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Abstract

Urban economic competitiveness is a fundamental indicator for assessing the level of urban

development and serves as an effective approach for understanding regional disparities.

Traditional economic competitiveness research that relies solely on traditional regression

models and assumes feature relationship theory tends to fall short in fully exploring the intri-

cate interrelationships and nonlinear associations among features. As a result, the study of

urban economic disparities remains limited to a narrow range of urban features, which is

insufficient for comprehending cities as complex systems. The ability of deep learning neural

networks to automatically construct models of nonlinear relationships among complex fea-

tures provides a new approach to research in this issue. In this study, a complex urban fea-

ture dataset comprising 1008 features was constructed based on statistical data from 283

prefecture-level cities in China. Employing a machine learning approach based on convolu-

tional neural network (CNN), a novel analytical model is constructed to capture the interrela-

tionships among urban features, which is applied to achieve accurate classification of urban

economic competitiveness. In addition, considering the limited number of samples in the

dataset owing to the fixed number of cities, this study developed a data augmentation

approach based on deep convolutional generative adversarial network (DCGAN) to further

enhance the accuracy and generalization ability of the model. The performance of the CNN

classification model was effectively improved by adding the generated samples to the origi-

nal sample dataset. This study provides a precise and stable analytical model for investigat-

ing disparities in regional development. In the meantime, it offers a feasible solution to the

limited sample size issue in the application of deep learning in urban research.

Introduction

Scholars have long argued that competition between local governments in China over eco-

nomic development is one of the keys to understanding China’s economic system. Fierce eco-

nomic competition among Chinese cities has led to the promotion of economic

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0293303 November 7, 2023 1 / 27

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Xu X, Chen Z, Chen S (2023) Enhancing

economic competitiveness analysis through

machine learning: Exploring complex urban

features. PLoS ONE 18(11): e0293303. https://doi.

org/10.1371/journal.pone.0293303

Editor: Xiao Luo, University of California Los

Angeles, UNITED STATES

Received: July 26, 2023

Accepted: October 10, 2023

Published: November 7, 2023

Copyright: © 2023 Xu et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All the code and data

can be accessed at https://github.com/sizimiya/

UrbanFeatures_CNN_DCGAN.git.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0009-0000-4038-4430
https://orcid.org/0009-0003-4243-3699
https://doi.org/10.1371/journal.pone.0293303
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293303&domain=pdf&date_stamp=2023-11-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293303&domain=pdf&date_stamp=2023-11-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293303&domain=pdf&date_stamp=2023-11-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293303&domain=pdf&date_stamp=2023-11-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293303&domain=pdf&date_stamp=2023-11-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293303&domain=pdf&date_stamp=2023-11-07
https://doi.org/10.1371/journal.pone.0293303
https://doi.org/10.1371/journal.pone.0293303
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/sizimiya/UrbanFeatures_CNN_DCGAN.git
https://github.com/sizimiya/UrbanFeatures_CNN_DCGAN.git


competitiveness as a starting point for most local government policies [1]. In such a situation,

a more efficient and accurate method of distinguishing differences in urban economic compet-

itiveness is essential, whether it is government policymaking and performance evaluation or

industrial capital and population movement decisions.

The existing research on urban economic competitiveness can be categorized into two

directions. One of which is to explore the factors affecting competitiveness and their intrinsic

relationships, including human capital, education system, and infrastructure, which have been

proven to effectively influence urban economic competitiveness [2, 3]. These causal relation-

ships are typically validated through traditional mathematical models such as regression mod-

els. Another research direction is to construct a system of quantifiable indicators to assess and

rank the competitiveness of economies at the same level within a region [4]. This type of

research analyzes and selects the influencing factors using an explanatory framework, and cal-

culates the weighting parameters by applying variance weighting, entropy weighting, and prin-

cipal component scoring methods.

These methods assume a linear relationship between the dependent variable and the inde-

pendent variables. While the dependent variable is influenced by a single independent variable,

it is also affected by the interaction effects among multiple independent variables. Therefore,

traditional approaches require the artificial determination of the relationship between urban

economy and urban characteristics, as well as the interaction effects among urban characteris-

tics, before analyzing urban economic competitiveness. However, cities are complex systems

composed of factors such as infrastructure, environment, and population [5]. Without a com-

plete understanding of how various urban characteristics interact within this system, it is

extremely challenging to specify the interrelationships among factors in the model. This limita-

tion restricts traditional methods to examining only a limited set of influencing factors for eco-

nomic competitiveness and prevents the capture of complex nonlinear relationships and

interaction effects among these factors.

The development of deep learning neural networks has provided a new approach to address

this dilemma. By considering complex urban features as input variables and using indicators

such as urban economic level and variations in urban development as output labels, it becomes

possible to incorporate urban features into the processing architecture of neural networks [6].

On the other hand, neural networks can automatically perform nonlinear modeling of complex

interaction patterns among input features [7]. This automated learning approach enables effi-

cient and accurate analysis of problems based on intricate urban features, without the need for

assumptions regarding the interrelationships of urban features based on existing theories [8].

A neural network is a computational model that simulates the structure of a biological ner-

vous system. It has developed over the years, with the invention of backpropagation algo-

rithms, regularization techniques, varieties of activation functions, and improvements in

computer performance, neural networks acquired the potential for large-scale data applica-

tions. Recently, the rise of deep learning neural networks with more hidden layers and increas-

ingly complex model architectures has led to revolutionary advancements in computer vision

and natural language processing, making neural networks the core technology driving the

development of artificial intelligence. Among the numerous models derived from deep neural

networks, CNN has emerged as one of the most influential innovative technologies in the field

of deep learning, owing to its powerful feature extraction capability. The basic principle of a

CNN is to use a multilayer convolutional structure to extract data features and compose a

high-dimensional feature map for recognition and classification. The application of convolu-

tion and pooling computations effectively reduces the number of model weight parameters

and improves the anti-interference capability [9]. This multilayer convolutional structure

allows for the identification of the most prominent features within the data, providing CNN
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with exceptional feature extraction capabilities and computational efficiency, which has

resulted in the widespread application of CNN in the field of feature engineering [10]. The uti-

lization of CNN for feature extraction has demonstrated remarkable performance and exten-

sive applicability in various domains, including urban pollution prediction [11], traffic flow

analysis [12], land use classification [13], and others. Hence, it is plausible to believe that in

economic research based on complex urban features, CNN possess the capability to extract the

core features from data and achieve precise classification of economic competitiveness. This

ability has also been a key consideration in selecting the model for this study.

The key to machine learning methods lies in modeling and extracting features from the

data to achieve effective model construction and data learning. As a consequence, the size of

the sample becomes a fundamental factor influencing the performance of machine learning

models like CNN [14]. However, in the case of a specific region, the number of cities remains

fixed. Even by combining data from different years, the amount of data available is still limited.

In such circumstances, traditional solutions predominantly focus on optimizing model archi-

tecture and training methods. However, the generalization ability and practical effectiveness of

these methods are not particularly remarkable. The emergence of generative adversarial net-

work (GAN) provides another solution to this problem, that is expanding the training sample

size by generating realistic data. GAN, which was invented by Goodfellow et al. [15], is a gener-

ative modeling framework consisting of a generator and discriminator in competing states.

The generator is responsible for generating fake data and tricking the discriminator, whereas

the objective of the discriminator is to accurately distinguish between real and fake data. The

generator progressively enhances its performance through competition with the discriminator.

