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Abstract

Recently, many robust adaptive beamforming (RAB) algorithms have been proposed to
improve beamforming performance when model mismatches occur. For a uniform linear
array, a larger aperture array can obtain higher array gain for beamforming when the inter-
sensor spacing is fixed. However, only the small aperture array can be used in the equip-
ment limited by platform installation space, significantly weakening beamforming output per-
formance. This paper proposes two beamforming methods for improving beamforming
output in small aperture sensor arrays. The first method employs an integration algorithm
that combines angular sector and gradient vector search to reconstruct the interference
covariance matrix (ICM). Then, the interference-plus-noise covariance matrix (INCM) is
reconstructed combined with the estimated noise power. The INCM and ICM are used to
optimize the desired signal steering vector (SV) by solving a quadratically constrained qua-
dratic programming (QCQP) problem. The second method proposes a beamforming algo-
rithm based on a virtual extended array to increase the degree of freedom of the
beamformer. First, the virtual conjugated array element is designed based on the structural
characteristics of a uniform linear array, and received data at the virtual array element are
obtained using a linear prediction method. Then, the extended INCM is reconstructed, and
the desired signal SV is optimized using an algorithm similar to the actual array. The simula-
tion results demonstrate the effectiveness of the proposed methods under different
conditions.

Introduction

Adaptive beamforming technology has also been known as spatial filtering anti-interference
technology, and there have been numerous research breakthroughs in this field in recent years
[1-3]. The principle of this technology is to process sample data received by each sensor
according to certain beamforming criteria and using various algorithms. After performing the
weighted superposition of data received by each array element, the main lobe of the beam is
aligned with the signal of interest (SOI), and a null is formed in the direction of the
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interference signal to suppress the interference, which effectively improves the system’s output
performance. Because most methods based on this technology require prior information on
the incoming direction of the desired signal, they have been frequently combined with the
high-resolution direction of arrival (DOA) estimation algorithms [4, 5] to improve an antenna
array system’s interference suppression ability and output performance. A minimum variance
distortionless response (MVDR) beamformer can maximize the output signal-to-interference-
plus-noise ratio (SINR) under the ideal condition that the SOI steering vector (SV) and inter-
ference-plus-noise covariance matrix (INCM) are known [6, 7]. However, the effect of adap-
tive beamforming can significantly decrease in many practical applications compared with the
ideal situation due to the presence of SOI in the sample covariance matrix (SCM), array geom-
etry errors, and DOA mismatch.

Recently, several robust adaptive beamforming (RAB) techniques have been proposed to
reduce the effect of model mismatches and improve the robustness of beamforming. For
instance, the eigenspace-based method [8-11] can help to improve the robustness of beam-
forming algorithms. However, noise pollution at a low signal-to-noise ratio (SNR) can degrade
performance to a certain extent; also, the determination result of the subspace dimension can
affect the output of this method. Diagonal loading (DL) [12-14] has been a common method
for increasing the robustness of beamforming. However, the setting of the diagonal loading
level determines the performance of beamformers. Although the adaptive diagonal loading
algorithm [15, 16] can obtain a loading level adaptively, it is challenging to maintain robust-
ness in a wide range of input SNR. In [17-20], the uncertainty set constraint technique was
proposed to attain higher performance. The aforementioned methods are effective at improv-
ing the output SINR under certain error conditions.

Further, to minimize the desired signal’s impact on adaptive beamformers, the INCM
reconstruction method [21, 22] was proposed to improve output performance by weakening
the SOI in the SCM. In [21], the authors first proposed the idea of INCM reconstruction,
where the INCM was reconstructed by using the Capon power spectrum integrated over an
interference-plus-noise sector region, and the SV of the desired signal was optimized by solv-
ing a quadratically constrained quadratic programming (QCQP) problem. In [23], a low-com-
plexity INCM reconstruction method based on spatial power spectrum sampling was
developed. The method in [24] applied maximum entropy power spectrum to reconstruct the
INCM by integrating over the angular sector of interference-plus-noise as well as the desired
signal region. In [25], an effective RAB method was developed by reconstructing the INCM
based on a combination of power method processing and spatial spectrum matching. In [26],
the distributed digital subarray antennas were used to form a contiguous virtual array after the
gaps between the subarrays were filled with virtual array elements. Then, the INCM of the con-
tiguous virtual array was reconstructed. [27] proposed an extended INCM reconstruction
method based on linear prediction to generate virtual sensor data and extend array aperture.
In addition, combining the INCM reconstruction method and the coprime array [28, 29] can
further enhance the output performance of beamforming.

