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Abstract

Cruciferous plants produce sulforaphane (SFN), an inhibitor of nuclear histone deacetylases

(HDACs). In humans and other mammals, the consumption of SFN alters enzyme activities,

DNA-histone binding, and gene expression within minutes. However, the ability of SFN to

act as an HDAC inhibitor in nature, disrupting the epigenetic machinery of insects feeding

on these plants, has not been explored. Here, we demonstrate that SFN consumed in the

diet inhibits the activity of HDAC enzymes and slows the development of the generalist

grazer Spodoptera exigua, in a dose-dependent fashion. After consuming SFN for seven

days, the activities of HDAC enzymes in S. exigua were reduced by 50%. Similarly, larval

mass was reduced by 50% and pupation was delayed by 2–5 days, with no additional mor-

tality. Similar results were obtained when SFN was applied topically to eggs. RNA-seq anal-

yses confirm that SFN altered the expression of thousands of genes in S. exigua. Genes

associated with energy conversion pathways were significantly downregulated while those

encoding for ribosomal proteins were dramatically upregulated in response to the consump-

tion of SFN. In contrast, the co-evolved specialist feeder Trichoplusia ni was not negatively

impacted by SFN, whether it was consumed in their diet at natural concentrations or applied

topically to eggs. The activities of HDAC enzymes were not inhibited and development was

not disrupted. In fact, SFN exposure sometimes accelerated T. ni development. RNA-seq

analyses revealed that the consumption of SFN alters gene expression in T. ni in similar

ways, but to a lesser degree, compared to S. exigua. This apparent resistance of T. ni can

be overwhelmed by unnaturally high levels of SFN or by exposure to more powerful pharma-

ceutical HDAC inhibitors. These results demonstrate that dietary SFN interferes with the epi-

genetic machinery of insects, supporting the hypothesis that plant-derived HDAC inhibitors

serve as “epigenetic weapons” against herbivores.
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Introduction

Plant chemical defenses act directly and indirectly against herbivores. Direct defenses include

structural defenses such as waxes, thorns, hairs, and trichomes, as well as chemicals which act

as toxins, deterrents, antifeedants, endocrine disrupters, photosensitizers, irritants and abra-

sives, immobilizers, allergens, and digestion reducers, among others [1–6]. Such direct

defenses arose during the 350 million years plants have co-evolved with herbivores; they kill,

injure, manipulate, or disrupt the development of herbivores [7]. Here we propose a new sub-

category of plant defense, one capable of altering gene expression patterns of herbivores on a

broad scale by sabotaging their epigenetic control systems. We focus on plant products that

inhibit the activity of nuclear histone deacetylase (HDAC) enzymes in herbivores, disrupting

the balance of acetylation and deacetylation of nuclear histone proteins in the animal’s tissues.

These substances alter DNA-histone binding properties, creating new regions of loosely

packed euchromatin and tightly packed heterochromatin, thereby altering the accessibility of

large numbers of genes [8–11]. HDAC inhibitors are common in plants [12–14] and their

effects on humans and other mammals have been investigated in clinical trials [13,15–22].

However, little is known about the roles of these botanical HDAC inhibitors in nature. We

suggest that they act as epigenetic weapons, disrupting the development, phenotype, behavior,

dispersal, or reproduction of herbivorous insects via epigenetic mechanisms. To test this idea,

we examined the effects of sulforaphane (SFN), an HDAC inhibitor produced by cruciferous

plants, on two common lepidopteran grazers which are important agricultural pests.

1. The importance of epigenetic systems in insects

Epigenetic systems are ubiquitous in metazoans where they alter gene expression via DNA

methylation, regulatory action of non-coding RNA, or modification of histone proteins [23–

25]. These chromatin modifications open and close regions of the genome and alter the ability

of transcription factors to access genes. As a result, they can orchestrate large-scale changes in

gene expression, generating new metastable phenotypes in individuals [26–28]. For example,

epigenetic systems can direct normal development and aging, coordinate stress responses, and

facilitate rapid adaptation to changing environments. Altered phenotypes may persist long

after a stimulus has passed [8,13,24–27,29]. New phenotypes generated by these epigenetic sys-

tems are termed epigenotypes [30]. In insects, where phenotypic changes can be especially dra-

matic, they are often referred to as polyphenisms. Acquired epigenetic states can sometimes be

inherited, altering the phenotype of offspring in ways that may (or may not) improve their fit-

ness [24,31,32]. In short, epigenetic mechanisms are an important source of phenotypic plas-

ticity for individuals. They may also confer benefits at the level of populations by facilitating

adaptation to changing conditions when genetic variation is lacking, such as in small, bottle-

necked, or asexual populations [24,33].

Relatively little is known about the epigenetic machinery of insects [34–37]. However,

recent studies demonstrate that they can be important in development, sex determination,

morphology, behavior, life history cycles, longevity, pathogen resistance, and immune priming

as well as eusocial caste structure [34,35,38–40]. For instance, various epigenetic systems con-

trol development, physiology, and behavior in Drosophila [41]; determine the sex of silk moths

(Bombyx) [42]; control the size and shape of insect armament in beetles [43]; alter juvenile hor-

mone levels [39]; and may alter the duration and direction of flight in the cotton bollworm,

Helicoverpa armigera [36]. Epigenetic mechanisms determine the caste of individuals in euso-

cial insects, including bees and ants [35,44–46]. Clearly, epigenetic systems can initiate pheno-

typic plasticity in response to changing conditions or, in some cases, exposure to specific

chemicals. There are some examples of epigenetic effects spanning generations in insects,
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though these reports are relatively rare. For example, Manduca sexta epigenetic mechanisms

facilitate trans-generational immune priming against pathogenic bacteria [40].