Upon completion of training, the discriminator becomes capable of producing pseudo-realis-

tic data that closely resembles the original data, while also incorporating additional data fea-

tures. By utilizing these generated data samples to expand the sample size of the original data,

the performance of the CNN model is further improved. Shorten and Khoshgoftaar [16] com-

pared a variety of approaches to improve model performance, where GAN demonstrated

excellent performance and potential for diverse applications. In regions of research where

additional data samples are limited due to the number of cities, this approach of utilizing GAN

for data augmentation exhibits innovativeness and practicality. This also constitutes another

focal issue to be demonstrated in this study.

This study presents a deep learning neural network classification model based on CNN.

The model takes complex urban features as input data and city economic competitiveness level

as the target label. The central objective of this research is to investigate the feasibility of accu-

rately classifying the levels of economic competitiveness based on intricate urban characteris-

tics. Simultaneously, the generative capability of GAN is employed for data augmentation to

investigate whether increasing the training sample size and balancing the sample distribution

can further improve the classification accuracy of CNN. In terms of experimental data, feature

engineering constructed an urban feature system containing 1008 independent variables, and

the experimental data used were collected from 283 prefecture-level cities in China for the

period 2012 to 2019 (eight years), which resulted in a combined sample size of 2264.

Research contributions and innovations

The primary contributions of this study are summarized as follows:

1. In this study, we constructed a complex urban feature system comprising 1008 city indica-

tors and applied deep learning neural networks to explore the intrinsic relationships within

these features. This approach expands the investigation of urban economic development
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disparities beyond limited influencing factors and emphasizes the comprehensive utiliza-

tion of extensive urban statistical data.

2. In terms of the data structure design and model architecture selection, indicator data repre-

senting similar urban features were arranged into rows, where each row corresponded to a dis-

tinct city feature. This organization led to the construction of a well-structured two-

dimensional matrix of urban feature data. A CNN architecture matching the sample dimen-

sions was used, thus enabling hierarchical feature extraction and relationship mining through

local feature learning and high-dimensional mapping, which improved the interpretability

and performance of the model. Experimental results revealed that the CNN achieved classifica-

tion accuracies of 93.78% and 88.44% for the 5-class and 10-class datasets, respectively.

3. To address the constraints of limited sample sizes and uneven distributions in regional dis-

parity research, this study employed DCGAN for data augmentation and further enhanced

the stability of augmentation through generated sample filtering and ensemble generation.

Through these augmentation techniques, the study achieved improvements of 0.44% and

2.00% in the accuracies of the two datasets during the experiments, thereby resulting in

accuracies of 94.22% and 90.44%, respectively. This indicates a wider applicability of the

proposed methods to regional difference studies.

Materials and methods

Construction of complex urban feature system

The competitiveness of the urban economy is a multidimensional comprehensive index, and

research on the factors influencing economic development is enormous; therefore, the selec-

tion of the influencing factors should start from understanding what competitiveness is. Begg

[17] argues that "competitiveness" is a vague concept with two dimensions. On the one hand, it

is equivalent to the "performance" of a city, which intuitively reflects the level of its economic

development, and on the other hand, competitiveness is related to competition. A more com-

petitive city is one that offers better products and services than its competitors. Based on this

concept, the feature system of urban economic competitiveness should contain both direct

and indirect indicators. Direct indicators are indicators of urban economic performance,

which directly measure the level and scale of the urban economy. Indirect indicators are mea-

sures of the resources and services that a city can provide, which are necessary for the sustain-

able and high-quality development of the urban economy.

Similar to these direct and indirect indicators, another explanatory approach to understand-

ing the concept of urban economic competitiveness distinguishes between "input" and "output"

indicators [4]. The economic performance of a city, which includes factors such as residents’

income, economic structure, and local output value, is categorized as "output indicators," repre-

senting the economic development outcomes exhibited by the city. In contrast, factors such as

infrastructure, city size, and education that have significant impacts on economic performance

are considered "input indicators." This explanatory approach elucidates the inherent logical

relationship of competitiveness, which is a complex concept, and provides feasibility for its

quantification. However, excessive focus on economy may lead to a surge in environmental

issues. Balancing resource conflicts between economic growth and environmental protection in

urban development is the core of achieving sustainable economic development; it is also an

important dimension for understanding the concept of economic competitiveness [18].

Based on the previous discussion, the construction of a complex urban feature system in

this study should commence by distinguishing between direct (outputs) and indirect
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indicators (inputs). Considering the resource game between environmental protection and

economic development, and recognizing that environmental indicators have a distinct impact

mechanism compared to other indirect indicators on the economy, it is essential to separate

environmental indicators as a distinct dimension. A city feature system comprising three basic

dimensions: economic (direct indicators), social (indirect indicators), and environmental

(indirect indicators) was formed. Within the economic dimension, macroeconomic perfor-

mance, economic structure, financial performance, market size, and fiscal performance are

widely utilized as foundational metrics [19, 20]. Based on this foundation, the real estate indus-

try, which is a primary source of fiscal revenue for most local Chinese governments and plays

a significant role in monetary and financial policies, was included as an indicator of local eco-

nomic performance [21]. Moreover, while assessing economic competitiveness from the per-

spectives of social equity and sustainable development, the ultimate goal of economic

development was to enhance the living standards of residents [22]. Thus, indicators related to

resident income levels and employment structures also warrant attention.

In the social dimension, the supply of infrastructure, including transportation, water, gas,

electricity, and the Internet, directly affects a city’s attractiveness and competitiveness [23].

Moreover, urban size determines a city’s market potential and resource scale, thereby repre-

senting a crucial factor influencing economic development [24]. In addition to hardware con-

ditions, the high-quality development of a city’s soft power, which is represented by education

and healthcare, can directly improve human capital, innovation capacity, and quality of life,

which has received increasing attention [25].

In the environmental dimension, the existing research exhibits varying focal points while

assessing urban environments and sustainability. These points can be categorized into three

main dimensions: environmental factor provision, environmental governance capacity, and

environmental quality outcomes [26, 27]. Based on these three dimensions, indicators for envi-

ronmental protection facilities, pollutant emissions and disposal, and environmental quality

monitoring were selected as the corresponding quantifiable indicators.

In the previous sections, the two initial levels of indicators for the urban economic competi-

tiveness characteristic framework were determined through a literature review. Based on this,

the last two levels of indicators in the feature system were identified to form a four-level indica-

tor system. In the feature engineering of deep-learning models, providing more feature indica-

tors can enhance a model’s generalization and representation capabilities. However, caution

must be exercised when adding features—considering their representativeness and data quality

as redundant or irrelevant indicators can yield adverse results [28]. Therefore, two primary

factors were considered in the selection of specific indicators for this study. First, the chosen

indicators must be representative and sufficiently explanatory within the scope of higher-level

indicators. Second, the data quality of the indicators is of paramount importance. To increase

the sample size, samples were drawn from multiple years and encompassed most of the prefec-

ture-level cities in China. Consequently, there are stringent requirements for consistency and

scope in the statistical standards of indicators. Based on the above conditions, this study aims

to construct an urban feature system with more indicators to provide more effective features

for model training to explore the complex inherent relationships of urban economies. Official

and authoritative statistical data were prioritized during the selection process. In total, 598

indicators were selected to ensure adequacy and data quality. Among them, 410 indicators

were subjected to per-capita normalization, thereby resulting in a cumulative total of 1008 spe-

cific indicators. The entire urban feature system contained 3 primary, 14 secondary, 42 ter-

tiary, and 1008 specific (quaternary) indicators. The indicators and quantities included in the

urban feature system are referenced in Table 1. Detailed indicators and their respective data

sources are listed in S1 Appendix.
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Data collection

The data for the independent variables included urban statistics for 283 prefecture-level cities

in China over an 8-year period from 2012 to 2019, for a total of 2264 city samples. Some cities

such as Hong Kong, Macau, and Taiwan were not included in the study. Combining the data

available at the prefecture level, each city sample contained 598 original feature variables, 410

Table 1. Urban feature system.

