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Abstract

PIWI-interacting RNAs (piRNAs) are important for ensuring the integrity of the germline. 3'-
terminal 2’-O-methylation is essential for piRNA maturation and to protect them from degra-
dation. HENMT1 (HEN Methyltransferase 1) carries out the 2’-O-methylation, which is of
key importance for piRNA stability and functionality. However, neither the structure nor the
catalytic mechanism of mammalian HENMT1 have been studied. We have constructed a
catalytic-competent HENMT1 complex using computational approaches, in which Mg?* is
primarily coordinated by four evolutionary conserved residues, and is further auxiliary coor-
dinated by the 3'-O and 2’-O on the 3’-terminal nucleotide of the piRNA. Our study suggests
that metal has limited effects on substrate and cofactor binding but is essential for catalysis.
The reaction consists of deprotonation of the 2°-OH to 2°-O and a methyl transfer from SAM
to the 2’-O. The methyl transfer is spontaneous and fast. Our in-depth analysis suggests
that the 2°-OH may be deprotonated before entering the active site or it may be partially
deprotonated at the active site by His800 and Asp859, which are in a special alignment that
facilitates the proton transfer out of the active site. Furthermore, we have developed a
detailed potential reaction scenario indicating that HENMT1 is Mg®* utilizing but is not a
Mg?* dependent enzyme.

Introduction

RNA modification proteins (RMPs) are (i) enzymes that covalently modify RNA molecules
(“writers”); (ii) enzymes that reverse these modifications (“erasers”); and (iii) proteins that rec-
ognize and selectively bind these modified RNAs (“readers”) [1, 2]. RMPs play a myriad of
roles in the structural integrity and translational fidelity of RN As. The mechanisms of adding,
removing, and recognizing a chemical group in RNAs has been referred to as epitranscrip-
tomics. Emerging data has suggested that epitranscriptomics is an important indicator in can-
cer and other diseases, and RMPs have emerged as a new class of therapeutic targets with a
burst of research interest in recent years [1, 3].

Over 100 types of reversible and dynamic chemical modifications are carried out by RMPs
on cellular RNAs [4, 5]. In cancer, 27% of all known human RMPs are dysregulated, among
them HENMT1 and LAGE3 have been reported to be the two most frequently overexpressed
genes across a wide variety of cancer types. They are consistently overexpressed in tumors at
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various stages of progression, particularly at stages III and IV, and have been suggested to be
promising drug targets for anti-tumor therapies [6].

The Hua ENhancer (HEN) methyltransferase 1 (HENMT1; Clorf59; EC 2.1.1.n8; UniPort
ID: Q5T8I9) has a pronounced role in 2 O-methylation (2’-Ome) of mammalian P-element-
induced wimpy testis-interacting RNAs (piRNAs) which are critical in the early phases of sper-
matogenesis, and the repression of adult male germ cell transposons. HENMT1 loss-of-func-
tion induces piRNA instability and ultimately leads to male sterility [7, 8]. Recently, HENMT1
was shown to be responsible for the methylation of the 3’-terminal 2’-Ome of mammalian
miR-21-5p (see “micro RNA” section in S1 File.pdf), which plays a predominant role in
human non-small cell lung cancer (NSCLC).

piRNAs are well-defined in the male and female germline, with hundreds of thousands of
unique piRNAs in mammals (27,700 sequence in piRNAdb.hsa.vl_7_6.fa from piRNAdb.org
[9]; 282,235 clustered piRNAs from piRNA cluster database [10-12]; and 667,944 from piR-
NABank [13, 14]. The length of piRNAs varies from 21-31 nt among species with a common
and predominant 5" uridine (U) and conserved A at position 10, but with a less defined sec-
ondary structure [15]. In somatic cells, piRNA dysregulation has been associated with tumor
development and metastasis and has the potential to predict cancer prognosis [16, 17].

The 2’-O-methylation on the 3’-terminal of a subset of small RNAs is a crucial step for their
functional maturation and is prevalent among fungi, plants, and animals, which is achieved by a
conserved SAM-dependent RNA methyltransferase, HEN1 and its homologues. Structural studies
of plant HEN1 with a 22 nt RNA duplex and the cofactor product SAH, revealed that Mg** is
coordinated by both 2’ and 3’ hydroxyls on the 3’-terminal of the 22 nt RNA and four residues
(Glu796, Glu799, His800, and His860; corresponding to E133, E136, H137 and H182 in mouse;
and E132, E135, H136, and H181 in human) at the active site of the methyltransferase domain
[18]. The SAM-binding pocket is formed by five consecutive residues ;;0DFGCG5,; residing adja-
cent to the catalytic domain of Arabidopsis HEN1. Furthermore, the mechanism of 2’-O-methyla-
tion has been suggested to be Mg**-dependent for plant HEN1 [18]. The substrate specificity of
plant HEN1 is well-defined since it can methylate both microRNA and small interfering RNAs
duplexes (miRNA/miRNA* or siRNA/siRNA*), with a preferred length of 21-24 nt, RNA
duplexes with 2 nt overhang, and free 2’- and 3’-hydroxyls on the 3’ terminal nucleotide [19, 20].
The MTase domain of Drosophila HENT1 is located at its N-terminus and biochemical assays indi-
cate that it can methylate small single-stranded RNAs but not double-stranded RNAs [21, 22].
Four crystal structures (PDB IDs: 3JWG, 3JW1, 3JWH, and 3JWJ) of the MTase domain of a bac-
terial homolog of HEN1 demonstrate a unique motif and a domain that are specific for RNA rec-
ognition and catalysis [23], with the EXPP motif being important for substrate binding [24]. The
mouse homolog of HEN1 (mHEN1) is expressed predominantly in testis and methylates the 3’
end of piRNAs in vitro [25]. The methylation efficiency for piRNAs with different 3’ end nucleo-
tide are: A (259%) > C (137%) > U (100%) > G (44%) [25]. mHENI1 does not recognize the 5’
end of the substrate and is not particularly specific about the length of RNA substrate [25].

