exhibits varying focal points while
assessing urban environments and sustainability. These points can be categorized into three
main dimensions: environmental factor provision, environmental governance capacity, and
environmental quality outcomes [26, 27]. Based on these three dimensions, indicators for envi-
ronmental protection facilities, pollutant emissions and disposal, and environmental quality
monitoring were selected as the corresponding quantifiable indicators.

In the previous sections, the two initial levels of indicators for the urban economic competi-
tiveness characteristic framework were determined through a literature review. Based on this,
the last two levels of indicators in the feature system were identified to form a four-level indica-
tor system. In the feature engineering of deep-learning models, providing more feature indica-
tors can enhance a model’s generalization and representation capabilities. However, caution
must be exercised when adding features—considering their representativeness and data quality
as redundant or irrelevant indicators can yield adverse results [28]. Therefore, two primary
factors were considered in the selection of specific indicators for this study. First, the chosen
indicators must be representative and sufficiently explanatory within the scope of higher-level
indicators. Second, the data quality of the indicators is of paramount importance. To increase
the sample size, samples were drawn from multiple years and encompassed most of the prefec-
ture-level cities in China. Consequently, there are stringent requirements for consistency and
scope in the statistical standards of indicators. Based on the above conditions, this study aims
to construct an urban feature system with more indicators to provide more effective features
for model training to explore the complex inherent relationships of urban economies. Official
and authoritative statistical data were prioritized during the selection process. In total, 598
indicators were selected to ensure adequacy and data quality. Among them, 410 indicators
were subjected to per-capita normalization, thereby resulting in a cumulative total of 1008 spe-
cific indicators. The entire urban feature system contained 3 primary, 14 secondary, 42 ter-
tiary, and 1008 specific (quaternary) indicators. The indicators and quantities included in the
urban feature system are referenced in Table 1. Detailed indicators and their respective data
sources are listed in S1 Appendix.
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Table 1. Urban feature system.

Primary indicators Secondary indicators

Tertiary indicators

Number of specific indicators

Economic Indicators Basic Economic Performance Gross regional product (GRP) 6
Industrial Enterprise Performance 24
Consumer Goods Market Size 12
Economic Structure Technology Innovation 10
GRP Structure 6
Sources of Fixed Asset Investment Funds 26
Fixed Asset Investment Amount 30
Financial Performance Deposit and Loan Amount 12
Digital Financial 10
Marketization and Openness Number of Enterprises 13
Enterprise Output Value 22
Foreign Trade Amount 2
Land and Real Estate Market Real Estate Market Investment Amount 12
Land Market 107
Average House Price 12
Government Finance Structure and Operations Financial Revenue and Expenditure Amount 18
Number of Public Utility Employees 8
Resident Income and Employment Distribution Personnel Employment 24
Employment Structure 84
Resident Income and Consumption 8
Social Indicators City Size Population Size 9
Urban Built-up Area Size 11
Nighttime Lights Data 12
Public Cultural Facilities 24
Scale of Urban Construction Telecommunications Services 16
Water Supply Capacity 97
Gas Supply Capacity 51
Electricity Supply Capacity 6
Transport Infrastructure Passenger Traffic Volume 8
Freight Traffic Volume 12
Road Traffic Construction Scale 28
Rail Transit Facilities Scale 80
Education and Medical Service Educational Facilities 23
Number of Teachers 12
Number of Students 16
Medical Service Providers 14
Environmental Indicators Pollutant Emission Treatment Pollutant Emissions 10
Pollutant Treatment Volume 60
Environmental Facilities Environmental Protection Facilities 32
Urban Greening 26
Environmental Monitoring Air Quality Monitoring 15

https://doi.org/10.1371/journal.pone.0293303.t001

Data collection

The data for the independent variables included urban statistics for 283 prefecture-level cities
in China over an 8-year period from 2012 to 2019, for a total of 2264 city samples. Some cities
such as Hong Kong, Macau, and Taiwan were not included in the study. Combining the data
available at the prefecture level, each city sample contained 598 original feature variables, 410
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of which were selected for per capita calculation, with a total of 1008 features for each city.
Most of the data were collected from the national statistical yearbooks and information public-
ity of national ministries and commissions.

The dependent variable, the urban comprehensive competitiveness index, was adopted
from the Annual Report on China’s Urban Competitiveness [29] published by the National
Academy of Economic Strategy (NAES), Chinese Academy of Social Sciences (CASS), and
China Social Sciences Press. This report presents the economic competitiveness index of 294
cities in China using a system of indicators that includes regional output, business, finance,
education, population, environment, and infrastructure. Data from 2012 to 2019 (11th-18th)
reports were selected for this study.

Theoretical foundations of deep learning neural networks

A neural network is a mathematical model that enables hierarchical processing of complex
input data and is commonly used for accurate classification and prediction. The basic building
units of a neural network are neurons, and multiple interconnected neurons constitute the
entire network. A neuron comprises inputs, outputs, weight parameters, bias terms, and an
activation function. During computation, a neuron receives input signals, multiplies them by
the corresponding weight parameters, and then adds a bias term to obtain a weighted sum.
This weighted sum serves as the input to the activation function, which calculates the output of
the neuron. The activation function is nonlinear, thus allowing the neural network to learn
complex nonlinear relationships between input data by mapping the inputs to a high-dimen-
sional nonlinear space. This effectively enhances the expression and generalization ability of
the model, resulting in a significantly improved performance in classification and prediction
tasks compared to linear models. Learning capability is the core feature that distinguishes neu-
ral networks from other computational models [30]. Learning refers to the process of itera-
tively adjusting network parameters during training to minimize the discrepancy between the
output values and the ground truth. In this process, the neural network automatically learns
and extracts features from the data, ultimately minimizing the loss function and maximizing
prediction and classification accuracy. This automatic solution of the optimal model parame-
ters allows the trained neural network to be better applied to unknown datasets and
environments.