Primary indicators Secondary indicators Tertiary indicators Number of specific indicators

Economic Indicators Basic Economic Performance Gross regional product (GRP) 6

Industrial Enterprise Performance 24

Consumer Goods Market Size 12

Economic Structure Technology Innovation 10

GRP Structure 6

Sources of Fixed Asset Investment Funds 26

Fixed Asset Investment Amount 30

Financial Performance Deposit and Loan Amount 12

Digital Financial 10

Marketization and Openness Number of Enterprises 13

Enterprise Output Value 22

Foreign Trade Amount 2

Land and Real Estate Market Real Estate Market Investment Amount 12

Land Market 107

Average House Price 12

Government Finance Structure and Operations Financial Revenue and Expenditure Amount 18

Number of Public Utility Employees 8

Resident Income and Employment Distribution Personnel Employment 24

Employment Structure 84

Resident Income and Consumption 8

Social Indicators City Size Population Size 9

Urban Built-up Area Size 11

Nighttime Lights Data 12

Public Cultural Facilities 24

Scale of Urban Construction Telecommunications Services 16

Water Supply Capacity 97

Gas Supply Capacity 51

Electricity Supply Capacity 6

Transport Infrastructure Passenger Traffic Volume 8

Freight Traffic Volume 12

Road Traffic Construction Scale 28

Rail Transit Facilities Scale 80

Education and Medical Service Educational Facilities 23

Number of Teachers 12

Number of Students 16

Medical Service Providers 14

Environmental Indicators Pollutant Emission Treatment Pollutant Emissions 10

Pollutant Treatment Volume 60

Environmental Facilities Environmental Protection Facilities 32

Urban Greening 26

Environmental Monitoring Air Quality Monitoring 15

https://doi.org/10.1371/journal.pone.0293303.t001
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of which were selected for per capita calculation, with a total of 1008 features for each city.

Most of the data were collected from the national statistical yearbooks and information public-

ity of national ministries and commissions.

The dependent variable, the urban comprehensive competitiveness index, was adopted

from the Annual Report on China’s Urban Competitiveness [29] published by the National

Academy of Economic Strategy (NAES), Chinese Academy of Social Sciences (CASS), and

China Social Sciences Press. This report presents the economic competitiveness index of 294

cities in China using a system of indicators that includes regional output, business, finance,

education, population, environment, and infrastructure. Data from 2012 to 2019 (11th–18th)

reports were selected for this study.

Theoretical foundations of deep learning neural networks

A neural network is a mathematical model that enables hierarchical processing of complex

input data and is commonly used for accurate classification and prediction. The basic building

units of a neural network are neurons, and multiple interconnected neurons constitute the

entire network. A neuron comprises inputs, outputs, weight parameters, bias terms, and an

activation function. During computation, a neuron receives input signals, multiplies them by

the corresponding weight parameters, and then adds a bias term to obtain a weighted sum.

This weighted sum serves as the input to the activation function, which calculates the output of

the neuron. The activation function is nonlinear, thus allowing the neural network to learn

complex nonlinear relationships between input data by mapping the inputs to a high-dimen-

sional nonlinear space. This effectively enhances the expression and generalization ability of

the model, resulting in a significantly improved performance in classification and prediction

tasks compared to linear models. Learning capability is the core feature that distinguishes neu-

ral networks from other computational models [30]. Learning refers to the process of itera-

tively adjusting network parameters during training to minimize the discrepancy between the

output values and the ground truth. In this process, the neural network automatically learns

and extracts features from the data, ultimately minimizing the loss function and maximizing

prediction and classification accuracy. This automatic solution of the optimal model parame-

ters allows the trained neural network to be better applied to unknown datasets and

environments.

Model selection

The CNN was chosen as the analytical model for studying urban economic competitiveness in

this study for the following reasons: First, studying the competitiveness of cities as complex

systems, involves multiple urban indicators and their intricate interrelationships. These inter-

actions are present not only among specific indicators, but also extend to high-dimensional

indicators comprising multiple specific indicators. The efficient extraction of features from

such high-dimensional feature data, considering the hierarchical nature of features, is a core

influencing factor in model selection. CNNs can efficiently extract local features and spatial

correlation information from the matrix data through their designs of local connections and

shared weights. This spatial correlation embodied in the urban indicator matrices can be

understood as the interaction between higher-dimensional indicators, which are commonly

influenced by several specific indicators. With the stacking of multiple convolutional layers,

the CNN progressively extracts higher-level abstract features, thereby achieving hierarchical

feature extraction of the interactions among indicators from different dimensions within the

urban feature system. This approach of local feature extraction and multi-level modeling aligns

with the structure of the complex urban feature indicator system, thereby providing stronger
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interpretability of results for the research and reducing the understanding confusion and result

mistrust caused by the "black box" mode.

Second, in comparison with the current common sequence neural networks, such as the

recurrent neural network (RNN) and transformer neural network, it is technically feasible if

the city indicators are directly used as training samples in the form of one-dimensional

sequence data. However, sequential neural networks primarily capture the positional relation-

ships of various indicators in a sequence and the dependencies between adjacent indicators,

which means that the order of the arrangement of indicators in the sequence needs to be care-

fully considered. Theoretically proving the specific order of each indicator for urban features is

challenging or even meaningless. Therefore, the interpretability of results is limited while

applying such abstract data without clear ordering significance to sequence neural networks.

In summary, considering the capabilities of the CNN in spatial correlation, multi-level model-

ing, and feature extraction, which are more aligned with the architecture of the urban feature

system, it is a reasonable choice in terms of model performance and interpretability.

CNN theory

CNNs are deep feed-forward neural networks with local connections and weight sharing.

Compared with traditional neural networks, neurons in the hidden layer do not require to be

connected to all the neurons in the previous layer because of the application of convolutional

kernels. In addition, the application of shared weight parameters for the same set of neuron

connections effectively reduces the weight parameters and accelerates model convergence. The

core structure of a CNN is the convolutional layer. The convolutional kernel extracts features

of the images and forms a feature map by sliding and progressively performing convolutional

operations. Through multiple convolutions, the feature map size is gradually reduced, and the

network depth is increased to extract more complex and abstract features from the images.

The formula for the convolution calculation is

hðlÞi;j ¼
Xmðl� 1Þ

k¼1

Xkw

u¼1

Xkh

v¼1
wðlÞk;u;va

ðl� 1Þ

iþu� 1;jþv� 1;k þ bðlÞi ; ð1Þ

aðlÞi;j ¼ f ðhðlÞi;j Þ; ð2Þ

where hðlÞi;j is the value of the feature map in row i and column j in the lth layer of the convolu-

tional layer, m(l−1) is the number of feature maps in the (l−1)th layer, kw and kh are the width

and height of the convolution kernel, respectively, and wðlÞk;u;v is the weight value of the kth con-

volution kernel in row u and column v in the lth layer. aðl� 1Þ

iþu� 1;jþv� 1;k is the value of the kth fea-

ture map at row (i+u−1) and column (j+v−1) in the (l−1) layer. bðlÞi is the bias term of the ith
feature map of the lth layer, and f is a nonlinear activation function. A typical CNN generally

contains a pooling layer, which includes average and maximum poolings, to reduce the size of

the feature map and thus increase the computational efficiency. A fully connected layer is com-

monly used as the final output layer, which maps the feature information from the previous

layer to the next layer and converts the feature map into a one-dimensional vector for final

classification and recognition.