Three epigenetic systems have been commonly examined in insects [24,34,35,37]: DNA

methylation, non-coding RNA, and histone modifications.

DNA methylation. In most animals methylation of DNA tends to repress transcription

and the majority of CpG dinucleotide sites are methylated at any given time [36]. However,

DNA methylation may not be as common, or as important, in insects. For example, DNA

methylation was not observed in Drosophila and is thought to be sparse or absent in many

other insect taxa, leading some to conclude that DNA methylation has at most a minor role in

insects [35,36,38,47,48]. Some insects possess the enzymes required for DNA methylation but

others, including Drosophila and some lepidopterans, do not [35,36]. There are a few reported

examples of DNA methylation impacting insect fitness [36,38] but the importance of DNA

methylation in insects is a subject of debate [34].

Non-coding RNA. Non-coding RNAs may bind to DNA and alter chromatin to yield epi-

genetic effects and some have roles in insects [35,38]. For example, they may be protective

against mutations caused by transposable elements; they occasionally determine insect sex, as

in Bombyx; they alter DNA binding to histones; and they may be maternally transmitted to off-

spring [35]. More work is needed to understand the functions of non-coding RNAs in insects.

Histone modifications. Gene expression may be controlled by altering DNA binding to

histone proteins [9,11]. Histone acetyltransferases modify histone subunits by adding acetyl

groups, creating regions of loosely packed euchromatin that makes genes more accessible for

transcription. Conversely, HDACs remove acetyl groups, leading to tightly packed heterochro-

matin that is less accessible for transcription [8–11]. Here we focus on plant products that

inhibit HDACs, for several reasons. First, plants produce an assortment of natural products

known to inhibit HDAC enzymes in mammals [13,15,49–53]. Examples include allicin from

garlic; curcumin from turmeric; apigenin, genistein, and quercetin from fruits; sinapinic acid

from mustard seeds; resveratrol from grapes and wine; SFN from cruciferous vegetables; caf-

feic acid and catechins from foliage and tea; protocatechuic aldehyde from wine stopper cork;

diallyl disulfide from garlic; zerumbone from ginger; ursolic acid from basil; and butein and

kaempferol from a variety of plants [12–14]. This evidence comes primarily from medical

studies focusing on mice and cultured cells as well as from clinical trials. Second, there is evi-

dence that HDAC inhibitors from other, non-plant sources can affect insects quite dramati-

cally. For example, phenyl butyrate in royal jelly is a natural HDAC inhibitor and determines

caste and behavior in honey bees and ants [35,38]. The related HDAC inhibitor, sodium buty-

rate, improves learning in honey bees [54]. In cultured cells of Spodoptera frugiperda, sodium

butyrate causes mitochondrial dysfunction, oxidative stress, and cell death, [55] while also

altering susceptibility to viruses [56]. Exposure to trichostatin A (TSA), a pharmaceutical

HDAC inhibitor, alters the size and shape of mandibles in the broad-horned flour beetle, Gna-
tocerus cornutus [43]. It also alters histone acetylation in the brains of Camponotus floridanus
ants, resulting in changes to their behavior [44]. RNAi silencing of HDAC genes alters histone

acetylation in the brown planthopper, Nilaparvata lugen¸ affecting the development of ovaries

and ovipositors in females and preventing males from making courtship songs [57].

There is an obvious disconnect between these two sets of studies. One set highlights the

many HDAC inhibitors produced by plants and examines their use in medicine. The other set

shows that HDAC enzymes can affect insects but focuses on HDAC inhibitors from non-plant

sources. We are not aware of any study connecting these two sets of observations, i.e., testing

the potential impact of botanical HDAC inhibitors on the development, physiology, or behav-

ior of herbivores. As a result, little is known about the roles of botanical HDAC inhibitors in
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nature. This gap in knowledge is surprising since many herbivorous insects consume large

amounts of HDAC inhibitors when feeding upon their host plants.

2. HDAC inhibitors

There are 18 recognized HDAC enzymes, organized into four classes [9,12,35,58,59]. The

“classic” HDACs are zinc-dependent hydrolases. These include class I enzymes (HDACs 1–3,

8), which are ubiquitous and essential for cell proliferation and survival; class IIa enzymes

(HDACs 4, 5, 7, 9) have weak activity and move in and out of the nucleus; class IIb enzymes

(HDACs 6, 10) act upon non-histone proteins in the cytosol; class IV enzymes (HDAC 11)

have poorly-defined functions. Other HDAC enzymes include the sirtuins, class III NAD+

dependent enzymes (SIRT 1–7) that are involved in aging, transcription, apoptosis, inflamma-

tion, axonal degeneration, stress resistance, metabolic regulation, and energy production.