Model selection

The CNN was chosen as the analytical model for studying urban economic competitiveness in
this study for the following reasons: First, studying the competitiveness of cities as complex
systems, involves multiple urban indicators and their intricate interrelationships. These inter-
actions are present not only among specific indicators, but also extend to high-dimensional
indicators comprising multiple specific indicators. The efficient extraction of features from
such high-dimensional feature data, considering the hierarchical nature of features, is a core
influencing factor in model selection. CNNs can efficiently extract local features and spatial
correlation information from the matrix data through their designs of local connections and
shared weights. This spatial correlation embodied in the urban indicator matrices can be
understood as the interaction between higher-dimensional indicators, which are commonly
influenced by several specific indicators. With the stacking of multiple convolutional layers,
the CNN progressively extracts higher-level abstract features, thereby achieving hierarchical
feature extraction of the interactions among indicators from different dimensions within the
urban feature system. This approach of local feature extraction and multi-level modeling aligns
with the structure of the complex urban feature indicator system, thereby providing stronger
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interpretability of results for the research and reducing the understanding confusion and result
mistrust caused by the "black box" mode.

Second, in comparison with the current common sequence neural networks, such as the
recurrent neural network (RNN) and transformer neural network, it is technically feasible if
the city indicators are directly used as training samples in the form of one-dimensional
sequence data. However, sequential neural networks primarily capture the positional relation-
ships of various indicators in a sequence and the dependencies between adjacent indicators,
which means that the order of the arrangement of indicators in the sequence needs to be care-
fully considered. Theoretically proving the specific order of each indicator for urban features is
challenging or even meaningless. Therefore, the interpretability of results is limited while
applying such abstract data without clear ordering significance to sequence neural networks.
In summary, considering the capabilities of the CNN in spatial correlation, multi-level model-
ing, and feature extraction, which are more aligned with the architecture of the urban feature
system, it is a reasonable choice in terms of model performance and interpretability.

CNN theory

CNNss are deep feed-forward neural networks with local connections and weight sharing.
Compared with traditional neural networks, neurons in the hidden layer do not require to be
connected to all the neurons in the previous layer because of the application of convolutional
kernels. In addition, the application of shared weight parameters for the same set of neuron
connections effectively reduces the weight parameters and accelerates model convergence. The
core structure of a CNN is the convolutional layer. The convolutional kernel extracts features
of the images and forms a feature map by sliding and progressively performing convolutional
operations. Through multiple convolutions, the feature map size is gradually reduced, and the
network depth is increased to extract more complex and abstract features from the images.
The formula for the convolution calculation is

m=1)

) Ky kn -1 (u
hg.}' = Zk:1 Zu:l szl Wk‘)uyagwf)l‘jwfl,k + b; s (1)

aj) = f(h), (2)

where hf? is the value of the feature map in row i and column j in the Ith layer of the convolu-

mD

tional layer, is the number of feature maps in the (I-1)th layer, k,, and kj, are the width

and height of the convolution kernel, respectively, and w,((l,)u,v is the weight value of the kth con-
volution kernel in row u and column v in the /th layer. a,(;ljl j1v-14 is the value of the kth fea-

ture map at row (i+u—1) and column (j+v-1) in the (I-1) layer. bfl) is the bias term of the ith
feature map of the Ith layer, and fis a nonlinear activation function. A typical CNN generally
contains a pooling layer, which includes average and maximum poolings, to reduce the size of
the feature map and thus increase the computational efficiency. A fully connected layer is com-
monly used as the final output layer, which maps the feature information from the previous
layer to the next layer and converts the feature map into a one-dimensional vector for final
classification and recognition.

Data augmentation

CNNs have powerful capabilities for data feature extraction and classification; however, these
capabilities are based on large volumes of training samples [31]. Insufficient training samples
would result in decreased accuracy or overfitting, which is often characterized by an increase
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in the loss value and a slight increase in accuracy or a constant. This indicates that the model
overlearns meaningless features, resulting in a lower generalization ability. In this case, the
model has higher accuracy on the training set and lower accuracy on the test set. Typical
approaches to improve the generalization ability include dropout [32], migration learning
[33], and pre-training [34]. Although these approaches have been widely applied, they mainly
target the data structure of image samples and have certain requirements for the sample size,
which are less compatible with this research in terms of the size and distribution of samples.

Many studies have demonstrated that increasing the training sample size can significantly
improve model performance [35]. Common data enhancement methods are cropping, stitch-
ing, and flipping of original data. Sharpening, blurring, and color adjustment can also be
applied when processing image data. These treatments directly change the data values of the
samples; however, for image samples, they do not modify the objects on the screen; instead,
they highlight the features more clearly. By contrast, abstract data for economics do not depict
concrete objects; therefore, the application of these approaches is limited.

The employment of GAN in data augmentation tasks is a more focused approach. Genera-
tors constantly learn and integrate features in competition with discriminators and create new
features in the process, which can be considered as a process of unlocking additional informa-
tion in the training data [36]. Yi et al. [37] found that applying a GAN for data enhancement
in medical image detection could provide rich and convincing features, further improving the
model accuracy. Lim et al. [38] addressed the data imbalance problem using data generated by
a GAN, which effectively improved the recognition rate of a detection model. In this research,
the number of city samples was fixed; however, the economic development level of Chinese cit-
ies has apparent unevenness, that is, a few municipalities and provincial capitals are economi-
cally developed, whereas most cities have a low level of economic development. Limited
sample sizes and uneven distributions often occur in social science research. Therefore, using
a GAN for training sample expansion provides richer features compared to the original sam-
ples and improves the generalization ability of the models. In addition, sample expansion bal-
ances the data distribution and prevents the CNN from favoring the data-rich category in the
classification, thereby improving the model classification accuracy.