Data augmentation

CNNs have powerful capabilities for data feature extraction and classification; however, these

capabilities are based on large volumes of training samples [31]. Insufficient training samples

would result in decreased accuracy or overfitting, which is often characterized by an increase
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in the loss value and a slight increase in accuracy or a constant. This indicates that the model

overlearns meaningless features, resulting in a lower generalization ability. In this case, the

model has higher accuracy on the training set and lower accuracy on the test set. Typical

approaches to improve the generalization ability include dropout [32], migration learning

[33], and pre-training [34]. Although these approaches have been widely applied, they mainly

target the data structure of image samples and have certain requirements for the sample size,

which are less compatible with this research in terms of the size and distribution of samples.

Many studies have demonstrated that increasing the training sample size can significantly

improve model performance [35]. Common data enhancement methods are cropping, stitch-

ing, and flipping of original data. Sharpening, blurring, and color adjustment can also be

applied when processing image data. These treatments directly change the data values of the

samples; however, for image samples, they do not modify the objects on the screen; instead,

they highlight the features more clearly. By contrast, abstract data for economics do not depict

concrete objects; therefore, the application of these approaches is limited.

The employment of GAN in data augmentation tasks is a more focused approach. Genera-

tors constantly learn and integrate features in competition with discriminators and create new

features in the process, which can be considered as a process of unlocking additional informa-

tion in the training data [36]. Yi et al. [37] found that applying a GAN for data enhancement

in medical image detection could provide rich and convincing features, further improving the

model accuracy. Lim et al. [38] addressed the data imbalance problem using data generated by

a GAN, which effectively improved the recognition rate of a detection model. In this research,

the number of city samples was fixed; however, the economic development level of Chinese cit-

ies has apparent unevenness, that is, a few municipalities and provincial capitals are economi-

cally developed, whereas most cities have a low level of economic development. Limited

sample sizes and uneven distributions often occur in social science research. Therefore, using

a GAN for training sample expansion provides richer features compared to the original sam-

ples and improves the generalization ability of the models. In addition, sample expansion bal-

ances the data distribution and prevents the CNN from favoring the data-rich category in the

classification, thereby improving the model classification accuracy.

GAN theory

A GAN is a network framework consisting of two deep neural networks: a generator that

learns the distribution of real data and generates similar data and a discriminator that distin-

guishes whether the input data are real or generated. The training of generators and discrimi-

nators is a zero-sum game in which the maximization of one party’s gain must be achieved by

minimizing the other party’s gain. The two models compete against each other in alternate

training, aiming to generate samples that are similar but difficult to distinguish from the real

samples. Considering that GAN provides a model framework, multiple variants of GAN have

been implemented by replacing the discriminator and generator models and adding other pro-

cessors. Radford et al. [39] constructed the DCGAN utilizing CNNs as generators and discrim-

inators, which demonstrated an impressive performance in data classification and high-quality

image generation. Mirza and Osindero [40] proposed a conditional generative adversarial net-

work (CGAN) that imposes constraints on the generated data by adding labeling variables,

such that the GAN is controlled to generate samples with specific requirements. Odena et al.

[41] proposed an auxiliary classifier GAN (ACGAN), which is a multicategory classification

network added to the original structure of CGAN. In ACGANs, the generated data are simul-

taneously used in the training of the discriminator and classification network, preventing the

training of the classification model from crashing caused by unbalanced sample distribution,

PLOS ONE Enhancing economic competitiveness analysis through machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0293303 November 7, 2023 9 / 27

https://doi.org/10.1371/journal.pone.0293303


thereby expanding the applications of GANs. The value function formula of a GAN is

min
G

max
D

VðD;GÞ ¼ Ex�PdataðxÞ
½log DðxÞ� þ Ez�PzðzÞ

½log ð1 � DðGðzÞÞÞ� ð3Þ

where E is the expectation, D is the discriminator, and the output of D ranges from 0 to 1,

which represents the probability of generating real input samples. data represents the real data

used for training, G is the generator, and z is a noise variable input to G for data generation.

minG represents the objective of D is to maximize the value function V, which is equated to

maximize D(x) and 1-D(G(z)). Therefore, the training objective of D is to discriminate the real

samples as real (Output 1) and the generated samples as false (Output 0). Similarly, the objec-

tive of G is to minimize the value function, which is equivalent to minimizing 1-D(G(z)), such

that the training objective of G is to deceive D, prompting D to discriminate the generated

samples as real (Output 1).

Overall design of the experiment

Referring to the flowchart in Fig 1, the entire experimental process can be divided into three

parts:

Step 1: The training and test sets were used for the CNN training, and an original classifica-

tion model was obtained.

Fig 1. Experimental procedure.

https://doi.org/10.1371/journal.pone.0293303.g001
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Step 2: The training set was applied to the GAN training for categorical data generation,

and the generated data were filtered using the original classification model to eliminate data

whose classifications differed from the generated categories.

Step 3: The filtered data were combined with the training set from the raw data to form a new

training set, and the CNN was used again for training to obtain the final classification model.

Architectural design of neural network models

Input data structure. A CNN captures the local features and spatial relationships of data

through convolutional kernels. The data structure is a core factor affecting the performance of

a CNN. One- and two-dimensional CNNs are common and widely used CNN structures.

One-dimensional CNNs are often employed to process time-series data, the core of which

extracts the sequential dependencies of series data, and thus not applicable to urban feature

analysis. Two-dimensional CNNs focus on local features in the data and analyze and represent

these data features through multiple extraction and condensation processes. Therefore, in this

study, city feature data were mapped to the distribution of images to adapt to the structure of a

two-dimensional CNN.

The feature data for each city contained of a one-dimensional vector with a length of 1008.

To meet the input requirements of the network, the vector was expanded to a length of 1024

by zero padding. Subsequently, the vector was transformed into a 32×32 two-dimensional

matrix. This data structure enables the network to effectively extract the spatial relationships

between local and global features, maximizing the performance of the model. Therefore, by

applying zero-padding and dimension transformation operations, the original one-dimen-

sional feature vector is transformed into a two-dimensional matrix structure suitable for two-

dimensional CNNs. It is better to understand this data structure as a "feature image", as an

image is composed of pixels, while a feature image is composed of urban features.

Regarding the application of abstract data to CNN, the arrangement of indicators in the

input data is an important aspect of feature engineering. The data structure formed by differ-

ent arrangements significantly affects the capture of interrelationships between indicators and

feature extraction, which is ultimately reflected in the model’s accuracy and generalization

capability [42]. In a CNN, the convolutional layers extract local spatial features by sliding con-

volution kernels. If indicators of the same type are grouped in the same region to represent a

specific feature, the convolutional kernels can capture the local features of this region more

easily. This organization is also conducive to generating feature mappings that are purer and

focused on specific features. In contrast, if indicators are not categorically arranged but are

randomly distributed, the feature extraction process of convolution kernels becomes difficult,

and chaotic feature maps would lead to poor model performance [43].

In this study, a 32×32 two-dimensional matrix of the input data was divided based on row

units, where indicators representing similar types of urban features were arranged in the same

row. As shown in Fig 2, the data structure was organized such that the original indicators and

indicators computed on a per-capita basis were initially divided and arranged in the first 19

and subsequent 13 rows, respectively. Subsequently, based on the hierarchical structure of the

urban feature system, the indicators were further categorized into economic, social, and envi-

ronmental indicators from top to bottom. For example, economic indicators occupied the first

eight rows, with basic economic indicators in the first row, followed by a similar arrangement.

Through this arrangement, the indicators representing the same high-dimensional features

were grouped into the same region.