The architecture of human HENMT]1 (393 aa) consists of a confirmed MTase domain,
which alone cannot confer catalytic activity [24]. However, including the ,,FKPP;, motif at
the very N-terminus, namely the 26-263 region (below we refer to it as MTase region), confers
full activity of the MTase activity in vitro [24]. Unlike plant HEN1, which methylates double-
stranded RNA, the mammalian HEN1 methylates only single-stranded RNA [24]. The C-ter-
minal domain (CTD, ~263-393) of HENMT1 lacks homology in the primary sequence, which
indicates that the CTD varies substantially across species. However, there is a possibility that
the C-terminal domain may together with the very N-terminus, cooperatively recognize and
bind the substrate; or HENMT1 interacts with other proteins to facilitate its localization as was
observed for zebrafish HEN1 [26].
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The MTase region of human HENMT]1 crystallized with SAH (PDB ID: 4XCX) and SAM
(PDB ID: 5WY0) is missing the important cofactor Mg>*. Moreover, human HENMT1 has
been reported to prefer Mn2+ over Mg2+, similar to bacteria HEN1 [24]. Glu132, Glul35,
His136, and His181, corresponding to Glu796, Glu799, His800 and His860 in plant HEN1,
were proposed to be responsible for Mg** binding by (a) manual assertion inferred from
sequence alignment in UniPort entry Q5T8I9; and (b) comparison with HEN1 from plant
(PDB ID: 3HTX) [27].

Despite the structural and biochemical advance in studying HENMT1, there are still many
questions unanswered [24]. This includes, (a) what is the complete list of substrates of
HENMT1? Are piRNAs and miR-21-5p the only substrates? and (b) what is the molecular
basis of HENMT1 catalytic activity? Here, we aim to use computational biochemical
approaches to investigate the mechanisms driving mammalian HENMT1 activity.

From our previous work, we have observed that (a) the energy required for the methyl
transfer in SAM-dependent methyltransferases is around 8 k,/mol in protein and 13.8 k,/
mol in water, which is close to the spontaneous transfer under thermodynamic conditions;
and (b) the proton transfer is a rate-limiting step [28]. Transferring this knowledge to plant
HEN1 and mammalian HENMT1, we will consider and examine five potential reaction mech-
anisms for the rate-limiting proton transfer step: (I) 2’-OH is deprotonated before it reaches
the active site in the reaction-ready state; (II) a hydroxide present at the active site acts as base
to withdraw the proton; (III) His800 acts as a base; (IV) Glu796 acts as a base; and (V) His800
and Asp859, in a special alignment, facilitate the proton transfer out of the active site.

By compiling available structural information of HENMT1, computational modeling, cal-
culating free energies, as well as a detailed analysis and carefully evaluation of possible mecha-
nisms, we have reached the conclusion that the hydrogen from the 2°’-OH has the possibility to
be deprotonated before entering the active site; or it is partially deprotonated once entering
the active site due to its interaction with the residues (Glu796 and His800) at the active site; or
the spatial alignment of Asp796 and His800 may facilitate the transport of the hydrogen out of
the pocket. In addition, we propose an equilibrium ordered kinetic mechanism in which SAM
and Mg”* bind first prior to substrate binding.

Material and methods
Structure preparation

Since the truncated C-terminal domain (residues 666-942) of plant HEN1 and MTase region
of HENMT1 are sufficient for the methyltransferase activity, here we used the truncated plant
HEN1 methyltransferase domain (HEN1-M) and MTase region of HENMT1 for our compu-
tational analysis. We have built 3 systems: (SI) plant HEN1-M with 2’-OH binding to Mg>*
directly; (SIT) plant HEN1-M with 2’-OH binding to Mg** through hydroxide mediated inter-
actions, termed as HEN1-W; and (SIIT) mammalian HENMT1 with 2’-OH binding to Mg>*
through hydroxide mediated interactions. 3HTX.pdb was the primary template used for the
analysis of HEN1-W and HEN1-M. SAH was converted back to SAM by adding a methyl
group using Avogadro (S1 Fig). The missing loops (330 TPETQEENNSEPg5, and ¢1,SVENVg6)
were built and refined using LoopModel and DOPE LoopModel modules within MODEL-
LER10 [29] while the top 10 out of 400 models were optimized and relaxed within
MOLARIX-XG.

For human HENMT], the canonical sequence 26-263, featuring the MTase domain, was
taken from uniprot (ID Q5T8I9). The crystal structure of the human MTase region of
HENMT]1 in complex with SAH (PDB ID: 4XCX; covering sequence 26-170, 180-232, and
244-262) and SAM (PDB ID: 5WY0; covering sequence 31-85, 105-173, 177-236, and 245-
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Glu799

Fig 1. Plant HEN1 with 2°-O and 3-O groups directly coordinating Mg>* (SI). Plant HEN1 with hydroxide and 3’-O groups coordinating Mg**
(SII).

https://doi.org/10.1371/journal.pone.0293243.g001

258) were used as templates for modeling the MTase region of the HENMT1 complex with
cofactor SAM [Fig 1(A)]. The automodel and loopmodel modules within MODELLER 10
were used to build 200 models and loop refinement. The final models were selected based on
the objective function; the four residues (Glul32, Glul35, His136, and His181) that directly
bind Mg2+ were refined based on plant HEN1 (3HTX.pdb). Note that the crystal water (W1)
from 5WYO0.pdb was kept for SII and SIIIL. The structures were further optimized and relaxed
by MD simulations within the MOLARIX-XG package before the free energy calculation.