GAN theory

A GAN is a network framework consisting of two deep neural networks: a generator that
learns the distribution of real data and generates similar data and a discriminator that distin-
guishes whether the input data are real or generated. The training of generators and discrimi-
nators is a zero-sum game in which the maximization of one party’s gain must be achieved by
minimizing the other party’s gain. The two models compete against each other in alternate
training, aiming to generate samples that are similar but difficult to distinguish from the real
samples. Considering that GAN provides a model framework, multiple variants of GAN have
been implemented by replacing the discriminator and generator models and adding other pro-
cessors. Radford et al. [39] constructed the DCGAN utilizing CNNs as generators and discrim-
inators, which demonstrated an impressive performance in data classification and high-quality
image generation. Mirza and Osindero [40] proposed a conditional generative adversarial net-
work (CGAN) that imposes constraints on the generated data by adding labeling variables,
such that the GAN is controlled to generate samples with specific requirements. Odena et al.
[41] proposed an auxiliary classifier GAN (ACGAN), which is a multicategory classification
network added to the original structure of CGAN. In ACGAN:S, the generated data are simul-
taneously used in the training of the discriminator and classification network, preventing the
training of the classification model from crashing caused by unbalanced sample distribution,
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thereby expanding the applications of GANs. The value function formula of a GAN is
min max V(D,G) = E,_,,, [log D(x)] + E_,  [log (1 = D(G(2)))] (3)

where E is the expectation, D is the discriminator, and the output of D ranges from 0 to 1,
which represents the probability of generating real input samples. data represents the real data
used for training, G is the generator, and z is a noise variable input to G for data generation.
ming represents the objective of D is to maximize the value function V, which is equated to
maximize D(x) and I-D(G(z)). Therefore, the training objective of D is to discriminate the real
samples as real (Output 1) and the generated samples as false (Output 0). Similarly, the objec-
tive of G is to minimize the value function, which is equivalent to minimizing I-D(G(z)), such
that the training objective of G is to deceive D, prompting D to discriminate the generated
samples as real (Output 1).

Overall design of the experiment

Referring to the flowchart in Fig 1, the entire experimental process can be divided into three
parts:

Step 1: The training and test sets were used for the CNN training, and an original classifica-
tion model was obtained.

Generated
Generation

Original Classification
Classification Model

ma Iraining Set

Data Exception

Raw D S .
SRR Combination Data Filtering

CNN Final Classification
Classification Model and Results

B—> Step1l

Fig 1. Experimental procedure.
https://doi.org/10.1371/journal.pone.0293303.9001

E----9 Step2

B— - - » Step3
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Step 2: The training set was applied to the GAN training for categorical data generation,
and the generated data were filtered using the original classification model to eliminate data
whose classifications differed from the generated categories.

Step 3: The filtered data were combined with the training set from the raw data to form a new
training set, and the CNN was used again for training to obtain the final classification model.

Architectural design of neural network models

Input data structure. A CNN captures the local features and spatial relationships of data
through convolutional kernels. The data structure is a core factor affecting the performance of
a CNN. One- and two-dimensional CNNs are common and widely used CNN structures.
One-dimensional CNNs are often employed to process time-series data, the core of which
extracts the sequential dependencies of series data, and thus not applicable to urban feature
analysis. Two-dimensional CNNs focus on local features in the data and analyze and represent
these data features through multiple extraction and condensation processes. Therefore, in this
study, city feature data were mapped to the distribution of images to adapt to the structure of a
two-dimensional CNN.

The feature data for each city contained of a one-dimensional vector with a length of 1008.
To meet the input requirements of the network, the vector was expanded to a length of 1024
by zero padding. Subsequently, the vector was transformed into a 32x32 two-dimensional
matrix. This data structure enables the network to effectively extract the spatial relationships
between local and global features, maximizing the performance of the model. Therefore, by
applying zero-padding and dimension transformation operations, the original one-dimen-
sional feature vector is transformed into a two-dimensional matrix structure suitable for two-
dimensional CNNs. It is better to understand this data structure as a "feature image", as an
image is composed of pixels, while a feature image is composed of urban features.

Regarding the application of abstract data to CNN, the arrangement of indicators in the
input data is an important aspect of feature engineering. The data structure formed by differ-
ent arrangements significantly affects the capture of interrelationships between indicators and
feature extraction, which is ultimately reflected in the model’s accuracy and generalization
capability [42]. In a CNN, the convolutional layers extract local spatial features by sliding con-
volution kernels. If indicators of the same type are grouped in the same region to represent a
specific feature, the convolutional kernels can capture the local features of this region more
easily. This organization is also conducive to generating feature mappings that are purer and
focused on specific features. In contrast, if indicators are not categorically arranged but are
randomly distributed, the feature extraction process of convolution kernels becomes difficult,
and chaotic feature maps would lead to poor model performance [43].

In this study, a 32x32 two-dimensional matrix of the input data was divided based on row
units, where indicators representing similar types of urban features were arranged in the same
row. As shown in Fig 2, the data structure was organized such that the original indicators and
indicators computed on a per-capita basis were initially divided and arranged in the first 19
and subsequent 13 rows, respectively. Subsequently, based on the hierarchical structure of the
urban feature system, the indicators were further categorized into economic, social, and envi-
ronmental indicators from top to bottom. For example, economic indicators occupied the first
eight rows, with basic economic indicators in the first row, followed by a similar arrangement.
Through this arrangement, the indicators representing the same high-dimensional features
were grouped into the same region.

In the low-level convolutional layers, convolutional kernels can further emphasize the local
features corresponding to identical region indicators and features of the same type by
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capturing intrinsic relationships among features of the same type. In the high-level convolu-
tional layers, with an increase in the number of channels and a reduction in the size of feature
maps, convolutional kernels can capture the intrinsic relationships among higher-dimensional
features. This indicator arrangement allowed for a gradual transition from specific to high-
dimensional indicators in capturing intrinsic relationships, thus providing stronger model
interpretability and performance improvement compared with random indicator arrange-
ments. In this study, a CNN was employed and the data were used to test two modes of indica-
tor arrangement: random and categorical. When only the arrangement of the sample features
was altered, the categorical arrangement led to an improvement in the model accuracy of
approximately 0.89% to 1.11%.