In the low-level convolutional layers, convolutional kernels can further emphasize the local

features corresponding to identical region indicators and features of the same type by
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capturing intrinsic relationships among features of the same type. In the high-level convolu-

tional layers, with an increase in the number of channels and a reduction in the size of feature

maps, convolutional kernels can capture the intrinsic relationships among higher-dimensional

features. This indicator arrangement allowed for a gradual transition from specific to high-

dimensional indicators in capturing intrinsic relationships, thus providing stronger model

interpretability and performance improvement compared with random indicator arrange-

ments. In this study, a CNN was employed and the data were used to test two modes of indica-

tor arrangement: random and categorical. When only the arrangement of the sample features

was altered, the categorical arrangement led to an improvement in the model accuracy of

approximately 0.89% to 1.11%.

CNN architecture design. The architectural design of a CNN should be adjusted based

on the data dimensions, sample size, and task complexity. Excessive parameterization can lead

to training difficulties and overfitting, whereas inadequate parameters can result in insufficient

model expression. Given the relatively small size of the urban feature matrix (32×32), overly

deep convolutional layers can result in excessively abstracted features and subsequent overfit-

ting. Therefore, a shallower architecture with four convolutional layers was selected. Consider-

ing the limited original sample size (2264), the number of channels in the feature maps was set

to 512 to ensure a sufficiently rich feature representation. In the first three convolutional lay-

ers, a 4 × 4 kernel size was chosen to capture larger local features, while remaining smaller

than the local feature dimensions of the economic, social, and environmental aspects, thus pre-

venting the extraction of overly abstract and complex local features. A stride of 2 was used to

downsample the feature map dimensions by half in each layer, thus allowing the hierarchical

extraction of features in higher dimensions. The convolutional layer design also includes batch

Fig 2. Input data structure of CNN.

https://doi.org/10.1371/journal.pone.0293303.g002
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normalization and dropout layers. Batch normalization layers standardize the input feature

maps to reduce the internal covariate shift and improve the model convergence speed; they

were added to all convolutional layers except the first. The dropout layers randomly drop a cer-

tain ratio of neurons for regularization and improve the model generalization; their ratio was

set to 50% in the experiments.

Amongst the activation functions, we selected the leaky rectified linear unit (LeakyReLU)

for all layers except the output layer. Compared to the rectified linear unit (ReLU) function,

the LeakyReLU function introduces a small gradient on negative inputs, thus effectively miti-

gating the issue of gradient vanishing caused by neuron inactivity for negative inputs in the

ReLU function and enhancing the expressiveness of the model. The output layer of the model

selected the logarithm of the softmax (LogSoftmax) activation function, which is commonly

used for multi-class categorization tasks. The LogSoftmax function calculation involves com-

puting the logarithm of the output of the softmax function and converting the probability dis-

tribution into a logarithmic probability distribution. Thus, the probability calculation changes

from multiplication to addition, which avoids the underflow caused by a large number of val-

ues that are significantly small and breaks the calculation accuracy limit. The negative log-like-

lihood loss (NLLLoss) function was chosen as the loss function. It was coupled with the

LogSoftmax activation function. This combination aids in intuitive calculation of the loss for

multi-class classification tasks, thereby reducing numerical stability issues and enhancing the

training efficiency and convergence speed. It is important to note that the pooling layers were

not incorporated into the CNN in the experiment because downsampling of the feature map

was achieved by the cooperation of the convolutional kernel with the step size, and the incor-

poration of the batch normalization and dropout layers can prevent the occurrence of overfit-

ting to a certain extent. Therefore, considering the limited number of urban feature metrics,

the pooling layers were removed from the CNN design to prevent the loss of major features

owing to the pooling layer. Fig 3 depicts the specific architecture of the CNN.

DCGAN architecture design. A GAN is a neural-network framework in which the dis-

criminator and generator are independent neural networks. The discriminator has a clear

objective function, which distinguishes real from fake data, whereas the generator’s objective

function generates samples that could be as real as possible. Thus, the generator must learn

complex probability distributions, resulting in a higher training difficulty. In the model

Fig 3. CNN model architecture.

https://doi.org/10.1371/journal.pone.0293303.g003
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designs and hyperparameter settings of GANs, a balanced growth of the generator and dis-

criminator capabilities is the key to successful training. Both the generator and discriminator

of a DCGAN utilize a CNN. Thus, the key to the balanced growth of the two modules lies in

the performance of the convolutional layers, which used a more powerful 3-layer convolu-

tional network with a maximum of 256 feature map channels for generator. By contrast, the

discriminator used a 2-layer convolutional network with 128 feature map channels. In addi-

tion, the size of the convolutional kernel of the discriminator differred from that of the genera-

tor to increase the network complexity. The specific architecture of DCGAN is referenced in

Fig 4. In terms of the learning rate, the generator learning rate was set to 0.0001, which was

larger than the discriminator learning rate of 0.00001, to prevent the discriminator from con-

verging too fast and the generator training from crashing. In the convolutional layer activation

function, the discriminator employed a LeakyReLU to avoid gradient vanishing, whereas in

the generator, a ReLU with a stronger non-linear expressive power was used to better preserve

and enhance the features of the generated data.

The generator used a hyperbolic tangent (Tanh) function as the activation function of the

output layer. The output values of Tanh were within the range [–1,1] and the mean value was

approximately zero, which could effectively control the range of the generator output values.

In addition, benefiting from the large gradient of the output value, Tanh could simulate the

data characteristics of the original sample as much as possible. The discriminator in a DCGAN

is a binary classification CNN, which often uses a sigmoid activation function for its output

layer. This is because the sigmoid function has a larger gradient when its input is close to zero,

which makes it more sensitive in discriminating the generated data. Furthermore, the binary

cross-entropy loss (BCEloss) function was adopted as the loss function of the DCGAN, which

was specifically designed for binary classification tasks. It can effectively measure the label dif-

ference between the generated and real samples.

Data preprocessing and analysis

The indicator system involved multiple units of measurement and orders of magnitude, and

normalization was used to standardize the data to eliminate the influence of different dimen-

sions on the analysis. The formula is

xnorm ¼
x � xmin

xmax � xmin
ð4Þ

where x represents the raw data, xnorm represents the data after normalization, and xmax and

xmin are the maximum and minimum values, respectively, in the same dimension as the data.

Initially, the normalization process was performed successively in the dimensions of the fea-

tures and samples, and the data were compressed to an interval of [0,1 in two dimensions. Sub-

sequently, a typical standardization process for CNN was applied in the feature dimension.

xstd ¼
xnorm � 0:5

0:5
ð5Þ

where xstd is the data after standardization, which was distributed over a range of [–1,1].

Sample labels were processed through equal-width binning to divide the continuous vari-

ables of the original data into discrete variables so that an increase in the sample size for each

category could effectively improve the model accuracy and efficiency. This feature transforma-

tion technique is widely used in machine learning [44]. First, the raw urban comprehensive

economic competitiveness index data were standardized to an range of [0,1], after which the

data were divided into five and 10 classes. The division of five classes used a width of 0.2: Label
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Fig 4. DCGAN model architecture.

https://doi.org/10.1371/journal.pone.0293303.g004
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1 represents lowest competitiveness and Label 5 represents highest competitiveness. The divi-

sion of 10 classes used a width of 0.1.

The sample size of each class listed in Table 2 shows that the distribution of the sample was

highly unbalanced, and a large proportion of cities had a lower level of economic competitive-

ness, which is the same as the current development status of Chinese cities. China’s southeast-

ern coastal region has obtained more development opportunities by benefiting from open

policies, natural environment, and large ports. In addition, to prevent resource outflow, prov-

inces generally focus on developing provincial capitals; however, excessively strong provincial

capitals tend to siphon resources from neighboring cities, resulting in a greater urban develop-

ment gap.

In this type of data distribution, basic data enhancement of the raw samples was achieved

through reverse sorting of the feature data and doubling the original samples to a total sample

size of 4528. The samples were randomly divided into training, validation, and test sets at a

ratio of 8:1:1, with sample sizes of 3628, 450, and 450, respectively.