HDAC inhibitors impede the activity of one or more classes of HDAC enzymes [11]. Many

are common in nature; some are FDA-approved therapeutics used in oncology and neurology

[59]. Pharmaceutical HDAC inhibitors include TSA, romidepsin (Istodax), and suberanilohy-

droxamic acid (Vorinostat). Less powerful HDAC inhibitors include certain ketones, sodium-

and phenyl-butyrates, and the anti-seizure medication valproic acid [13]. Plants produce a

variety of HDAC inhibitors, such as SFN, an isothiocyanate from cruciferous vegetables,

which inhibits class II HDAC enzymes in mammals [13,49,53]. SFN has health benefits in

humans [51,60–63]. For example, it initiates anti-oxidant and anti-inflammatory responses

and restores proteasome function [64,65]. In cancer cells, it can trigger cell cycle arrest and

apoptotic cell death thereby inhibiting tumor growth [66,67]. SFN can cross the blood-brain

barrier and has neuroprotective effects [64,68,69]. In mammals SFN is easily absorbed and dis-

tributed in the body: after consumption of broccoli, for example, the concentration of SFN in

human plasma increases quickly and plateaus within several hours [69–72]. The potential roles

of SFN in nature, however, have not received much attention.

3. Testing HDAC inhibitors as potential plant defenses in a model system

SFN is produced by plants in the order Brassicales (the cruciferous or mustard oil plants)

including cabbages, broccoli, Brussels sprouts, bok choy, cauliflower, rapeseed, watercress, and

Arabidopsis [6,62,73–76]. This group includes the most important cultivated leafy vegetables

[67]. When these plants are chewed or crushed, a “mustard oil bomb” reaction is generated in

which glucosinolates are hydrolyzed by plant myrosinases (ß-thioglucoside glucohydrolases)

to generate nitriles, isothiocyanates, thiocyanates, oxazolidine-2-thiones, and epithionitriles

[6,73,74,77,78]. These products can serve as defenses against herbivores [67,79–88] and influ-

ence the taste and flavor of cruciferous plants. SFN is the hydrolysis product of one particular

glucosinolate, glucoraphanin (4-(methylsulfinyl) butyl glucosinolate) [61,62,64]. Most insect

herbivores feeding on cruciferous plants would be exposed to SFN with every bite, though

some possess adaptations to deactivate or redirect the mustard oil bomb reactions [80,88–90].

These substances are known to have a variety of deterrent effects against a range of grazers;

however, as far as we are aware, the impacts of SFN on the epigenetic systems of insect herbi-

vores have not been investigated.

Here we investigated the impact of SFN on two lepidopteran species, one generalist (the

beet army worm, Spodoptera exigua) and one specialist (the cabbage looper, Trichoplusia ni),
both of which are agricultural pests and consume cruciferous plants in nature. S. exigua has a

broad host range; in contrast, T. ni grazes most often on members of the Brassicales [91],

including those that generate SFN [6,79,87,92]. Our experiments tested the hypothesis that

SFN interferes with the epigenetic machinery of herbivorous insects.
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Methods

Experimental approach

We conducted a series of experiments to determine if dietary SFN (a) affects development, (b)

inhibits the activity of nuclear HDAC enzymes, and/or (c) alters patterns of gene expression in

the beet armyworm (S. exigua) and the cabbage looper (T. ni). For each experiment, larvae

were allowed to feed ad lib on an artificial diet (AD) containing natural concentrations of SFN.

Others consumed pharmaceutical HDAC inhibitors, such as TSA and romidepsin (ROM),

which served as response controls (Fig 1). We monitored the development of larvae and in

some cases adult moths. Differential development was analyzed using Student’s t-tests or

ANOVAs with Holm-Sidak posthoc tests. Non-parametric alternatives, including Mann-

Whitney U tests and ANOVAs on ranks with Dunn’s pairwise comparisons, were used when

datasets were not normally distributed. Tissues were also collected to quantify HDAC enzyme

activities and to identify gene expression patterns via RNA-seq.

Insects and treatments

T. ni and S. exigua larvae were obtained from Benzon Research (Carlisle, Pennsylvania, USA).

First instar larvae were raised individually in 5 ml wells on an AD appropriate for each species

with antibiotics at 25˚C and 50% humidity, unless otherwise indicated.

The HDAC inhibitors SFN, TSA, and ROM were obtained commercially from Millipore

Sigma (Burlington, Massachusetts, USA) and BioVision Incorporated (Waltham, Massachu-

setts, USA). Each HDAC inhibitor was solubilized in ethanol and added to each well to cover

the surface of the AD. The ethanol was fully evaporated for 8h at 20˚C. One first instar larva

was transferred into each well on Day 0. Larvae fed ad lib and generally consumed half of the

AD by Day 7. We employed a variety of negative controls, including larvae feeding on AD

alone and larvae feeding on AD treated with the ethanol carrier solvent only. In a few cases we

raised a second generation by allowing larvae to pupate, emerge as moths, and mate within

treatment groups. In these cases, second-generation larvae were reared from the eggs on AD

without HDAC inhibitors.

The amount of SFN utilized in these experiments is similar to what is ingested during natu-

ral feeding. For example, we typically used SFN concentrations of 0–70 mM, applied as 30–

40 μl aliquots to each well containing AD. This range of concentrations is similar to that of cru-

ciferous plant foliage and lower than levels reported in buds, flowers, sprouts, or seeds. The

doses are also comparable to those used in medical studies [93].

Fig 1. Basic experimental design. For each species, first instar larvae in individual wells consumed various

concentrations of SFN in an AD. Larvae in negative control groups consumed AD treated only with the carrier solvent

(ethanol), which was evaporated prior to feeding. Larvae in positive control groups consumed AD supplemented with

a pharmaceutical HDAC inhibitor, usually TSA. Larvae were raised at 25˚C and 50% humidity, unless otherwise noted.