For plant HEN]1, the miR173/miR173* duplex, crystallized in 3HTX, was experimentally
generated using synthesized miR173 and miR173* RNA oligonucleotides with 5’ P and 3’ OH
annealed [19]. Note that the 2nt 3’ overhang is an important feature of the substrate. The con-
figuration for the miR173/miR173*(22A), miR173/miR173*(22C), miR173/miR173*(22U) are
generated by directly mutating the 22™® nucleotide. For plant HEN1, the configurations with
the lowest binding energy towards the substrate were selected and used for the subsequent
reaction calculation.

Binding energy calculations

Binding energy calculations were carried out to examine (a) the truncated HEN1 (HEN1-M),
and (b) to determine the role of the Mg>". We calculated the binding energy of SAM and
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substrate, which is a small RNA duplex, derived from one natural substrates of plant HEN1,
termed miR173/miR173* [18], in the presence/absence of Mg”* using the Linear Response
Approximation (LRA) version of Protein Dipoles Langevin Dipoles (PDLD/S-LRA) method
and also its PDLD/S-LRA/p version [30] within MOLARIS-XG package. At first, we generated
both complexes with full length HEN1 (HEN1-FL) and truncated HENI featuring the methyl-
transferase domain (HEN1-M) with and without Mg>" configurations, and with the charged
and uncharged forms of solute, respectively, and then treated the long-range interaction with
the local reaction field (LRF) [31]. After explicit all-atom molecular dynamics simulations of
all above complexes, each lasting 2ps, with the surface-constrained all-atom solvent (SCAAS)
[32], we carried out the PDLD/S calculations on the generated configurations. We took the
average value as the consistent estimation of the binding free energy. A 2ps run was done for
each of these simulations at 300K. The philosophy behind this method has been discussed in
Ref. [30] and in our previous work [28].

Simulations

The 2’-O-methylation requires two steps: deprotonation of the 2’-OH group preceding the
transfer of the methyl group from SAM to 2’-O group. First, we started from the methyl trans-
fer from SAM to 2’-O and later addressed the deprotonation of the 2’-OH group. The initial
kinetic descriptions were done at the M06-2X/6-31++G(d,p) level which provide a fine balance
between the computational costs and the reliability of results with a continuum solvent model.
Mg** and the surrounding ligands (2’-O/H,0/OH’, 3’-O, Glu796, Glu799, His800 and
His860) were included in the QM region (consisting of 83 atoms). The results from the DFT
calculation are then used to calibrate empirical valence bond (EVB) parameters for the methyl
transfer in enzymes, both plant HEN1 and HENMT]. The active site region was immersed in
a 32A sphere of water molecules using the surface-constraint all-atom solvent (SCAAS) type
boundary condition [32]. The geometric center of the EVB reacting atoms was set as the center
of the simulation sphere. The Langevin dipoles was applied outside of this 32A region, fol-
lowed by a bulk continuum. The long-range electrostatics were treated with the local reaction
field (LRF) method. Atoms beyond the sphere were fixed at their initial positions and no elec-
trostatic interaction from outside of the sphere was considered. In order to determine the pro-
tonation state and optimize the charge distribution of all ionizable residues, we were using the
Monte Carlo proton transfer (MCPT) algorithm which simulates the proton transfer between
charged residues. The charge distribution was updated and evaluated with Monte Carlo
approaches to identify the optimal charge distribution. The protonation state of the ionizable
residues are shown in S2 Fig. The detailed EVB simulation procedures are described in our
previous work [28, 33, 34]. The EVB simulations of the methyl transfer were done using the
Enzymix module within the MOLARIS-XG package [32, 35]. Note that all the DFT calcula-
tions were done using Gaussian 16 Revision C.01 [36].

Results
Overview of modeled HENMT1 structure

The overview of modeled HENMT]1 is shown in Fig 2A. After detailed structural analysis, we
believe that Glu132, Glul35, His136, and His181 constitute the predominant motif involved in
binding Mg>* which can then attract 3’-terminal miRNAs or piRNAs by forming a hydrogen
bond with the 3’-OH group of the ribose moiety (Fig 2B). In addition, the 2’- and 3’-hydroxyl
groups of piRNA bind Mg>" directly in the presence of SAH (Fig 2B).

The plant HEN1 protein not merely has a putative dsSRNA binding motif at the N-terminus,
but also has a conserved SAM-binding motif in the C-terminal region [2, 19]. Here, we have
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(A)

(B) (©)

Glu799

His800

Glu796

Fig 2. (A) Overview of modeled HENMT1 structure. (B) The Mngr binding pocket from plant HEN1 (PDB ID: 3HTX). Helices are colored as pink for the C
atoms, palecyan for the residues from the loop, and lemon color for the C atoms from B-sheet. (C) The SAM binding pocket (PDB ID: 5WY0) with Mg**
superimposed from 3HTX. The water molecule (W1) is crystal water from 5WY0.pdb.

https://doi.org/10.1371/journal.pone.0293243.9002

systematically examined this SAM binding pocket. There are two peptide motifs conserved
among plant, mouse, and human isoforms of the canonical SAM binding site; namely,
717LVDFGCGy,; and 743GVDI, 46 in plant HEN1; 5,VADLGCGsg and ,,GVDIg in mouse
HEN1; and 5, VADLGCGs3; and ,4GVDI,g in human HENMT1.