Evaluation metrics

The classification accuracy of the validation and test sets was selected as the main evaluation

index of the CNN performance. Accuracy is the ratio of the samples with the same predicted

labels to the original labels in the total samples; the higher the accuracy, the better the model

performance. Additionally, the output value of the cross-entropy loss function and speed of

convergence assisted in the evaluation. An early stopping strategy was adopted in the training,

which indicates that the training would be terminated when the loss value and the accuracy of

the validation set are leveled off. To precisely compare the model performance before and after

data augmentation by the DCGAN, all the CNN trainings in the experiment had a learning

rate of 0.0001, a training set batch size of 1024, and a validation set batch size of 450.

The experimental equipment was equipped with a Windows 11 operating system and an

Nvidia GeForce RTX 3070 graphics card. The neural network model was built using Python

3.9.12 and PyTorch 1.12.0.

Results

Classification of original dataset using CNN

This experiment was the first to evaluate the performance of a CNN in accurately classifying

urban economic competitiveness. As shown in Fig 5, in the training using the 5-class original

dataset, the validation accuracy and loss values stopped improving at approximately 1400

epochs, indicating that the model converged. The model achieved a maximum accuracy of

96.44% in the validation test. In addition, the trained model classified the test set with an accu-

racy of 93.78%. The model achieved faster convergence rate using 10-class samples, and the

variation in the validation performance metrics leveled off at approximately 900 epochs, at

which time the accuracies of the model using the validation and test sets were 89.11% and

88.44%, respectively. The results showed that the model exhibited high accuracy rate in the

5-class test and less accurate in the 10-class test because the difficulty in classifying increased as

Table 2. Sample size of each classification.

Five-class Competitiveness class 1 (Lowest) 2 3 4 5 (Highest)

Sample size 1751 405 81 15 12

Ten-class Competitiveness class 1 2 3 4 5 6 7 8 9 10

Sample size 1209 654 199 97 54 21 12 6 2 10

https://doi.org/10.1371/journal.pone.0293303.t002
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the number of classes increased. The model performs well in terms of accuracy, which proved

the effective utilization of the CNN and urban economic characteristic system data. In addi-

tion, the model demonstrated similar classification accuracy for both the validation and test

sets, indicating that the model can adapt to data changes and has good generalization ability.

Data augmentation using DCGAN

Data generation. The experiment also evaluated whether the training sample expansion

achieved by the DCGAN could improve the performance of the CNN. The original samples of

each class were placed separately in the DCGAN for generative training. To maintain balanced

growth of the discriminator and generator performances, the learning rates were set to

0.00001 and 0.0001. A lower learning rate set for the discriminator prevents training crashes

caused by rapid growth in its performance. The training set batch size was 1024, and the num-

ber of training epochs ranged from 10,000 to 40,000 because of the different training difficul-

ties caused by the different class sample sizes.

In contrast to processing intuitive data, such as images, where DGAN training can be deter-

mined by directly observing the quality of the generated images, in the case where the samples

are abstract data, the progress of the model training can be determined through discriminator

loss and output values. In the case where a discriminator and generator play a binary zero-sum

game, the global optimal solution is that the discriminator cannot distinguish between the gen-

erated and real samples, which indicates that the output values of the discriminator for both

types of samples are approximately 0.5, whereas the discriminator loss values for both types of

samples converge and remain smooth. As demonstrated in Fig 6, for the training process of

samples with label value 1 in the 10-class dataset, the model converges around 10,000 epochs,

at which point the generated data reaches high quality.

Data filtering. In data augmentation tasks, the trained GAN can adopt the ensemble gen-

eration mode for data generation, which indicates that the data are generated from multiple

trained models instead of employing only the best model. In the case of a large amount of data

generated by a single model limited by the singularity of the model, the high similarity of the

generated samples leads to a reduction in effective features. In contrast, ensemble generation is

more beneficial for maintaining sample diversity [45].

Fig 5. Classification accuracy and loss values of the original dataset.

https://doi.org/10.1371/journal.pone.0293303.g005
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The ensemble generation contained multiple models, and to prevent the defective model

from generating anomalous samples, the CNN model that was trained in previous experiments

filtered the generated samples, that is, it eliminated the generated samples whose expected

labels were different from the CNN-predicted labels. The abnormal sample proportions of the

different classes ranged from 1% to 40%.

Sample combination. Another factor for data enhancement of DCGAN is the number of

samples that should be generated. This study tested three ratios between the original and gen-

erated samples in the enhanced dataset:

1. Large sample size (generated sample size exceeded 50,000; total sample size exceeded

60,000)

2. The total sample size was balanced for each class (each class in the augmented dataset had

the same sample size, with a total of approximately 20,000).

3. The generated sample size was balanced for each class (with approximately similar gener-

ated sample size for each class)

The results of the classification accuracy test show that the model exhibited better perfor-

mance only on the last combination of the augmented dataset in comparison to its perfor-

mance using the original dataset. Based on the criterion, 13,700 samples were generated for the

5-class samples test, and 3,341 abnormal data points were excluded after CNN filtering, with

the remaining10,359 generated samples for the final augmented dataset of 13,987 (combining

the available generated dataset with the training set of original samples). In the 10-class sam-

ples test, the augmented dataset size was 13,590. Table 3 presents the specific sample quantities

and allocation methods of the original dataset and augmented dataset in the experiment.

Classification of augmented dataset. After applying the enhanced dataset, the accuracy

of the 5-class test set improved from 93.78% to 94.22%, which represents an increase of 0.44%.

A more dispersed data distribution of the 10-class samples enhanced the advantages of the

augmented dataset, wherein the accuracy of the test set improved from 88.44% to 90.44%,

Fig 6. DCGAN discriminator loss and output values.

https://doi.org/10.1371/journal.pone.0293303.g006
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which represents an increase of 2.00%. Both samples exhibited higher accuracy rates than the

original samples, thereby proving the validity of the enhanced dataset. Meanwhile, as shown in

Fig 7, the convergence rate with the augmented dataset is significantly faster than that with the

original dataset. The specific accuracies of the original dataset and augmented dataset are ref-

erenced in Table 4.

Quality assessment of generated data. Verifying the quality of generated data is crucial

for methods that use GANs to generate augmented data. The generated samples were employed

as training data for subsequent CNN training. Low-quality samples introduce bias and reduce

the model’s generalization capability and accuracy. Furthermore, insufficient diversity may lead

to the failure of the data augmentation method. Owing to the lack of a standardized evaluation

method and criteria, assessing the quality of data generated by GANs has consistently proved to

be challenging. In the widely applied field of image generation using GANs, inception score (IS)

and Frechet inception distance (FID) are representative evaluation standards. These methods

utilize inception networks pre-trained on the ImageNet dataset to compute the distances

between the generated and original data, based on features. Because they rely on pre-trained

networks, the application of these methods requires the generated samples to be concrete

images, the categories of which are included in ImageNet. These methods are not applicable to

the abstract data used in this study. To address this situation, an evaluation method based on

the performance of the generated data in downstream tasks was proposed [46]. This method

does not calculate the feature distances between the generated and original data, but instead,

applies the generated data to specific tasks and evaluates the quality and diversity of the gener-

ated data based on its actual performance in these tasks. This evaluation approach is more

Table 3. Sample size of each data set.