Biometric data, such as mass, length, and width, were recorded for individual larvae. Tissues were isolated from a

subset of larvae for HDAC enzyme activity assays and gene expression analyses by RNA-seq. Remaining larvae were

allowed to develop normally. Adjustments made for some specific experiments are described in the methods section.

https://doi.org/10.1371/journal.pone.0293075.g001
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We considered the possibility that SFN and TSA could be distasteful, suppressing feeding

and, therefore growth rates. We did not observe this to be the case in any experiments. None-

theless, it seemed prudent to run parallel experiments wherein these substances were applied

topically, rather than via the diet. As a result, we also conducted similar experiments wherein

HDAC inhibitors were applied topically to eggs, using DMSO as a penetrating solvent.

Sample collection

Larvae developed in individual wells until pupation, approximately Day 14 depending on spe-

cies, treatment, and temperature. Larval masses, larval widths, and survivorship were recorded.

Fat body tissues, and in some cases ovaries, were collected by microdissection from a subset of

larvae, approximately four days before control larvae would start pupation. We focused on

these tissues because they are important in development and reproduction, because they can

be obtained cleanly from larvae that remain smaller than usual, and because SFN is expected

to reach them relatively quickly. We did not examine midgut tissue, commonly examined in

similar studies, because gut tissue would likely be contaminated with HDAC inhibitors from

the artificial diet, making accurate measurements of HDAC enzyme activity problematic. Tis-

sues used to quantify HDAC enzyme activities were stored immediately at -80˚C [94]. Tissues

for RNA-seq analyses were preserved in RNAlater (Invitrogen, San Diego, California, USA;

ThermoFisher Scientific, Waltham, Massachusetts, USA) using 1 ml per 100 mg tissue, and

stored at -80˚C.

HDAC enzyme activity

Extracts of nuclear and cytoplasmic proteins were made from isolated tissues (BioVision

K266-25, Waltham, Massachusetts, USA). HDAC enzyme activity was determined using an

HDAC Activity Fluorometric Assay Kit (BioVision K330-100, Waltham, Massachusetts, USA)

and normalized to protein concentration in each extract.

RNA extraction, library construction, and sequencing

Larvae from each experiment group were dissected to isolate fat body tissue. Fat bodies from

three to five individual larvae were pooled per replicate. Thawed samples were centrifuged at

10,000 x g for 20 seconds and RNAlater was removed from pelleted tissue. Total RNA was

extracted from the tissue twice using Buffer A (50 mM sodium acetate pH 5.2, 10 mM EDTA,

1% SDS) saturated phenol heated to 65˚C, followed by phenol/chloroform (1:1) extraction.

Extracts were ethanol precipitated, resuspended in ddH2O and ethanol precipitated again.

Final pellets were resuspended in ddH2O to a concentration of 500–1500 ng/ml. RNA concen-

tration was determined using a DS-11 spectrophotometer (DeNovix, Wilmington, Delaware,

USA). Total RNA quality was assessed using RNA Nano Chips and a 2100 BioAnalyzer (Agi-

lent, Santa Clara, California, USA) and Qubit RNA High Sensitivity Assay (ThermoFisher,

Waltham, Massachusetts, USA), followed by High Sensitivity RNA ScreenTape Analysis (Agi-

lent, Santa Clara, California, USA).

Library construction and sequencing was performed by Admera Health Biopharma Ser-

vices (South Plainfield, New Jersey, USA). Poly(A) selection was performed using the NEB-

Next Poly(A) mRNA Magnetic Isolation Module (New England Biolabs, Ipswich,

Massachusetts, USA) following the manufacturer’s protocols. RNA-seq libraries were gener-

ated using the NEBNext Ultra II RNA Library Prep Kit for Illumina (New England Biolabs,

Ipswich, Massachusetts, USA) following manufacturer’s protocols. Libraries were quality

checked using the Qubit dsDNA High Sensitivity Assay (ThermoFisher, Waltham, Massachu-

setts, USA), followed by High Sensitivity DNA ScreenTape analysis (Agilent, Santa Clara,
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California, USA) and qPCR (KAPA SYBR FAST qPCR Master Mix (2X) Kit; Roche, Basel,

Switzerland). Libraries were standardized to equal molar ratios and then pooled. Paired-end

150-bp reads were generated using the NovaSeq S4 platform (Illumina, San Diego, California,

USA). All raw sequence reads were deposited in the NIH GEO under project number

GSE234351.

RNA-seq processing and analysis

Reads for all RNA-seq experiments were quality checked with FastQC (v0.11.9) [95] and were

processed with Trimmomatic (v0.39) [96] using the following parameters: LEADING:5,

TRAILING:5, MAXINFO:36:0.2, MINLEN:50. T. ni reads were aligned to the T. ni Cornell-1

isolate genome (obtained from the T. ni Genome Database on 2022-05-25) and S. exigua reads

were aligned to the S. exigua TB_SE_WUR_2020 isolate genome (WGS JACEFF01 obtained

from the NCBI Genome Database on 2022-06-06) [97,98]. Reads were aligned using HISAT2

(v2.2.1) with the default parameters, and alignments were quality checked using QualiMap

(v2.2.1) [99]. featureCounts implemented in the Rsubread package (v2.12.2) was used to calcu-

late read counts for each gene using the appropriate species-specific annotations [100]. Low-

count genes (mean counts-per-million [CPM] across all samples > 10) were filtered and read

counts were normalized using the trimmed mean of M-value normalization method. Differen-

tial expression analysis was performed with edgeR (v3.40.2) [101,102] using a general linear-

ized model comparing the mean expression for all pairwise combinations of treatments,

pairing triplicate samples, and taking the Benjamini and Hochberg false discovery rate (FDR)

< 0.05 as significant [103].