Fig 2C depicts the interaction scenario of SAM with HENMT1 in detail. The adenine base
of SAM is coordinated by the side chain of Ser114, the backbone of Vall15 and Ile79, and a
water molecule. The ribose group of SAM is coordinated by equivalent bidentate hydrogen
bond interactions between its hydroxyl and the carboxyl group of Asp78. The amino group of
methionine is forming a hydrogen bond with the backbone of Gly55 and Ile131, and two water
molecules; while the carboxyl group of methionine is forming a hydrogen bond with side
chain of Tyr36 and two water molecules. Taken together, we have identified residues 55, 78, 79
from conserved motifs that are directly binding SAM, and are conserved among plant HENI,
mouse HEN1, and HENMT1.

2’-OH deprotonation

The 2-O methylation requires two steps: (a) the deprotonation of the 2-OH group, and (b) the
transfer of a methyl group from SAM to the deprotonated 2-O group. The deprotonation is
the prerequisite and it is usually elusive. Since these steps hard to determine with theoretical or
empirical methods due to the short time frame, we are trying various different mechanisms to
determine which one is the most likely.

We have considered five potential mechanisms (Fig 3): Mechanism I is based on deprotona-
tion during the process when substrate is recruited at the active site. Our calculations, however,
determined that the 2’-OH of the ribose sugar has a high instinct pKa (12~14), which is usually
neutral at biological pH [37]. Hence, we have considered the possibility that 2’-O(H) still has
the H once it enters the reactive site, which needs a base to remove this H. Mechanism II is
based on a hydroxide/water present at the active site of HENMT1 crystal structure (5WY0) to
deprotonate the 2’-OH. Mechanism III is based on His800 deprotonating the 2’-OH group.
Nevertheless, scrutinizing the crystal structure of plant HEN1 (3HTX), we found that the pKa
of His800 (corresponds to His136 in HENMT1) is calculated to be 10.2, which indicated that it
binds proton tightly, increasing the likeliness that the hydrogens are on both the § and ¢ sites
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Fig 3. The reaction scheme of the deprotonation and methyltransfer.
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at product state, supporting a mechanism, in which His800 deprotonates the 2’-OH. Mecha-
nism IV is based on Glu796 deprotonating the 2’-OH group. This is however unlikely due to
the unusually low pKa value of Glu796 which is estimated to be 1.02 and Glu796 is in the
immediate vicinity of 2’-OH. Mechanism V is based on structural observations concerning the
spatial alignment of His800 and Asp859, as well as surrounding residues facilitating a proton
transfer network to deliver the proton out of the active site. Specifically, Asp859 abstracts a
hydrogen from His800 at the & site and His800 withdraws the hydrogen from the 2’-OH group
to its € site.

There are several possibilities for the mechanism that the hydrogen on the 2’-OH group
may be lost or still bonds in the process of substrate recruitment to the active site. One possibil-
ity is that the 2’-OH group was deprotonated during its recruitment into the active site. Once
at the active site, 2-OH may be (a) already deprotonated; (b) partial deprotonated; or (c) still
protonated. For the possibility that 2’-OH needs to be deprotonated at the active site, we
started to examine the potential orientation of this hydrogen because this determines the
potential base that will extract this hydrogen. One approach is to infer from the potential
occurrence of hydrogen bonds based on the positions of proximity heavy atoms from the X-
ray structures. This inference of precise orientation of the 2’-O-H bond is of great importance
in clarifying the elusive step of the 2’-OH deprotonation by revealing to which heavy atom the
proton will be transferred to.
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His800

S Glu796
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Glu799 (©)  Guroo
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Fig 4. The potential hydrogen bonds and hydrogen orientations. (A) The potential hydrogen bond between the 2’-OH group
and the surrounding atoms. (B) Hydrogen orientates towards the O4’ of the same sugar related to the hydrogen bond with His860.
(C) Hydrogen away from the O4’ of the same sugar, related to the hydrogen bond forming with His800 and Glu796.

https://doi.org/10.1371/journal.pone.0293243.9004

There are two possible orientations of hydrogen of the 2’-hydroxyl group based on the
hydrogen bond geometry criteria. The possible hydrogen bonds are illustrated in Fig 4A, and
the possible orientation of the hydrogen either towards (i) O4’ of the same sugar [Fig 4B], or
(ii) away from the O4’ of the same sugar [Fig 4C].

When hydrogen is orientated towards the direction of Glu796 and His800, our QM calcula-
tion of the active site indicate that O2’ is partially deprotonated (S5 Fig), while Glu796 and 2’-
O share the hydrogen with doy 5 = 1.02A and dgpy706.0 = 1.58A. Because of this, the orienta-
tion of the hydrogen at O2’ is essential to know.