Original samples Generated samples

Classification Original

dataset

Training set Validation set Test set All generated

dataset

Anomalous

samples

Available generated

dataset

Augmented

dataset

Five-class 4528 3628 450 450 13700 3341 10359 13987

Ten-class 14400 4438 9962 13590

https://doi.org/10.1371/journal.pone.0293303.t003

Fig 7. Classification accuracy and loss values of the augmented dataset.

https://doi.org/10.1371/journal.pone.0293303.g007
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suitable for abstract data. Specifically, the evaluation of data quality included two tests: GAN-

train and GAN-test. The GAN-train utilizes the generated data to train a CNN, and then evalu-

ates the model performance using the original data as the test set. Because the CNN can only

learn features from the generated data during the training process, a higher G-train classifica-

tion accuracy signifies that the generated data can provide more diverse features and better data

quality. In GAN-test, the CNN is trained on the original data and tested on the generated data.

Higher accuracy indicates higher quality and realism of the generated data. Both GAN-train

and GAN-test were tested for diversity and quality, and the performance of the generated data

in these two aspects was considered to be a core factor in achieving data augmentation.

In terms of the evaluation criteria, the evaluation of the GAN-test is relatively straightfor-

ward, wherein the difference in accuracy of the original and generated data are compared, when

used as the test set. In the experiments, when the generated data matched the sample quantity of

the original dataset, the accuracies of the generated data in the 5-class and 10-class tests were

89.20% and 87.48%, respectively. These accuracies when compared to the original dataset accu-

racies of 93.78% and 88.44%, respectively, revealed a close match and indicated high data quality

in the generated samples. However, assessing the GAN-train is more complex because of its use

of generated data for training, thus leading to an infeasible direct comparison with the accuracy

of the original dataset. Therefore, the evaluation involved a comparison with the accuracies of

methods similar to those in existing studies. Referring to the original paper proposing this eval-

uation method, DCGAN achieved 65.0% GAN-train accuracy on the Canadian Institute for

Advanced Research 10 (CIFAR-10) dataset when using the same number of generated and real

samples [46]. In another study, using a similar evaluation method, DCGAN generated 1000

samples from a tomato leaf disease dataset with 240 samples. When both the generated and real

samples were used jointly for GAN-train, the accuracy reached 66.00%. In addition, the authors

comprehensively analyzed other evaluation methods and concluded that the quality and diver-

sity of the generated data were as expected, when the GAN-train accuracy was 66.00% [47]. In

this study, when the development set sample size matched that of the original dataset, the GAN-

train accuracies for the 5-class and 10-class samples were 79.31% and 55.32%, respectively.

When the development set sample size was increased to three times that of the original dataset,

the accuracies changed to 78.89% and 65.06%, respectively. Notably, the 10-class samples

showed increased accuracy after incorporating additional generated samples for training,

whereas the accuracy of the 5-class samples remained relatively stable. A comprehensive com-

parison of the GAN-train accuracy in the two aforementioned studies revealed that the 5-class

samples demonstrated superior data quality and diversity, whereas the 10-class samples exhib-

ited slightly inferior performance, although it was satisfactory. Table 5 displays the different

datasets used for GAN-train and GAN-test, along with their respective test accuracies.

Robustness analysis

A total of four validation methods were designed to validate the combined performance of the

research methods. First, to verify the performance of the custom-designed CNN

Table 4. Classification accuracy.

Dataset Classification Original dataset Augmented dataset Accuracy improvement

Validation Set Five-class 96.44% 96.89% 0.45%

Ten-class 89.11% 90.44% 1.33%

Test Set Five-class 93.78% 94.22% 0.44%

Ten-class 88.44% 90.44% 2.00%

https://doi.org/10.1371/journal.pone.0293303.t004
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(CNN-Custom), the accuracy was compared while using very deep convolutional networks

with 11 layers (VGG11) and very deep convolutional networks with 16 layers (VGG16) on the

same dataset. Second, to validate the influence of the intrinsic relationships between different

data structures and indicators on the model, two neural networks: vision transformer (VIT)

and long short-term memory (LSTM), which differ from the CNN architecture, were selected

for validation. Third, by constructing regional feature data for China’s county-level adminis-

trative areas, the stability and generalizability of the CNN-Custom architecture were verified.

Fourth, in terms of data augmentation, a method similar to the experimental design rationale,

ACGAN, was used to validate the effectiveness of the data augmentation method.

Performance comparison. VGG, a classic CNN architecture, has gained strong universal-

ity and interpretability owing to its concise structural design and deep network architecture. It

is frequently used as a performance benchmark in CNN research. Compared to CNN-Custom,

VGG has a deeper network structure, with VGG11 and VGG16 having 8 and 13 convolutional

layers, respectively. The additional convolutional layers in VGG enhance its feature extraction

capabilities; however, this augmentation also increases the possibility of overfitting. Because

VGG requires fixed 224×224 data dimensions, the data dimensions were expanded to the

required size by zero-padding. The experimental results revealed that both VGG11 and

VGG16 achieved an accuracy similar to that of CNN-Custom on the validation set; however,

they provided a slightly inferior accuracy to CNN-Custom on the test set with 10-class sam-

ples. Meanwhile, VGG16 exhibited an inferior performance to VGG11 (test set: 5-class—

VGG11: 94.89%, VGG16: 94.00%; 10-class—VGG11: 87.11%, VGG16: 87.11%). This phenom-

enon can be attributed to the excessively abstract features extracted by the deeper convolu-

tional layers of the VGG concerning the number of features within the urban feature system

and data volume. This abstraction can lead to overfitting. Furthermore, the higher model com-

plexity of VGG16 and the lower data volume for the 10-class samples exacerbated this

occurrence.

Data structure and feature relationships validation. Considering urban feature data as

abstract information curated manually and containing various potential data structures and

intrinsic relationship patterns among indicators, a ViT and a LSTM were chosen as compara-

tive models. This selection aimed to validate the efficacy of the proposed approach for hierar-

chical urban feature extraction based on CNN local feature extraction and high-dimensional

feature mapping. ViT is an emerging computer vision model that uses the same input data

structure as a CNN. By contrast, ViT divides the data matrix into patches of equal size via con-

volutional operations and models the global relationships between patches through a self-

attention mechanism to capture data features. In contrast to the emphasis of CNNs on local

feature extraction, ViT focuses more on holistic feature representation through global feature

encoding. In the experiments, ViT used a 4 × 4 patch size, an embedding dimension of 256, 12

encoder blocks, 8 attention heads per block, an MLP ratio of 2, and a representation size of

256. The experimental results revealed that ViT achieved a lower accuracy of 89.78% and

78.67% for the 5-class and 10-class test sets, respectively. This could be attributed to ViT’s

Table 5. Accuracy of generated sample quality assessment.

Evaluation

method

Development set data

source

Test set data

source

Classification Development set sample

size

Test set

accuracy

Development set sample

size

Test set

accuracy

GAN-train Generated samples Original

samples

Five-class 4528 (1 times the original

dataset)

79.31% 13584 (3 times the original

dataset)

78.89%

Ten-class 55.32% 65.06%

GAN-test Original samples Generated

samples

Five-class 4528 89.20%

Ten-class 87.48%

https://doi.org/10.1371/journal.pone.0293303.t005
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increased focus on global relationships among patches, thereby neglecting the internal features

of individual patches. Meanwhile, ViT’s greater demand for sample size also contributed to its

lower accuracy.

To explore potential data structures, LSTM with an input data structure different from that

of the CNN was selected for the experiment. The LSTM propagates features from the previous

to the subsequent time step by using memory cells, thereby facilitating the learning of feature

correlations across different time steps. City indicators, upon application to the urban feature

data in the experiment, were arranged in a one-dimensional sequential manner for the LSTM.