One-to-one orthologs between T. ni and S. exigua were assigned using the reciprocal best

hit method with BLAST [104]. Hierarchical clustering was performed using Cluster 3.0 [105]

and visualized in JavaTreeView [106]. KEGG and GO annotation terms were assigned to each

genome using eggNOG (v2.1.7) [107]. Functional enrichment analysis of orthologous gene

lists was performed with clusterProfiler (v4.6.0) [108], using a hypergeometric test, taking as

background the set of genes in each species that were retained after filtering for low count

genes, and taking the Benjamini and Hochberg FDR < 0.05 as significant [103].

Results

The growth of the generalist feeder, S. exigua, but not the specialist feeder

T. ni, was negatively affected by HDAC inhibitors

SFN slowed the development of S. exigua larvae in a dose-dependent manner. S. exigua larvae

feeding upon the highest doses of SFN were, on average, less than half the size of those in the

control groups at Day 11 (Fig 2A). The treated larvae seemed otherwise healthy: they readily

fed on diets containing SFN and pupated normally and there was no significant mortality. In

contrast, the development of T. ni larvae was generally unaffected by SFN. For example, SFN

had no impact on T. ni larval mass at Day 7 (P = 0.502) or Day 11 (P = 0.780; Fig 2A) and there

were no obvious changes in feeding, behavior, or pupation.

Topical application of SFN elicited responses similar to feeding

We observed similar results when SFN was applied topically to egg masses (Fig 2B). Direct

SFN treatment inhibited the development of S. exigua (Student’s t-test; P<0.001). In contrast,

we observed that T. ni larvae from SFN-treated eggs grew faster, compared to controls (Stu-

dent’s t-test; P<0.001).
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Fig 2. Effects of HDAC inhibitors on development of S. exigua and T. ni larvae. (A) The mass of S. exigua larvae was reduced by consumption of SFN at Day

11 (One-way ANOVA, P = 0.006; red bars). No significant effect on larval mass was observed for T. ni (One-way ANOVA, P = 0.780; blue bars). (B) By Day 11,

the width of S. exigua larvae was reduced when eggs were directly exposed to SFN (Student’s t-test, P<0.001; red bars). In contrast, the width of T. ni larvae was

not reduced but instead increased by Day 11 (Student’s t-test, P<0.001; blue bars). Con. indicates use of the DMSO carrier solvent. (C) S. exigua larval mass

was decreased at both Day 7 (One-way ANOVA, P<0.001) and Day 11 (One-way ANOVA, P<0.001) after exposure to the powerful HDAC inhibitor ROM. T.

ni larval mass was also decreased at Day 7 (One-way ANOVA, P<0.001) and Day 11 (One-way ANOVA, P<0.001). (D) The emergence of S. exigua moths was

not delayed by the consumption of SFN, although TSA delayed moth emergence by about two days (One-way ANOVA, P = 0.003). The emergence of T. ni
moths was not delayed by SFN or TSA. Instead, both TSA and SFN accelerated moth emergence significantly (One-way ANOVA, P<0.003). Control indicates

the use of the EtOH carrier solvent. All data represent the mean +/- SE; letters indicate the results of post hoc tests; bars with the same letters are not

significantly different at α = 0.05 according to pairwise multiple comparisons.

https://doi.org/10.1371/journal.pone.0293075.g002
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Stronger HDAC inhibitors challenge the resistance of T. ni
T. ni appeared to be resistant to the effects of SFN at natural concentrations, so we attempted

to overwhelm this resistance by exposing larvae to ROM, one of the strongest pharmaceutical

HDAC inhibitors. We observed that the growth of T. ni larvae was reduced dramatically by

ROM in a dose-dependent manner (Fig 2C). ROM treatments also delayed pupation up to 5

days and delayed the emergence of adult moths up to 10 days, on average. Only the highest

treatment of 18.5 μM ROM caused significant mortality. Nevertheless, consistent with the

aforementioned results, T. ni was less impacted than S. exigua.

Long-term effects

We observed some impacts of HDAC inhibitors on later developmental milestones. In the

SFN treatment groups, the emergence of S. exigua moths was often delayed by a few days.

Stronger HDAC inhibitor drugs slowed the emergence of S. exigua moths more dramatically

(Fig 2D). Interestingly, the emergence of T. ni moths was not delayed. Instead, it was acceler-
ated by approximately two days in both TSA and the highest concentrations of SFN (Fig 2D).

Despite these effects on larval development, we never detected differences in pupal mass or the

size, appearance, and behavior of adult moths for any treatment group.

SFN inhibits HDAC enzymes in S. exigua but not T. ni
We expected the consumption of SFN and TSA to inhibit the activity of HDAC enzymes in lar-

val tissues, as they do in mammals, and indeed this was the case for S. exigua. In this species,

HDAC enzyme activity was reduced by ~50% by SFN (Fig 3A). In contrast, HDAC enzyme

activities in T. ni tissues were not inhibited by exposure to SFN.