CNN architecture design. The architectural design of a CNN should be adjusted based
on the data dimensions, sample size, and task complexity. Excessive parameterization can lead
to training difficulties and overfitting, whereas inadequate parameters can result in insufficient
model expression. Given the relatively small size of the urban feature matrix (32x32), overly
deep convolutional layers can result in excessively abstracted features and subsequent overfit-
ting. Therefore, a shallower architecture with four convolutional layers was selected. Consider-
ing the limited original sample size (2264), the number of channels in the feature maps was set
to 512 to ensure a sufficiently rich feature representation. In the first three convolutional lay-
ers, a 4 x 4 kernel size was chosen to capture larger local features, while remaining smaller
than the local feature dimensions of the economic, social, and environmental aspects, thus pre-
venting the extraction of overly abstract and complex local features. A stride of 2 was used to
downsample the feature map dimensions by half in each layer, thus allowing the hierarchical
extraction of features in higher dimensions. The convolutional layer design also includes batch
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normalization and dropout layers. Batch normalization layers standardize the input feature
maps to reduce the internal covariate shift and improve the model convergence speed; they
were added to all convolutional layers except the first. The dropout layers randomly drop a cer-
tain ratio of neurons for regularization and improve the model generalization; their ratio was
set to 50% in the experiments.

Amongst the activation functions, we selected the leaky rectified linear unit (LeakyReLU)
for all layers except the output layer. Compared to the rectified linear unit (ReLU) function,
the LeakyReLU function introduces a small gradient on negative inputs, thus effectively miti-
gating the issue of gradient vanishing caused by neuron inactivity for negative inputs in the
ReLU function and enhancing the expressiveness of the model. The output layer of the model
selected the logarithm of the softmax (LogSoftmax) activation function, which is commonly
used for multi-class categorization tasks. The LogSoftmax function calculation involves com-
puting the logarithm of the output of the softmax function and converting the probability dis-
tribution into a logarithmic probability distribution. Thus, the probability calculation changes
from multiplication to addition, which avoids the underflow caused by a large number of val-
ues that are significantly small and breaks the calculation accuracy limit. The negative log-like-
lihood loss (NLLLoss) function was chosen as the loss function. It was coupled with the
LogSoftmax activation function. This combination aids in intuitive calculation of the loss for
multi-class classification tasks, thereby reducing numerical stability issues and enhancing the
training efficiency and convergence speed. It is important to note that the pooling layers were
not incorporated into the CNN in the experiment because downsampling of the feature map
was achieved by the cooperation of the convolutional kernel with the step size, and the incor-
poration of the batch normalization and dropout layers can prevent the occurrence of overfit-
ting to a certain extent. Therefore, considering the limited number of urban feature metrics,
the pooling layers were removed from the CNN design to prevent the loss of major features
owing to the pooling layer. Fig 3 depicts the specific architecture of the CNN.

DCGAN architecture design. A GAN is a neural-network framework in which the dis-
criminator and generator are independent neural networks. The discriminator has a clear
objective function, which distinguishes real from fake data, whereas the generator’s objective
function generates samples that could be as real as possible. Thus, the generator must learn
complex probability distributions, resulting in a higher training difficulty. In the model
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designs and hyperparameter settings of GANs, a balanced growth of the generator and dis-
criminator capabilities is the key to successful training. Both the generator and discriminator
of a DCGAN utilize a CNN. Thus, the key to the balanced growth of the two modules lies in
the performance of the convolutional layers, which used a more powerful 3-layer convolu-
tional network with a maximum of 256 feature map channels for generator. By contrast, the
discriminator used a 2-layer convolutional network with 128 feature map channels. In addi-
tion, the size of the convolutional kernel of the discriminator differred from that of the genera-
tor to increase the network complexity. The specific architecture of DCGAN is referenced in
Fig 4. In terms of the learning rate, the generator learning rate was set to 0.0001, which was
larger than the discriminator learning rate of 0.00001, to prevent the discriminator from con-
verging too fast and the generator training from crashing. In the convolutional layer activation
function, the discriminator employed a LeakyReLU to avoid gradient vanishing, whereas in
the generator, a ReLU with a stronger non-linear expressive power was used to better preserve
and enhance the features of the generated data.

The generator used a hyperbolic tangent (Tanh) function as the activation function of the
output layer. The output values of Tanh were within the range [-1,1] and the mean value was
approximately zero, which could effectively control the range of the generator output values.
In addition, benefiting from the large gradient of the output value, Tanh could simulate the
data characteristics of the original sample as much as possible. The discriminator in a DCGAN
is a binary classification CNN, which often uses a sigmoid activation function for its output
layer. This is because the sigmoid function has a larger gradient when its input is close to zero,
which makes it more sensitive in discriminating the generated data. Furthermore, the binary
cross-entropy loss (BCEloss) function was adopted as the loss function of the DCGAN, which
was specifically designed for binary classification tasks. It can effectively measure the label dif-
ference between the generated and real samples.

Data preprocessing and analysis

The indicator system involved multiple units of measurement and orders of magnitude, and
normalization was used to standardize the data to eliminate the influence of different dimen-
sions on the analysis. The formula is

X=X,
xnarm = . (4)

Kmax ™ Xonin
where x represents the raw data, x,,,,,,, represents the data after normalization, and x,,,,, and
Xmin are the maximum and minimum values, respectively, in the same dimension as the data.
Initially, the normalization process was performed successively in the dimensions of the fea-
tures and samples, and the data were compressed to an interval of [0,1 in two dimensions. Sub-
sequently, a typical standardization process for CNN was applied in the feature dimension.

KXstd = xnmmo—b% (5 )

where x, is the data after standardization, which was distributed over a range of [-1,1].

Sample labels were processed through equal-width binning to divide the continuous vari-
ables of the original data into discrete variables so that an increase in the sample size for each
category could effectively improve the model accuracy and efficiency. This feature transforma-
tion technique is widely used in machine learning [44]. First, the raw urban comprehensive
economic competitiveness index data were standardized to an range of [0,1], after which the
data were divided into five and 10 classes. The division of five classes used a width of 0.2: Label
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Table 2. Sample size of each classification.