Each sample comprised 1024 time steps, wherein each time step corresponded to a specific fea-

ture indicator, thereby resulting in a sample sequence length of 1024. The hidden size was set

to 64, and a 2-layer LSTM was utilized. The experimental results indicated that LSTM had a

lower accuracy than that of CNN-Custom, with accuracies of 90.89% and 80.67% for the

5-class and 10-class sample test sets, respectively. This can be attributed to LSTM’s inability,

particularly for urban features, to adequately explore the correlation between different features

across various time steps, especially when the time steps are distant, thereby leading to infor-

mation decay within memory units. In addition, the sequence order of the urban features was

random; therefore, the relative positional relationships between different time steps learned by

the LSTM did not have practical significance.

Generalization validation. To validate the stability and universality of CNN-Custom in

other regional difference studies, similar to urban indicators, features from county-level

administration were utilized to assess the economic development levels across counties in

China. Official statistics rarely involve county-level administrative areas; therefore, all data

used in the experiment were exclusively sourced from the China County Statistical Yearbook

for 2019. Similar to the urban feature system, indicators including economic structure, fiscal

revenue and expenditure, and financial performance were used as economic indicators,

whereas infrastructure, population, area, agricultural output, and industrial scale were used as

social indicators. Owing to missing data, the feature system did not contain environmental

indicators. Out of the 29 original indicators that were collected, 16 were computed on a per-

capita basis, resulting in 45 specific indicators. Following the same data processing approach

used for the urban feature data, a 7×7 two-dimensional matrix was constructed using zero-

padding. For the sample labels, the regional GDP was chosen as the metric for measuring

regional economic competitiveness. Given the large dynamic range of the GDP data, the data

range was first compressed via a logarithmic transformation, and then discrete data were

obtained via equidistant binning. After removing samples with missing statistics, 2076 original

county-level samples were obtained.

Owing to the change in sample size, the convolutional kernel size of the 3rd and 4th convo-

lutional layers of CNN-Custom was changed from four to three, and the stride was changed

from two to one to prevent overfitting caused by an excessive abstraction of features. Similarly,

the parameters of the DCGAN generator were adjusted based on the sample size. Other meth-

odologies, including standardization, model parameters, dataset splitting ratios, and generated

sample ratios, were kept unchanged. In the county-level data test, the test-set accuracy on the

5-class original dataset was 91.46%, which improved to 91.95% through data augmentation (an

increase of 0.49%). For the original 10-class dataset, the test set accuracy was 74.88%, which

increased to 76.59% through data augmentation, thereby yielding an improvement of 1.71%.

Refer to Table 6 for specific experimental results. Overall, the county-level dataset exhibited a

favorable performance on the 5-class classification. However, as the number of classifications

increased to 10, the accuracy remained relatively low owing to insufficient feature quantity in

the samples. The data augmentation method implemented through DCGAN achieved a per-

formance improvement similar to that observed in the urban dataset.
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Data augmentation validation. To further evaluate the performance of data augmenta-

tion methods, the ACGAN was added for comparison purposes. The design idea of the

ACGAN was similar to that of this experiment, both of which added generated samples to the

classification training so that the classifier could obtain more diverse sample features to

increase classification accuracy. The differences are (1) ACGAN is based on CGAN, which can

control the category of generated samples, and (2) ACGAN has no ability to filter the gener-

ated samples, but directly feeds into the classification training. The experimental results

showed that ACGAN attained an accuracy of 94.00% on the 5-class sample test set, slightly

lower than the performance on the augmented dataset with CNN-Custom. However, it only

achieved an accuracy of 87.56% on the 10-class test set, even lower than the performance of

CNN-Custom without data augmentation. The validation accuracy changes of different mod-

els and datasets during training, as visually demonstrated in Fig 8, intuitively prove this point.

This could be due to the uneven distribution of the original samples, resulting in an ACGAN

based on the CGAN generation model, which tends to generate samples of a certain category

more often. The uneven distribution of samples was further aggravated by the excessive differ-

ence in the quality of the generated samples from different classes. In addition, low-quality

generated samples negatively affected the training of the classifier, causing a decrease in the

classification accuracy.

Referring to the test results of the experiments for various validations in Tables 6 and 7, it

was observed that when dealing with urban feature data, the classification performance of

CNN-Custom was comparable to that of VGG and superior to other deep learning models. Its

design, which was tailored to the structure of the urban samples, resulted in better generaliza-

tion and interpretability. However, when applied to other regional difference studies, owing to

insufficient regional feature indicators, its performance on tasks with more categories was

barely satisfactory. Furthermore, urban feature data contain various potential feature extrac-

tion patterns and data structures. However, owing to the randomness in the ordering of indi-

cators, its application in sequence neural networks exhibits a certain level of "black box"

nature. Additionally, the inclusion of filtering for the generated samples and the ensemble gen-

eration mechanism led to a more stable performance in terms of data augmentation.

Discussion

This study develops a city economic competitiveness classification model based on deep learn-

ing neural networks and complex urban features. It addresses the limitation of traditional eco-

nomic competitiveness research, which relies on regression models and limited features, and

fails to fully explore the interaction effects and nonlinear relationships among features. The

study successfully combines a deep learning model based on CNN with complex urban fea-

tures. The study first constructed a complex city feature system, city feature data were eco-

nomic, social, and environmental data of 283 prefecture-level cities in China collected between

2012 and 2019. The dataset contained 2264 city samples; each sample comprised 1008 urban

characteristic indicators. By dividing the economic competitiveness of cities into five and ten

Table 6. County-level dataset accuracy.

Dataset Classification Original dataset Augmented dataset Accuracy improvement

Validation Set Five-class 89.02% 89.76% 0.74%

Ten-class 76.59% 76.83% 0.24%

Test Set Five-class 91.46% 91.95% 0.49%

Ten-class 74.88% 76.59% 1.71%

https://doi.org/10.1371/journal.pone.0293303.t006
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Fig 8. Accuracy comparison of different models and datasets.

https://doi.org/10.1371/journal.pone.0293303.g008

Table 7. Validate model accuracy.

Dataset Classification CNN (custom) VGG 11 VGG 16 VIT LSTM ACGAN

Validation Set Five-class 96.44% 96.67% 96.22% 92.44% 94.67% 95.56%

Ten-class 89.11% 89.56% 88.89% 84.89% 82.44% 88.89%

Test Set Five-class 93.78% 94.89% 94.00% 89.78% 90.89% 94.00%

Ten-class 88.44% 87.11% 87.11% 78.67% 80.67% 87.56%

https://doi.org/10.1371/journal.pone.0293303.t007
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levels, the classification accuracy of the CNN test set reached 93.78% and 88.44%. Additionally,

considering the substantial demand for sample size in machine learning, and the fixed number

of cities within a region, the study proposes a data augmentation method based on DCGAN.

By blending DCGAN-generated samples with original samples, the classification accuracy of

CNN was further improved by 0.44% and 2.00%. This study further extends the application of

machine learning in urban research, fully exploring the potential of big data-driven urban fea-

ture data. It incorporates complex urban features into neural network models, treating cities as

complex systems and considering the nonlinear relationships among various systems within

cities. In terms of model training, the application of DCGAN enables data augmentation at the

sample quantity level, providing a more versatile enhancement approach, especially for

research fields that are frequently limited by sample size in regional disparity studies.

Conclusions

The urban economic competitiveness classification model based on machine learning can pro-

vide a more accurate and stable way to identify differences in regional development, thus

assisting in making targeted policies and investment decisions. Further expansion of the

potential applications in analyzing indicators similar to urban economic competitiveness, such

as urban livability and sustainability, might also be achieved through targeted adjustments of

feature indicators and experimental samples. In addition, this study has implications for

research on other dimensions of regional differences, such as counties and villages. In the

future, a deeper integration of economic theoretical frameworks with neural networks and

enrichment of data feature engineering will be performed to provide more opportunities for

the development of artificial intelligence in urban economic research.
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