We wondered if the HDAC enzymes of T. ni were naturally resistant to SFN. To test this,

we extracted nuclear and cytoplasmic HDAC enzymes from both species and exposed them to

SFN in vitro. The enzymes extracted from both species were inhibited equally by SFN (Fig 3B)

suggesting that HDAC enzymes from T. ni were not inherently more resistant to SFN.

The effects of SFN on S. exigua are most apparent at higher temperatures

Changes in temperature impacted larvae development, as expected (Fig 4). For both species,

larval growth rates increased markedly as temperatures increased from 23 to 29˚C. Consistent

with previously described experiments where larvae consumed SFN, development of S. exigua
was reduced by consumption of SFN; this effect was most apparent at higher temperatures.

For example, at 23˚C the mass of S. exigua larvae was reduced 20% from 65 mg to 52 mg, on

average, whereas at 29˚C mass was reduced 30% from 226 mg to 157 mg, on average. In these

experiments, consumption of SFN failed to affect the development of T. ni at any temperature.

SFN induces large-scale changes in gene expression

To investigate the consequences of HDAC inhibition in larvae consuming SFN or TSA

(S1 Fig), we profiled transcriptome changes in S. exigua and T. ni fat body tissues, in biological

triplicate. We applied a linear model to identify genes differentially expressed in each species,

in response to each HDAC inhibitor. In all, we identified 1,792 and 2,454 genes whose expres-

sion was significantly altered in S. exigua and T. ni, respectively, after consumption of either

SFN or TSA (S2 Fig). To directly compare the response between species, we identified one-to-

one orthologs. In both species, the expression patterns were similar: approximately 85% of sig-

nificantly differentially expressed genes are repressed in response to either SFN or TSA, while

approximately 15% genes are induced (Fig 5B and 5C). The genes repressed in response to
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SFN strongly overlap the genes repressed in response to TSA. However, we also identified 181

and 409 genes in S. exigua and T. ni, respectively that showed species-specific repression. The

genes induced in response to SFN and TSA have less overlap between species. Importantly,

although the response patterns were similar for both species, the magnitude of the response to

these HDAC inhibitors was greater in S. exigua compared to T. ni (Fig 5A).

To explore the potential physiological effects of differential gene expression elicited by SFN

and TSA, we clustered the orthologous expression responses and identified enrichment of

KEGG pathways in specific gene clusters (Table 1). Both species exhibited reduced expression

of genes associated with energy conversion pathways, including pyruvate metabolism, carbon

metabolism, oxidative phosphorylation, the TCA cycle, glycolysis, and gluconeogenesis.

Again, the degree to which these genes were repressed was less in T. ni as compared to S. exi-
gua. In addition, both species showed increased expression of genes associated with ribosome

biosynthesis and the production of cuticular proteins. Finally, a small cluster of 146 genes that

were induced in T. ni but repressed in S. exigua showed a significant enrichment for genes

involved in fatty acid degradation.

Fig 3. Effect of SFN on HDAC enzymes in S. exigua and T. ni. (A) The activity of HDAC enzymes in nuclear extracts

was reduced in S. exigua after consumption of SFN (Student’s t-test, P = 0.023; red bars). In contrast, enzyme activity

was not reduced in T. ni (Student’s t-test, P = 0.333; blue bars). (B) Nuclear and cytoplasmic HDAC enzymes were

extracted from S. exigua (red) and T. ni (blue), and their activities were quantified in vitro in the presence of various

concentrations of SFN. Con. indicates use of the EtOH carrier solvent in (A) while the leftmost data points represent

the control in (B). Data represent the mean of 3–5 replicates +/- SE.

https://doi.org/10.1371/journal.pone.0293075.g003
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It is possible that HDAC inhibitors such as SFN and TSA not only inhibit HDAC enzyme

activity directly but also repress the expression of genes encoding for these enzymes, a type of

“double inhibition”. To investigate this, we specifically examined the expression of known

Fig 4. Effect of temperature on larvae consuming SFN. Exposure to SFN affected the mass of S. exigua larvae at

various temperatures. The impact of SFN on S. exigua was most apparent at higher temperatures. For T. ni, larval mass

was not reduced by SFN at any temperature. Con. indicates use of the EtOH carrier solvent. P values are the results of

Student’s t-tests.

https://doi.org/10.1371/journal.pone.0293075.g004
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HDAC genes in these species of insects. We identified six HDAC genes in each of our species:

HDAC2 & 3 (Class I), HDAC6 & 7 (Class II), and HDAC11 (Class IV). Only HDAC11 was sig-

nificantly repressed in our experiment, in both S. exigua and T. ni (S1 Table).