Five-class Competitiveness class
Sample size
Ten-class Competitiveness class

Sample size

https://doi.org/10.1371/journal.pone.0293303.t002

1 (Lowest) 2 3 4 5 (Highest)
1751 405 81 15 12

1 2 3 4 5 6 7 8 9 10

1209 654 199 97 54 21 12 6 2 10

1 represents lowest competitiveness and Label 5 represents highest competitiveness. The divi-
sion of 10 classes used a width of 0.1.

The sample size of each class listed in Table 2 shows that the distribution of the sample was
highly unbalanced, and a large proportion of cities had a lower level of economic competitive-
ness, which is the same as the current development status of Chinese cities. China’s southeast-
ern coastal region has obtained more development opportunities by benefiting from open
policies, natural environment, and large ports. In addition, to prevent resource outflow, prov-
inces generally focus on developing provincial capitals; however, excessively strong provincial
capitals tend to siphon resources from neighboring cities, resulting in a greater urban develop-
ment gap.

In this type of data distribution, basic data enhancement of the raw samples was achieved
through reverse sorting of the feature data and doubling the original samples to a total sample
size of 4528. The samples were randomly divided into training, validation, and test sets at a
ratio of 8:1:1, with sample sizes of 3628, 450, and 450, respectively.

Evaluation metrics

The classification accuracy of the validation and test sets was selected as the main evaluation
index of the CNN performance. Accuracy is the ratio of the samples with the same predicted
labels to the original labels in the total samples; the higher the accuracy, the better the model
performance. Additionally, the output value of the cross-entropy loss function and speed of
convergence assisted in the evaluation. An early stopping strategy was adopted in the training,
which indicates that the training would be terminated when the loss value and the accuracy of
the validation set are leveled off. To precisely compare the model performance before and after
data augmentation by the DCGAN, all the CNN trainings in the experiment had a learning
rate of 0.0001, a training set batch size of 1024, and a validation set batch size of 450.

The experimental equipment was equipped with a Windows 11 operating system and an
Nvidia GeForce RTX 3070 graphics card. The neural network model was built using Python
3.9.12 and PyTorch 1.12.0.

Results
Classification of original dataset using CNN

This experiment was the first to evaluate the performance of a CNN in accurately classifying
urban economic competitiveness. As shown in Fig 5, in the training using the 5-class original
dataset, the validation accuracy and loss values stopped improving at approximately 1400
epochs, indicating that the model converged. The model achieved a maximum accuracy of
96.44% in the validation test. In addition, the trained model classified the test set with an accu-
racy of 93.78%. The model achieved faster convergence rate using 10-class samples, and the
variation in the validation performance metrics leveled off at approximately 900 epochs, at
which time the accuracies of the model using the validation and test sets were 89.11% and
88.44%, respectively. The results showed that the model exhibited high accuracy rate in the
5-class test and less accurate in the 10-class test because the difficulty in classifying increased as
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Fig 5. Classification accuracy and loss values of the original dataset.

https://doi.org/10.1371/journal.pone.0293303.9005

the number of classes increased. The model performs well in terms of accuracy, which proved
the effective utilization of the CNN and urban economic characteristic system data. In addi-
tion, the model demonstrated similar classification accuracy for both the validation and test
sets, indicating that the model can adapt to data changes and has good generalization ability.

Data augmentation using DCGAN

Data generation. The experiment also evaluated whether the training sample expansion
achieved by the DCGAN could improve the performance of the CNN. The original samples of
each class were placed separately in the DCGAN for generative training. To maintain balanced
growth of the discriminator and generator performances, the learning rates were set to
0.00001 and 0.0001. A lower learning rate set for the discriminator prevents training crashes
caused by rapid growth in its performance. The training set batch size was 1024, and the num-
ber of training epochs ranged from 10,000 to 40,000 because of the different training difficul-
ties caused by the different class sample sizes.

In contrast to processing intuitive data, such as images, where DGAN training can be deter-
mined by directly observing the quality of the generated images, in the case where the samples
are abstract data, the progress of the model training can be determined through discriminator
loss and output values. In the case where a discriminator and generator play a binary zero-sum
game, the global optimal solution is that the discriminator cannot distinguish between the gen-
erated and real samples, which indicates that the output values of the discriminator for both
types of samples are approximately 0.5, whereas the discriminator loss values for both types of
samples converge and remain smooth. As demonstrated in Fig 6, for the training process of
samples with label value 1 in the 10-class dataset, the model converges around 10,000 epochs,
at which point the generated data reaches high quality.

Data filtering. In data augmentation tasks, the trained GAN can adopt the ensemble gen-
eration mode for data generation, which indicates that the data are generated from multiple
trained models instead of employing only the best model. In the case of a large amount of data
generated by a single model limited by the singularity of the model, the high similarity of the
generated samples leads to a reduction in effective features. In contrast, ensemble generation is
more beneficial for maintaining sample diversity [45].
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The ensemble generation contained multiple models, and to prevent the defective model
from generating anomalous samples, the CNN model that was trained in previous experiments
filtered the generated samples, that is, it eliminated the generated samples whose expected
labels were different from the CNN-predicted labels. The abnormal sample proportions of the
different classes ranged from 1% to 40%.

Sample combination. Another factor for data enhancement of DCGAN is the number of
samples that should be generated. This study tested three ratios between the original and gen-
erated samples in the enhanced dataset:

1. Large sample size (generated sample size exceeded 50,000; total sample size exceeded
60,000)

2. The total sample size was balanced for each class (each class in the augmented dataset had
the same sample size, with a total of approximately 20,000).