Presence of water/hydroxide at the active site. In order to understand the chemical reac-
tions, we have calculated the pKa value of the residues at the active site using both PropKa and
MCPT approaches. The pKa value of residues His800, His860, Glu796, and Glu799 were calcu-
lated based on the plant HEN1 crystal structure (3HTX.pdb) using PropKa [38] and are 10.2,
5.3, 1.0, and 7.7, respectively. Note that the crystal structure 3HTX was obtained at pH 4.8.
Based on the pKa calculation, we conclude that His800 is a strong base and strongly bound to
the positively charged Mg**. Glu796 and Glu799 are negatively charged; the lower pKa value
of Glu796 may also be due to its binding to Mg>*. A more thorough calculation using MCPT
confirms the pKa value calculated by PropKa. Since 3HTX is obtained with the pronounced
product SAH, we postulate that His800 and Glu796 are at the product state, which implies a
possible mechanism with His800 is withdrawing a proton. Even though His800 may help
deprotonate the 2’-OH for the subsequent methyl transfer, it will not be energy favorable to
replace the hydrogen and Mg*" that tightly binds the N and N, with the hydrogen from 2’-
OH.

Since Mg*" is positively charged, it would be electrostatically favorable to bring the sub-
strate with 2”-O rather 2’-OH in close proximity towards Mg>*. If 2’-OH is deprotonated in
situ, an external base must be coordinated by Mg**. Since Mg”" already has four firm coordi-
nation atoms, together with the incoming 2’-O(H) and 3’-OH group from the substrate, result-
ing in a perfect six coordination as preferred by Mg**, indicating a lack of right coordination
for an external base. Therefore, such an external base may be present during the process when
the substrate was recruited to the active site. The external base (with a high likelihood to be a
hydroxide) may abstract a proton from 2’-OH, which is quite likely because a heavy O atom
was crystallized near the active site before the substrate was recruited in the HENMT1 complex
with SAM (5WYO0.pdb). We have excluded that the heavy O atom is water because the energy
barrier of deprotonation of water is estimated to be 29 k,/mol [39], rendering it not energy
feasible. A previous study has shown that the energy cost to transfer a hydroxide from the bulk
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solution to the Mg”* coordination shell is about 5 k ,/mol [39], and the free energy of hydrox-
ide ion formation based on k, TIn(10)(15.7 — 7.4) is 11.3 k.,/mol at pH 7.4. Therefore, the
hypothesis that a hydroxide is present is more likely than a water for the reaction to take place.
The catalytic cycle of HENMT1 starts with hydrated metal [termed as M; Mg2+(H20)6 or
Mn**(H,0)4] binding to HENMT1 forming a binary complex (E-M) with the replacement of 4
water molecules. SAM binding to HENMTT1 has no direct contact with metal. During RNA
substrate binding, it is possible that the 3’-O of the ribose moiety from the substrate would
replace one O from the inner sphere of Mg>*/Mn**, however, it is not energetically favorable
to have the 2’-OH group of the substrate to replace the last O atom at the inner sphere of Mg”
*. The reason is that (a) the remaining O provides a base to abstract the proton from 2’-OH for
the proceeding methyl transfer since no other base is available in the immediate vicinity; and
(b) it is electrostatically favorable for a positively charged methyl group (-CH3) to transfer to
2-O that is directly coordinated by water rather than the positively charged Mg>*. If the 2’-OH
binds Mg”* directly, it is not electrostatic favorable for the methyl group (-CH;") to come to
the 2’-O group which has +2 charge in the immediate vicinity. In addition, a base is required
to deprotonate the 2’-OH for the forthcoming methyl transfer, and the only two potential base
residues (Glu796 and His800 in HEN1; Glul32 and His136 in HENMT1) at the active site are
directly bound to the Mg** (equal to 2 protons) which is not electrostatic favorable to with-
draw another proton from 2’-OH group. Recently a water/hydroxide (W1 in Fig 2C) in the
active site of human HENMT1 was reported [24]. Therefore, we first assumed that (a) W1
instead of 2’-OH provides the direct binding to Mg** and (b) W1 as hydroxide withdraws the
proton from 2’-OH, which also solves the piece of the puzzle lacking a base to deprotonate the
2’-OH group. However, W1 exists in the active site which is lacking metal and substrate
(5WYO0.pdb). It is highly likely once the metal and substrate binding happened, the water will
not be there anymore, which is evident in 3HTX.pdb. Meanwhile, we have tried the water
flooding approach (S1 File) in an attempt to saturate the active site with water and found it is
not possible to insert water. Furthermore, we were unable to identify the transition state for
this speculated proton transfer to happen. Therefore, we have excluded the possibility of a
hydride/water at the active site acting as a base to facilitate the 2-OH deprotonation. Cumula-
tively, our above structural analysis provides a foundation for our catalytic mechanism study.

The role of Mg”*

Mg** possesses a strict octahedral geometry with a coordination number 6. Initial scrutinizing
the crystal structure of plant HEN1 (PDB ID: 3HTX), we find that Glu796, Glu799, His800,
and His860 together with the 2’- and 3’-OH of the substrate RNA, fulfill the coordination
requirement of Mg>", and Mg** plays a direct structural role at active site. However, this struc-
ture does not reflect the reaction scenario since it is a chimera of product and reactant: (a) the
product SAH is in the pocket instead of the reactant SAM; and (b) the reactant substrate is in
the pocket but lacks a base to abstract the proton from the 2’-OH for the subsequent 2’-O
methylation. Even though it is not a catalytic competent conformation, 3HTX provides a hall-
mark structure for studying HEN1.

In order to examine the role of magnesium binding, we constructed a system without Mg”
*, in which the protonation state of residues (Glu796, Glu799, His800, and His860) that previ-
ous coordinated the Mg”* are re-evaluated and obtained similar results as the presence of Mg®
" (see S1 Table). Furthermore, the protonation state of His800 and His860 are both reasonably
assigned on the J site to facilitate Mg®* binding.