Iflaviruses

Our RNA-seq analyses confirmed the presence of iflavirus 1, a positive-strand RNA virus, in

the fat body tissues of S. exigua. This result was not surprising. Iflaviruses are common in lab-

cultured populations [109] and field populations [110,111] of insects. In many insect species,

including S. exigua, iflaviruses produce “covert infections” that are not lethal and do not

Fig 5. Consumption of SFN altered the expression of genes in fat body tissues of S. exigua and, to a lesser degree,

T. ni. (A) Hierarchical clustering based on Euclidean distance of 1,721 orthologous genes significantly differentially

expressed after exposure to either SFN (S) or TSA (T) in S. exigua (S.e) and T. ni (T.n). Values represent the log2 fold-

change relative to an EtOH control. Venn diagrams represent the overlap of orthologous genes significantly repressed

in response to SFN or TSA (n = 1,615; B) or significantly induced in response to SFN or TSA (n = 307; C). For overlap

categories representing less than 5% of the total number of genes, the number is not denoted in the Venn diagram.

https://doi.org/10.1371/journal.pone.0293075.g005
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produce obvious signs of disease [109,112]. Carballo et al. noted that they are often detected

serendipitously during transcriptomic studies [113], as was the case in our experiments. How-

ever, a few recent studies have suggested that there may be direct or indirect effects of iflavirus

infection, for example interactions with other viruses or predators known to affect insect fit-

ness [113]. We wondered if the consumption of HDACi in our experiments affected the abun-

dance of iflavirus RNA. It did not; our analyses indicated that viral RNA levels were not

impacted by the consumption of HDAC inhibitors by its host.

Discussion

1. Sulforaphane can act as an epigenetic weapon against S. exigua
SFN, a natural HDAC inhibitor produced by cruciferous plants, disrupted the development of

the beet armyworm, S. exigua, when consumed at natural concentrations. In general, SFN slo-

wed larval growth by ~50%. Interestingly, there was no significant mortality. Larvae fed nor-

mally, were otherwise healthy, and pupated to produce adult moths. In this species,

consumption of SFN inhibited the activity of HDAC enzymes in the nucleus and the cyto-

plasm of fat body tissues by ~50% and resulted in large scale changes in patterns of gene

expression. We detected 1,792 differentially expressed genes in S. exigua larvae consuming

SFN. In general, genes associated with central energy production pathways were downregu-

lated while genes associated with ribosome construction and cuticle formation were upregu-

lated in fat body tissues. The method of SFN treatment did not seem to matter: similar

responses were observed when SFN was consumed in the diet and when eggs were treated top-

ically with SFN, supporting the hypothesis that SFN acts directly as a HDAC inhibitor rather

than affecting feeding rates. The effects of dietary TSA, a pharmaceutical HDAC inhibitor,

were similar. These observations support our hypothesis that SFN acts as a chemical defense

by disrupting the epigenetic control systems of herbivorous insects.

2. T. ni is more resistant to SFN

Interestingly, the specialist herbivore T. ni was at least partly resistant to the effects of SFN.

The development of T. ni larvae was rarely affected by SFN, whether the substance was

Table 1. Enrichment for KEGG pathways in clusters of genes with different expression patterns.

Function P value a Number of Genes in Cluster Number of Genes in Genome Fold Enrichment over Background

Repressed in both species

Pyruvate metabolism 5.00e-09 19 51 5.94

Oxidative phosphorylation 1.14e-05 27 148 2.91

Carbon metabolism 3.90e-05 25 141 2.83

Citrate cycle (TCA cycle) 7.72e-05 12 40 4.79

Biosynthesis of amino acids 0.0012 16 86 2.97

Cysteine and methionine metabolism 0.0057 10 45 3.54

Glycolysis / Gluconeogenesis 0.0191 10 53 3.01

Glycerophospholipid metabolism 0.0450 11 70 2.51

Induced both species

Ribosome biogenesis in eukaryotes 6.41E-35 31 71 21.15

Repressed in S. exigua and induced in T. ni
Fatty acid degradation 0.0306 4 42 9.95

a P value from Bonferroni-corrected hypergeometric test.

https://doi.org/10.1371/journal.pone.0293075.t001
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consumed in the diet or applied topically to eggs. Similarly, consumption of SFN did not

inhibit HDAC enzyme activity in this species. In fact, HDAC enzyme activities remained

high in fat body tissues despite consumption of SFN and/or the known HDAC inhibitor

TSA.

The difference in responsiveness between S. exigua and T. ni is not surprising. Herbivores

often possess different co-evolutionary adaptations allowing them to feed on toxic host plants

with various levels of success [80,83,89,90,114–116]. We considered how some of these adapta-

tions may explain our results. First, some grazers possess mechanisms to deactivate or redirect

the “mustard oil bomb” reactions, preventing the accumulation of products such as SFN.

These adaptations would be irrelevant in our experiments because larvae consumed SFN

directly. Second, we considered that some specialized grazers possess mechanisms to deacti-

vate isothiocyanates via conjugation in the gut. These mechanisms could have protected larvae

from SFN in our feeding experiments, however this would not explain the similar results

obtained when SFN was applied topically to eggs (Fig 2B). Similarly, it would not explain why

T. ni is generally resistant to TSA (Fig 3A). Third, we considered the possibility that the resis-

tance of T. ni in our experiments, compared to S. exigua, was due to differences in the insects’

HDAC enzymes themselves; however, this seems not to be the case. HDAC enzymes isolated

from T. ni and S. exigua were inhibited equally by SFN in vitro (Fig 3B). Finally, we considered

that T. ni consuming foliage containing SFN may compensate by overproducing HDAC

enzymes; however, we did not find evidence for this either. The expression of HDAC genes

was not increased in larvae consuming SFN or TSA. The lone exception was a gene for a poorly

understood HDAC enzyme (HDAC11; S1 Table) which was indeed overexpressed in response

to SFN and/or TSA. This by itself seems unlikely to explain our results. It is possible that T. ni
could increase the level of HDAC enzymes via some post-transcriptional mechanism.