3. The generated sample size was balanced for each class (with approximately similar gener-
ated sample size for each class)

The results of the classification accuracy test show that the model exhibited better perfor-
mance only on the last combination of the augmented dataset in comparison to its perfor-
mance using the original dataset. Based on the criterion, 13,700 samples were generated for the
5-class samples test, and 3,341 abnormal data points were excluded after CNN filtering, with
the remaining10,359 generated samples for the final augmented dataset of 13,987 (combining
the available generated dataset with the training set of original samples). In the 10-class sam-
ples test, the augmented dataset size was 13,590. Table 3 presents the specific sample quantities
and allocation methods of the original dataset and augmented dataset in the experiment.

Classification of augmented dataset. After applying the enhanced dataset, the accuracy
of the 5-class test set improved from 93.78% to 94.22%, which represents an increase of 0.44%.
A more dispersed data distribution of the 10-class samples enhanced the advantages of the
augmented dataset, wherein the accuracy of the test set improved from 88.44% to 90.44%,
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Table 3. Sample size of each data set.

Original samples Generated samples
Classification Original Training set | Validation set | Test set All generated Anomalous Available generated Augmented
dataset dataset samples dataset dataset
Five-class 4528 3628 450 450 13700 3341 10359 13987
Ten-class 14400 4438 9962 13590

https://doi.org/10.1371/journal.pone.0293303.t003

which represents an increase of 2.00%. Both samples exhibited higher accuracy rates than the
original samples, thereby proving the validity of the enhanced dataset. Meanwhile, as shown in
Fig 7, the convergence rate with the augmented dataset is significantly faster than that with the
original dataset. The specific accuracies of the original dataset and augmented dataset are ref-
erenced in Table 4.

Quality assessment of generated data. Verifying the quality of generated data is crucial
for methods that use GAN’s to generate augmented data. The generated samples were employed
as training data for subsequent CNN training. Low-quality samples introduce bias and reduce
the model’s generalization capability and accuracy. Furthermore, insufficient diversity may lead
to the failure of the data augmentation method. Owing to the lack of a standardized evaluation
method and criteria, assessing the quality of data generated by GANs has consistently proved to
be challenging. In the widely applied field of image generation using GANs, inception score (IS)
and Frechet inception distance (FID) are representative evaluation standards. These methods
utilize inception networks pre-trained on the ImageNet dataset to compute the distances
between the generated and original data, based on features. Because they rely on pre-trained
networks, the application of these methods requires the generated samples to be concrete
images, the categories of which are included in ImageNet. These methods are not applicable to
the abstract data used in this study. To address this situation, an evaluation method based on
the performance of the generated data in downstream tasks was proposed [46]. This method
does not calculate the feature distances between the generated and original data, but instead,
applies the generated data to specific tasks and evaluates the quality and diversity of the gener-
ated data based on its actual performance in these tasks. This evaluation approach is more
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Fig 7. Classification accuracy and loss values of the augmented dataset.
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Table 4. Classification accuracy.

Dataset Classification Original dataset Augmented dataset Accuracy improvement
Validation Set Five-class 96.44% 96.89% 0.45%
Ten-class 89.11% 90.44% 1.33%
Test Set Five-class 93.78% 94.22% 0.44%
Ten-class 88.44% 90.44% 2.00%

https://doi.org/10.1371/journal.pone.0293303.t004

suitable for abstract data. Specifically, the evaluation of data quality included two tests: GAN-
train and GAN-test. The GAN-train utilizes the generated data to train a CNN, and then evalu-
ates the model performance using the original data as the test set. Because the CNN can only
learn features from the generated data during the training process, a higher G-train classifica-
tion accuracy signifies that the generated data can provide more diverse features and better data
quality. In GAN-test, the CNN is trained on the original data and tested on the generated data.
Higher accuracy indicates higher quality and realism of the generated data. Both GAN-train
and GAN-test were tested for diversity and quality, and the performance of the generated data
in these two aspects was considered to be a core factor in achieving data augmentation.

In terms of the evaluation criteria, the evaluation of the GAN-test is relatively straightfor-
ward, wherein the difference in accuracy of the original and generated data are compared, when
used as the test set. In the experiments, when the generated data matched the sample quantity of
the original dataset, the accuracies of the generated data in the 5-class and 10-class tests were
89.20% and 87.48%, respectively. These accuracies when compared to the original dataset accu-
racies of 93.78% and 88.44%, respectively, revealed a close match and indicated high data quality
in the generated samples. However, assessing the GAN-train is more complex because of its use
of generated data for training, thus leading to an infeasible direct comparison with the accuracy
of the original dataset. Therefore, the evaluation involved a comparison with the accuracies of
methods similar to those in existing studies. Referring to the original paper proposing this eval-
uation method, DCGAN achieved 65.0% GAN-train accuracy on the Canadian Institute for
Advanced Research 10 (CIFAR-10) dataset when using the same number of generated and real
samples [46]. In another study, using a similar evaluation method, DCGAN generated 1000
samples from a tomato leaf disease dataset with 240 samples. When both the generated and real
samples were used jointly for GAN-train, the accuracy reached 66.00%. In addition, the authors
comprehensively analyzed other evaluation methods and concluded that the quality and diver-
sity of the generated data were as expected, when the GAN-train accuracy was 66.00% [47]. In
this study, when the development set sample size matched that of the original dataset, the GAN-
train accuracies for the 5-class and 10-class samples were 79.31% and 55.32%, respectively.
When the development set sample size was increased to three times that of the original dataset,
the accuracies changed to 78.89% and 65.06%, respectively. Notably, the 10-class samples
showed increased accuracy after incorporating additional generated samples for training,
whereas the accuracy of the 5-class samples remained relatively stable. A comprehensive com-
parison of the GAN-train accuracy in the two aforementioned studies revealed that the 5-class
samples demonstrated superior data quality and diversity, whereas the 10-class samples exhib-
ited slightly inferior performance, although it was satisfactory. Table 5 displays the different
datasets used for GAN-train and GAN-test, along with their respective test accuracies.

Robustness analysis

A total of four validation methods were designed to validate the combined performance of the
research methods. First, to verify the performance of the custom-designed CNN
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Table 5. Accuracy of generated sample quality assessment.