The role of Mg*" in terms of binding was calculated using the Linear Response Approxima-
tion (LRA) version of Protein Dipoles Langevin Dipoles B version (PDLD/S-LRA/B)*® within
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Table 1. The averaged absolute binding energy calculation for SAM and RNA with (w/) and without (w/o) Mg>*
for plant HEN1. Note that the unit is k.,/mol.

Systems Binding energy

w/ RNA w/ Mg** 39.51

SAM wlo Mg®* 25.39
w/o RNA w/ Mg** 34.19

w/o Mg** 13.81

w/ SAM w/ Mg** -22.31

RNA wlo Mg?* -23.76
w/o SAM w/ Mg** -25.82

w/o Mg™* -23.11

https://doi.org/10.1371/journal.pone.0293243.t001

the MOLARIS-XG package. The averaged binding energy is shown in Table 1. Mg** does not
enhance the positively charged cofactor SAM binding, on the contrary, it is not favorable for
SAM binding. For the negatively charged substrate RNA, Mg>* did not significantly enhance
the substrate RNA binding. From above calculations, we have excluded a positive role of Mg**
in both cofactor and substrate binding.

The properties of Mg>" in the inner coordination sphere feature a very tight interaction to
either water or proteins. In the case of HEN1, the inner sphere coordination of Mg>" was pri-
marily bound by four residues from protein; and its interaction with the substrate would be
with the 2’-OH and 3’-OH of RNA. We studied the electrostatic role of Mg>* during the
methyl transfer by calculating the sum of the partial charges of the atoms [shown in Fig 5A].
However, the charge of the magnesium does not change much during the methyl transfer
stage [Fig 5B].

(A) (B)

0.91

0.7 1

0.5

0.3 1

Methyl group
— Mg

Partical charge

051 — sam

Substrate

2 Methyl group

SAM

40 05 00 05 1.0 15 2.0
ds...c - do...c (R)

Fig 5. (A) A snapshot of the transition state (TS) for the methyl transfer. All the atoms shown above are included in our QM region. (B) Partial charge across
the reaction coordinate. The x-axis indicates the distance of the reactive S from SAM and C from the methyl group minus the distance between the reactive 2’-
O and the C of the methyl group. Sum of partial charges on SAM (blue), 2’-O substrate (red), methyl group (lightyellow), and Mg (purple) are indicated by
lines. The down-facing arrow indicates that the charge of the methyl group starts to drift away from the SAM group, while the up-facing arrow indicates that
the charge of the methyl group starts to be incorporated in the 2’-O substrate. The region between the two gray vertical bars is the TS.

https://doi.org/10.1371/journal.pone.0293243.9005
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HENMT 1 activity is Mg”" utilizing but not Mg>* dependent

First, we examined the current metal (Mg>* or Mn*") binding pocket within the protein.
Based on well-established knowledge about plant HEN1, we propose a couple of interaction
scenarios for HENMT1 because the metal binding pocket is conserved in both plant HEN1
and human HENMT1. For HENMT1, the MTase region consists of the well-conserved seven-
stranded B-sheet [40] and one extra B-sheet, in the order of 67541238, sandwiched between
helices [Fig 2A]. Glul132, Glul35, and His136 are located in a short helix between 4 and o4;
and His181 is located in another short helix after B5. The two short helices are two unique fea-
tures in plant HEN1, which are not conserved in RNA and DNA MTases [23].

Second, we will examine the Mg®* cofactor in plant HENT since it has been proposed that
HENI catalytic activity is Mg>* dependent [18]. Since it is well known that the distance
between Mg" and its coordination oxygen atom from proteins or small molecules is around
2.07A which was determined by crystal structures [41]. Scrutinizing the distance in the crystal
structure of plant HEN1 (3HTX.pdb), we measured the distance between oxygen and metal as
2.2A. This is outside the ideal range for Mg2+. One possible candidate metal is Mn2+. As the
ionic radius of Mn** (0.754) is slightly bigger than Mngr (0.65A) [41, 42], and the distance
between Mn** and oxygen is 2.17A determined by crystal structure experiments, which is 0.1A
longer than the distance between Mg** and oxygen [41, 43, 44]. The measurements of 2.2A in
plant HENT1 crystal structure are in the range of Mn>*-Q distance [45]. Since Mn** has the
same coordination geometry as Mg”*, and the experimental observation of (a) replacement of
Mg** with Mn®" in the Mg**-utilizing enzymes usually does not change the catalytic activity of
enzymes while (b) replacing Mn** with Mg”" in Mn**-dependent enzyme are less often cata-
lytically competent [41]. Hence, we think Mn®" is likely to be the alternative metal in the
HENI1 binding pocket. Furthermore, the study of bacterial Clostridium thermocellum HEN1
(CthHENT1) indicates the preference for Mn>* over Mg** [46].

Third, there may be a catalytic advantage for using Mn** instead of Mg**. The optimal
coordination geometries of Mg**/Mn** in proteins is octahedral, with a firm coordination
number of 6. The solvent exchange rate for the inner sphere of Mg** is within 10~ seconds
(10° "), and for Mn*" is around 5 x 10°s~" [47, 48]. Mg>" has a slower solvent exchange rate
compared to Mn®" since it has a smaller radius and higher charge density. Glu132, Glu135,
His136, and His181 constitute the predominant motif in coordinating Mg>*/Mn** and con-
tribute 4 out of 6 coordination partners, while the energy penalty to reduce the coordination
number from 6 is high [41]. In theory, Mg**/Mn** would interact with the 2’-OH and 3’-OH
through inner sphere coordination, which implies that (a) prior to substrate binding, there
maybe two water molecules that complete the 6 coordinations required by Mg>*; and (b) dur-
ing substrate binding, a very low rate of ligand exchange and high energy of partial dehydra-
tion may apply. As mentioned earlier, the energy penalty for loss of two waters and binding of
the substrate is higher for Mg* than Mn** [41]. In terms of catalytic activity, Mn>" in the
binding pocket may improve the speed of the reaction.