3. Sulforaphane induces large-scale changes in gene expression

The consumption of SFN affected the expression of thousands of genes. Overall, the patterns

of differentially expressed genes were similar in both species in response to SFN and TSA, sug-

gesting that SFN does indeed act primarily as an HDAC inhibitor when consumed in the diet

at natural concentrations. Although the patterns of gene expression were similar, the magni-

tude of changes was generally greater in S. exigua as compared to T. ni. (Fig 5). In short, similar

genes were affected but to a lesser degree in T.ni, corresponding with the resistance of this spe-

cies that we observed in these experiments.

KEGG pathway analyses indicated that the consumption of SFN and TSA impacted core

metabolic processes. Both HDAC inhibitors downregulated many genes associated with

energy conversion pathways, including glycolysis, gluconeogenesis, pyruvate metabolism, and

oxidative phosphorylation, in both species. HDAC inhibitors are well-known to impact energy

conversion pathways in cancer cells [59,117] where they usually downregulate genes associated

with glycolysis, thereby counteracting the Warburg Effect [118]. However, our results differ in

that genes from virtually all energy conversion pathways were downregulated. We also

observed a dramatic upregulation of genes associated with protein synthesis in both species,

after consumption of both HDAC inhibitors. A similar result was observed in mouse embryos

treated with TSA [119,120]. Finally, we observed the upregulation of cuticular protein genes,

in both species, which could have implications for development.

In some previous studies HDAC inhibitors, including TSA, have been observed to lower

the expression of HDAC genes [121]. In this sense, these substances were doubly inhibitory:

disrupting the activity of HDAC enzymes and downregulating the expression of HDAC genes.

However, we did not observe this for most of the HDAC genes identified in S. exigua or T. ni.
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4. Extending this work to test hypotheses in the field

These observations demonstrate that dietary SFN can inhibit the HDAC enzymes of herbi-

vores, disrupting gene expression and development. Specifically, we demonstrated that SFN

slowed the development of S. exigua, an important agricultural pest. In these laboratory experi-

ments, we examined the effects of SFN alone, rather than in combination with other defenses

present in cruciferous plants. The next step is to evaluate the effectiveness of SFN as an epige-

netic weapon in nature.

Based on these results, we envision three possible ways in which SFN could act as an effec-

tive defense against susceptible herbivores in nature. First, SFN may cause larvae to be smaller,

for a longer time. According to the slow growth–high mortality hypothesis, this would extend

the window of vulnerability during which caterpillars are most exposed to predators [122,123].

Indeed, this effect has been observed for caterpillars feeding on cruciferous plants in nature

[123]. If this is the case SFN would be most effective as a defense in a natural setting when

predators are present. Second, SFN could slow development sufficiently to reduce the number

of herbivore generations over the course of a growing season. For S. exigua we typically

observe delays of 2–3 days from first instar larvae to the emergence of moths. However, in lon-

ger experiments examining a complete life cycle, we have observed delays of 5–7 days after

consumption of SFN. For comparison, the life cycle of S. exigua in the field is approximately

22–28 days, rapid enough to generate six generations during the summer in Florida (USA)

[124]. Based on our results, SFN could slow development to the point of eliminating one gen-

eration of S. exigua caterpillars per growing season.

Finally, SFN could sabotage the phenotypic plasticity–the adaptability–of these herbivores,

which may be especially detrimental for insects since they rely upon their remarkable pheno-

typic flexibility for their ecological success [38,92,125–128]. For instance, herbivores com-

monly adjust their phenotypes to circumvent the induced defense responses of plants in real-

time [1–5,129]. If SFN interferes with phenotypic plasticity, it may be most damaging in com-

bination with other plant defenses. In cruciferous plants, synergistic effects of multiple glucosi-

nolates are well-known. It is also interesting to note that such synergistic combinations of

HDAC inhibitors and other chemical agents have been documented in medical studies

[130,131].

The effects of SFN on S. exigua were most apparent at higher temperatures, suggesting that

SFN may be most effective in warmer regions or late in the growing season. This result also

indicates that continued climate warming may increase the effectiveness of SFN as an epige-

netic weapon against herbivores.
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S1 Fig. Consumption of SFN altered the expression of genes in fat body tissues of S. exigua
and, to a lesser degree, T. ni. In a common experiment we cataloged gene expression changes

in both species in response to SFN, compared to ethanol alone (negative control) and the phar-

maceutical HDACi TSA (positive control). Exposure to dietary SFN reduced the size of S. exi-
gua larvae but not T. ni larvae, as observed in previous experiments. A two-factor ANOVA
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and by species (P<0.001). Letters indicate pair wise differences detected by Student-Newman-

Keuls multiple comparisons tests.
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S2 Fig. Significantly differentially expressed genes in S. exigua and T. ni. Color intensity

reflects the degree of expression changes, highlighting the greater magnitude of expression

changes in S. exigua, compared to T. ni. Hierarchical clustering based on Euclidean distance of

1,792 S. exigua (A) and 2,454 T.ni (B) genes significantly differentially expressed after exposure

to either SFN or TSA. Values represent the log2 read counts per million mapped reads (CPM).

Data are scaled such that each gene has mean = 0 and standard deviation = 1.
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