Evaluation Development set data | Test set data | Classification | Development set sample Test set Development set sample Test set
method source source size accuracy size accuracy
GAN-train Generated samples Original Five-class | 4528 (1 times the original 79.31% 13584 (3 times the original 78.89%
samples Ten-class dataset) 55.329% dataset) 65.06%
GAN-test Original samples Generated Five-class 4528 89.20%
samples Ten-class 87.48%

https://doi.org/10.1371/journal.pone.0293303.t005

(CNN-Custom), the accuracy was compared while using very deep convolutional networks
with 11 layers (VGG11) and very deep convolutional networks with 16 layers (VGG16) on the
same dataset. Second, to validate the influence of the intrinsic relationships between different
data structures and indicators on the model, two neural networks: vision transformer (VIT)
and long short-term memory (LSTM), which differ from the CNN architecture, were selected
for validation. Third, by constructing regional feature data for China’s county-level adminis-
trative areas, the stability and generalizability of the CNN-Custom architecture were verified.
Fourth, in terms of data augmentation, a method similar to the experimental design rationale,
ACGAN, was used to validate the effectiveness of the data augmentation method.

Performance comparison. VGG, a classic CNN architecture, has gained strong universal-
ity and interpretability owing to its concise structural design and deep network architecture. It
is frequently used as a performance benchmark in CNN research. Compared to CNN-Custom,
VGG has a deeper network structure, with VGG11 and VGG16 having 8 and 13 convolutional
layers, respectively. The additional convolutional layers in VGG enhance its feature extraction
capabilities; however, this augmentation also increases the possibility of overfitting. Because
VGG requires fixed 224x224 data dimensions, the data dimensions were expanded to the
required size by zero-padding. The experimental results revealed that both VGG11 and
VGGL16 achieved an accuracy similar to that of CNN-Custom on the validation set; however,
they provided a slightly inferior accuracy to CNN-Custom on the test set with 10-class sam-
ples. Meanwhile, VGG16 exhibited an inferior performance to VGG11 (test set: 5-class—
VGG11: 94.89%, VGG16: 94.00%; 10-class—VGG11: 87.11%, VGG16: 87.11%). This phenom-
enon can be attributed to the excessively abstract features extracted by the deeper convolu-
tional layers of the VGG concerning the number of features within the urban feature system
and data volume. This abstraction can lead to overfitting. Furthermore, the higher model com-
plexity of VGG16 and the lower data volume for the 10-class samples exacerbated this
occurrence.

Data structure and feature relationships validation. Considering urban feature data as
abstract information curated manually and containing various potential data structures and
intrinsic relationship patterns among indicators, a ViT and a LSTM were chosen as compara-
tive models. This selection aimed to validate the efficacy of the proposed approach for hierar-
chical urban feature extraction based on CNN local feature extraction and high-dimensional
feature mapping. ViT is an emerging computer vision model that uses the same input data
structure as a CNN. By contrast, ViT divides the data matrix into patches of equal size via con-
volutional operations and models the global relationships between patches through a self-
attention mechanism to capture data features. In contrast to the emphasis of CNNs on local
feature extraction, ViT focuses more on holistic feature representation through global feature
encoding. In the experiments, ViT used a 4 x 4 patch size, an embedding dimension of 256, 12
encoder blocks, 8 attention heads per block, an MLP ratio of 2, and a representation size of
256. The experimental results revealed that ViT achieved a lower accuracy of 89.78% and
78.67% for the 5-class and 10-class test sets, respectively. This could be attributed to ViT’s
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increased focus on global relationships among patches, thereby neglecting the internal features
of individual patches. Meanwhile, ViT’s greater demand for sample size also contributed to its
lower accuracy.

To explore potential data structures, LSTM with an input data structure different from that
of the CNN was selected for the experiment. The LSTM propagates features from the previous
to the subsequent time step by using memory cells, thereby facilitating the learning of feature
correlations across different time steps. City indicators, upon application to the urban feature
data in the experiment, were arranged in a one-dimensional sequential manner for the LSTM.
Each sample comprised 1024 time steps, wherein each time step corresponded to a specific fea-
ture indicator, thereby resulting in a sample sequence length of 1024. The hidden size was set
to 64, and a 2-layer LSTM was utilized. The experimental results indicated that LSTM had a
lower accuracy than that of CNN-Custom, with accuracies of 90.89% and 80.67% for the
5-class and 10-class sample test sets, respectively. This can be attributed to LSTM’s inability,
particularly for urban features, to adequately explore the correlation between different features
across various time steps, especially when the time steps are distant, thereby leading to infor-
mation decay within memory units. In addition, the sequence order of the urban features was
random; therefore, the relative positional relationships between different time steps learned by
the LSTM did not have practical significance.

Generalization validation. To validate the stability and universality of CNN-Custom in
other regional difference studies, similar to urban indicators, features from county-level
administration were utilized to assess the economic development levels across counties in
China. Official statistics rarely involve county-level administrative areas; therefore, all data
used in the experiment were exclusively sourced from the China County Statistical Yearbook
for 2019. Similar to the urban feature system, indicators including economic structure, fiscal
revenue and expenditure, and financial performance were used as economic indicators,
whereas infrastructure, population, area, agricultural output, and industrial scale were used as
social indicators. Owing to missing data, the feature system did not contain environmental
indicators. Out of the 29 original indicators that were collected, 16 were computed on a per-
capita basis, resulting in 45 specific indicators. Following the same data processing approach
used for the urban feature data, a 7x7 two-dimensional matrix was constructed using zero-
padding. For the sample labels, the regional GDP was chosen as the metric for measuring
regional economic competitiveness. Given the large dynamic range of the GDP data, the data
range was first compressed via a logarithmic transformation, and then discrete data were
obtained via equidistant binning. After removing samples with missing statistics, 2076 original
county-level samples were obtained.