Kinetics of plant HEN1 methyltransferase activity

Kinetic analysis of the full-length plant HEN1 (HEN1-FL) revealed that the Michaelis constants
for microRNA (a synthetic RNA duplex corresponding to miR173/miR173* from Arabidopsis
thaliana) and cofactor are K& = 0.22uM and K3*M = 1.7uM, respectively, with an apparent
catalytic turnover rate (k.,,) of 3.0 min' [18]. The truncated C-terminal domain (residues 666—
942) of HEN1, termed HEN1-M, is sufficient for methylation with much higher Ky, values for
both RNA (K = 2.1 £ 0.2uM) and SAM (K" > 20uM), but similar k., value [49], which
indicates that the N-terminal residues (1-665) are mainly responsible to enhance the binding of
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Table 2. Calculated binding energy (k.,/mol) for full-length plant HEN1 and the truncated methyltransferase domain.
System Ejning Ejviing Ejiiing
HENI-FL (w/ Mg**) 39.51 -28.98 27.37
HEN1-FL (w/o Mg?") 20.55 -25.57 23.94
HEN1-M (w/ Mg®") 40.02 2624 -26.06
HEN1-M (w/o Mg*") 20.26 -23.98 26.97

https://doi.org/10.1371/journal.pone.0293243.t1002

RNA. We have calculated the binding energy of SAM and RNA towards HEN1-FL and HEN1-M,
and our results show that HEN1-FL indeed enhances the binding of RNA (see Table 2), which
contributes close to 10% of the binding affinity. Further examination of the presence/absence of
Mg*" indicates that Mg" slightly contributes more to enhance substrate RNA binding than the
N-terminal domain. Hence, our result confirmed that the methyltransfer domain, as a standalone
catalytic domain, is the decisive factor for the methyltransferase activity.

HENMT1 substrates are not sequence-specific but there is a preference

HENMT]1 contains a putative dsSRNA binding motif at the N-terminus. We have analyzed the
direct contacts of plant HEN1 and substrate. There are around 46 residues from HEN1 that
have direct contacts with less than 3.5A coordination distance (analyzed from 3HTX.pdb)
from substrate. From these, 20 residues establish direct hydrogen bonding contact (S3 Fig).
Scrutinizing these contacts, we found that plant HEN1 recognizes and binds substrate RNA
primarily through (a) direct binding to oxygen atoms (OP1/2) of phosphate groups; and (b)
02’ and O3’ of the ribose hydroxyl group. There is no direct contact of plant HEN1 with
nucleobases, hence, the recognition and binding are not sequence specific, which explains why
plant HENI1 has a broad substrate specificity.

The architecture of HENMT1 (393 aa) consists of a confirmed MTase domain, which alone
cannot confer catalytic activity, however, including the ,,FKPP;, motif at the very N-terminus,
namely the 26-262 region (referred as MTase region), confers full activity of the MTase activ-
ity. The current available crystal structures of HENMT1 are 4XCX.pdb and 5WYO0.pdb, which
cover the majority of sequence from 26-262 (missing 171-179, and 233-243), and 31-258
(missing 86-104, and 237-244), respectively. There are two missing regions in the available
crystal structures; 1-25 at N-terminus, and 263-393 at C-terminus. The incompleteness of the
crystal structures limits our investigation regarding the substrate binding mode. Substrates of
animal HEN1 and HENMT1 are predominantly small single-stranded RNAs, which can be
explained by the missing dsRNA binding motif in both of them (the sequence alignment can
be found in S4 Fig). This also provides a logic explanation for the findings [46] in bacterial
HENT: (a) RNA length from 12-24 nt does not affect binding but the activity decreased signifi-
cantly with 9 nt RNA, and (b) substrate binding is not sequence specific except the preference
for a G at the 3’-end. The knowledge gained from bacterial Hen1 regarding RNA length and
RNA sequence specificity may also apply to HENMT1. However, whether the missing regions
1-25 and 31-258 contribute to the substrate recognition or binding is worthy of further study.

Discussion

The modification of piRNAs by HENMT1 plays a pivotal role since this profoundly affects the
stability of piRNAs which protects the fidelity of germ line. To understand this process better,
we have analyzed metal and substrate binding, as well as the kinetics of the HENMT1 methyl-
transfer reaction. The presence of the 2’-hydroxyl (2’-OH) group on the RNA ribose is a dis-
tinct feature that distinguishes it from DNA, which facilitates RNA structural folding and
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enables RNA to exert profound structural, dynamics and functional characteristics beyond the
functions of DNA. However, the 2’-OH group renders RNA more vulnerable towards degrada-
tion and chemical modifications such as methylation and uridylation. For example, the 2'-OH
group may nucleophilic attack its adjacent phosphate backbone, resulting in RNA self-cleavage.
The 3’-terminal 2’-OH group is subjected to methylation, which in turn protects RNAs from
degradation. It has been experimentally challenging to locate the precise position of the hydro-
gen atom of 2’-OH group or any hydrogen atoms. It is even more challenging to define whether
the 2’-O group is protonated or deprotonated at the active site when the local environment
involves proteins, metals and is catalytically active. For piRNA, it is crucial for the 2’-O group to
be methylated for its functionality, which is carried out by HENMT1. How the 2’-OH is depro-
tonated and how the methyl transfer happens is largely unclear. In our work, we have attempted
to understand these two processes with the precise position of hydrogen from 2’-OH holding
the key to answer the elusive step of the 2’-OH deprotonation. We have carried out extensive
discussions and reasoning, and our conclusion is that the hydrogen from 2’-OH is uncertain,
but there are two likely possibilities for this hydrogen: (a) to be deprotonated before entering
the active site or (b) successfully make it to the active site, while partially deprotonated by
His800 and Asp859, which are in a special alignment that facilitates the proton transfer out of
the active site. In summary, there are different possibilities for the deprotonation to happen and
the environment could act as hyperparameters to “tune” the reaction.

There are few published studies of HENMT1, in fact no structure of mammalian HENMT1
with substrates has been published, and the substrates are poorly defined. In our work, we
have attempted to model the HENMT1 structure inferred from plant HEN1, and we did a
thorough examination of the binding pocket, in which a metal is assumed to be present and
catalytically involved. Based on our detailed structural and computational studies, we believe
that HENMT1 can use Mg>* as cofactor, but is not Mg>" dependent. It can also use Mn** as
cofactor and there are advantages to using Mn>" instead of Mg>".

One substantial difference between plant HEN1 and animal HENT1 is the substrate specific-
ity. For plant HEN1, the substrates are double-stranded miRNA or siRNA duplexes, while for
animal HEN1, substrates have to be single stranded. In contrast to plant HEN1, that has dis-
tinct nucleic-acid-binding channels which implies its substrate has a well-defined length (a
preference for 21-24 nt RNA with a 2 nt overhangs [19, 20]) and features a distinct substrate
loading and release of the cleavage product. Instead, animal HEN1, due to lack of pronounced
binding grooves, has a broad substrate specificity (piRNAs, Ago2-associated siRNAs, and
tRNA-derived sncRNAs) [46] with tolerance for the length of the substrate. For HENMT1, we
believe that the substrate is not sequence specific, which is important for its broad substrates
(different piRNA). However, HENMT1 may have preferences for substrates like small single-
stranded RNAs with certain length, which will need to be studied further in the future.

Although the function of mammalian (mostly mouse) HENMT1 has been firmly established in
fertility [24], there are recent reports that HENMT1 may also play an important role in some types
of cancer [50]. Based on this and our own results regarding the catalytic activity of HENMT, we
assume HENMT!1 plays a role in proliferation of cancer cell lines derived from many different tis-
sues. Our analysis indicates it is associated with breast cancer, lung cancer, and skin cancer (S6 Fig).
In addition, the role of HENMT1 has been characterized in male fertility, but not yet in females.

Supporting information

S1 File. Supporting information for the “molecular basis of the reaction mechanism of the
methyltransferase HENMT1”.
(PDF)
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S1 Fig. The reconstructed model in which SAH was converted back to SAM using 3HTX as
initial structure.
(TIF)

S2 Fig. Residue protonation states in the plant HEN1. Note that protonated residues are
shown in red.
(TIF)

S3 Fig. The sequence alignment of HEN1 from plant, human, and mouse (uniport IDs are
Q9C5Q8, Q5T8I9, and Q8CAE2). The alignment was done using Clustal Omega. This figure
is generated using ESPript 3.x.

(TIF)

S4 Fig. The direct hydrogen bonding contact of plant HEN1 with its substrate miR173/
miR173* based on 3HTX.pdb. The residues from plant Hen1 are shown as stick and colored
yellow for C atom. The backbone of miR173/miR173* are shown as ribbon and the ribose
group and base are shown as lines. This figure is generated by PyMol.

(TIF)

S5 Fig. The QM atoms used for the active site 2’-O evaluation. The white sphere is the
hydrogen shared between 2’-O and Glu796.
(TIF)

S6 Fig. (A) Score distribution of HENMT1 in the genome-scale CRISPR-Cas9 screen. The x-
axis represents the gene effect scores while the y axis represents the cell line distribution. Indi-
vidual scores (DepMap 22Q2 Public+Score, Chronos) are indicated by the symbols depicted
below the x-axis. (B) HENMT1 gene effect across different cancer types. (C) The correlation
between HENMT1 gene effect (CRISPR DepMap 22Q2 Public) and its expression (Expression
22Q2 Public). The size indicates the -log10(p-value). The bigger the size corresponds to higher
statistical significance. The number of points/samples are indicated in the bracket. (D) The pre-
dicted HENMT1 network, the thickness of the edge indicates the confidence score. This figure
is generated using the String web server; the gene association network is predicted by STRING.
(E) The correlation between HENMT1 gene effect and the expression of its associated genes
based on the disease subtype and lineage subsubtype (F). (G) The expression of HENMT1 and
the expression of the associated genes with statistical significance in male and female groups.
(TIF)

S1 Table. Calculated pKa for HEN1 with (w/) and without (w/o) miRNA using PropKa.
(PDF)

$2 Table. Calculated summary of the partial charge during methyl transfer.
(PDF)

S3 Table. The sequence of the small RNA duplex (derived from one natural substrate of
HEN1, termed miR173/miR173*) substrate. The sequence and structure used for S1 and SII
are miR173/miR173* from 3HTX.pdb. Note that the to-be-methylated strand is colored blue
with the methyl 3’-end colored red.

(PDF)
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