Owing to the change in sample size, the convolutional kernel size of the 3rd and 4th convo-
lutional layers of CNN-Custom was changed from four to three, and the stride was changed
from two to one to prevent overfitting caused by an excessive abstraction of features. Similarly,
the parameters of the DCGAN generator were adjusted based on the sample size. Other meth-
odologies, including standardization, model parameters, dataset splitting ratios, and generated
sample ratios, were kept unchanged. In the county-level data test, the test-set accuracy on the
5-class original dataset was 91.46%, which improved to 91.95% through data augmentation (an
increase of 0.49%). For the original 10-class dataset, the test set accuracy was 74.88%, which
increased to 76.59% through data augmentation, thereby yielding an improvement of 1.71%.
Refer to Table 6 for specific experimental results. Overall, the county-level dataset exhibited a
favorable performance on the 5-class classification. However, as the number of classifications
increased to 10, the accuracy remained relatively low owing to insufficient feature quantity in
the samples. The data augmentation method implemented through DCGAN achieved a per-
formance improvement similar to that observed in the urban dataset.
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Table 6. County-level dataset accuracy.

Dataset Classification Original dataset Augmented dataset Accuracy improvement
Validation Set Five-class 89.02% 89.76% 0.74%
Ten-class 76.59% 76.83% 0.24%
Test Set Five-class 91.46% 91.95% 0.49%
Ten-class 74.88% 76.59% 1.71%

https://doi.org/10.1371/journal.pone.0293303.t006

Data augmentation validation. To further evaluate the performance of data augmenta-
tion methods, the ACGAN was added for comparison purposes. The design idea of the
ACGAN was similar to that of this experiment, both of which added generated samples to the
classification training so that the classifier could obtain more diverse sample features to
increase classification accuracy. The differences are (1) ACGAN is based on CGAN, which can
control the category of generated samples, and (2) ACGAN has no ability to filter the gener-
ated samples, but directly feeds into the classification training. The experimental results
showed that ACGAN attained an accuracy of 94.00% on the 5-class sample test set, slightly
lower than the performance on the augmented dataset with CNN-Custom. However, it only
achieved an accuracy of 87.56% on the 10-class test set, even lower than the performance of
CNN-Custom without data augmentation. The validation accuracy changes of different mod-
els and datasets during training, as visually demonstrated in Fig 8, intuitively prove this point.
This could be due to the uneven distribution of the original samples, resulting in an ACGAN
based on the CGAN generation model, which tends to generate samples of a certain category
more often. The uneven distribution of samples was further aggravated by the excessive differ-
ence in the quality of the generated samples from different classes. In addition, low-quality
generated samples negatively affected the training of the classifier, causing a decrease in the
classification accuracy.

Referring to the test results of the experiments for various validations in Tables 6 and 7, it
was observed that when dealing with urban feature data, the classification performance of
CNN-Custom was comparable to that of VGG and superior to other deep learning models. Its
design, which was tailored to the structure of the urban samples, resulted in better generaliza-
tion and interpretability. However, when applied to other regional difference studies, owing to
insufficient regional feature indicators, its performance on tasks with more categories was
barely satisfactory. Furthermore, urban feature data contain various potential feature extrac-
tion patterns and data structures. However, owing to the randomness in the ordering of indi-
cators, its application in sequence neural networks exhibits a certain level of "black box"
nature. Additionally, the inclusion of filtering for the generated samples and the ensemble gen-
eration mechanism led to a more stable performance in terms of data augmentation.

Discussion

This study develops a city economic competitiveness classification model based on deep learn-
ing neural networks and complex urban features. It addresses the limitation of traditional eco-
nomic competitiveness research, which relies on regression models and limited features, and
fails to fully explore the interaction effects and nonlinear relationships among features. The
study successfully combines a deep learning model based on CNN with complex urban fea-
tures. The study first constructed a complex city feature system, city feature data were eco-
nomic, social, and environmental data of 283 prefecture-level cities in China collected between
2012 and 2019. The dataset contained 2264 city samples; each sample comprised 1008 urban
characteristic indicators. By dividing the economic competitiveness of cities into five and ten
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Fig 8. Accuracy comparison of different models and datasets.
https://doi.org/10.1371/journal.pone.0293303.9g008
Table 7. Validate model accuracy.
Dataset Classification CNN (custom) VGG 11 VGG 16 VIT LSTM ACGAN
Validation Set Five-class 96.44% 96.67% 96.22% 92.44% 94.67% 95.56%
Ten-class 89.11% 89.56% 88.89% 84.89% 82.44% 88.89%
Test Set Five-class 93.78% 94.89% 94.00% 89.78% 90.89% 94.00%
Ten-class 88.44% 87.11% 87.11% 78.67% 80.67% 87.56%
https://doi.org/10.1371/journal.pone.0293303.t1007
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levels, the classification accuracy of the CNN test set reached 93.78% and 88.44%. Additionally,
considering the substantial demand for sample size in machine learning, and the fixed number
of cities within a region, the study proposes a data augmentation method based on DCGAN.
By blending DCGAN-generated samples with original samples, the classification accuracy of
CNN was further improved by 0.44% and 2.00%. This study further extends the application of
machine learning in urban research, fully exploring the potential of big data-driven urban fea-
ture data. It incorporates complex urban features into neural network models, treating cities as
complex systems and considering the nonlinear relationships among various systems within
cities. In terms of model training, the application of DCGAN enables data augmentation at the
sample quantity level, providing a more versatile enhancement approach, especially for
research fields that are frequently limited by sample size in regional disparity studies.

Conclusions

The urban economic competitiveness classification model based on machine learning can pro-
vide a more accurate and stable way to identify differences in regional development, thus
assisting in making targeted policies and investment decisions. Further expansion of the
potential applications in analyzing indicators similar to urban economic competitiveness, such
as urban livability and sustainability, might also be achieved through targeted adjustments of
feature indicators and experimental samples. In addition, this study has implications for
research on other dimensions of regional differences, such as counties and villages. In the
future, a deeper integration of economic theoretical frameworks with neural networks and
enrichment of data feature engineering will be performed to provide more opportunities for
the development of artificial intelligence in urban economic research.
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