What’s more, the array aperture size also affects the beamforming performance. Under par-
ticular experimental conditions, such as small detection or communication devices, the spatial
aperture of an array can be smaller than the wavelengths involved [30]. For linear arrays, the
array aperture size is related to both the interval of elements and the number of elements.
When the number of array elements is fixed while the interval of elements decreases, or when
the interval of elements is fixed while the number of elements decreases, the array aperture will
decrease, so the beamforming performance will decline. In order to improve the output perfor-
mance of beamforming algorithms on small aperture arrays, this paper proposes two RAB
approaches based on the INCM-reconstructed method. In the first proposed method, a RAB
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algorithm based on an actual array is proposed. This algorithm combines the angular sector
integration method and line searching integration method along the gradient vector to recon-
struct the interference covariance matrix (ICM), and the INCM is constructed by combining
the obtained ICM with the estimated noise covariance matrix. Then, the reconstructed ICM
and INCM are used to optimize the desired signal SV by solving the QCQP problem. In the
second method, a RAB algorithm based on a virtual extended array is proposed. First, the vir-
tual conjugated element is generated according to the structural characteristics of a uniform
linear array, and data received at the virtual array element are predicted using the linear pre-
diction method. Further, the INCM of the extended array is reconstructed using the ICM
reconstruction algorithm in the first method, and the desired signal SV is optimized. The main
contributions of this paper include:

1: Two beamforming algorithms for small aperture arrays are proposed. The first proposed
method combines the angular sector integration method and line searching integration
method along the gradient vector to reconstruct the ICM, which achieves well performance in
different conditions.

2: The second proposed method utilizes the linear prediction method to get a virtual
extended array. Based on the ICM reconstruction and the desired signal SV optimization algo-
rithm in the first method, the virtual element is used to expand the array’s aperture and
improve the degree of freedom of the array.

The remainder of this paper is organized as follows. Section II describes the signal model
and provides necessary background information about adaptive beamforming. Section III
introduces the proposed RAB methods. Section IV presents simulation results. Finally, Section
V concludes this paper.

Signal model

Consider a uniform linear array (ULA) with M elements that receive Q far-field uncorrelated
narrowband signals, including one desired signal and Q — 1 interference signals. Then, the kth
array received signal can be expressed as follows:

Q

x(k) = a5, (k) + Y as,(k) +n(k) (1)

q=2

where the waveform of signal s; is regarded as the SOI, and a is the corresponding SV; s, and
a, denote the waveform and SV of the gth interference signal, respectively; n is the additive
white Gaussian noise.

An MVDR beamformer obtains an optimal weighting vector by minimizing interference
and noise power without distorting the SOI, which can be expressed as follows:

minw"'R, w st w'a =1 (2)
where R;,, is the INCM, which is given by:

Q
— 2 H 2
R, = Z o’ +ol,
=2 (3)
=R, + 71,
where R; and I, represent the ICM and identity matrix, respectively; ¢ and ¢, are the powers

of the gth interference signal and white Gaussian noise, respectively.
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The solution to the optimal weighting vector is given by:

R, 'a,
w — in 4
opt al HR;,lal ( )
Because the actual INCM and SV are unavailable in real applications, the INCM can be
replaced in two ways. One is to use the SCM R, which can be written as follows:

R=— x(kx"(k) (5)

where K is the number of snapshots.
Another way is to reconstruct an INCM based on the available information.
The output of the beamformer is given by:

y(k) = w'x(k) (6)

In the remainder of this paper, the hypothetical DOA of the SOI and gth interference are
respectively denoted by f)l and 0 o where g=2,3, ..., Q. The desired signal SV obtained using

array geometry and hypothetical DOA information is denoted by a,, and the gth interference
SVis denoted by a,.

Proposed methods

Generally, the gain of an array system is proportional to the array aperture size. As the array
aperture size decreases, the array system’s gain will also decrease. The output performance of
small aperture arrays can be improved by designing more robust beamformers or extending
arrays with virtual elements.

Beamforming algorithm based on actual array

The covariance matrix reconstruction method, which uses a spatial power spectrum integral
over a particular sector as the estimate of the matrix, can effectively improve the robustness of
beamforming. Inspired by this, the prposed1 method reconstructs the ICM over an angular
sector and a gradient vector set. The estimated noise power is calculated based on the relation-
ship between residual noise and actual noise. Based on the obtained INCM, the nominal SV of
the desired signal can be optimized by solving a QCQP problem.

ICM reconstruction. In addition to the method defined by Eq (5), a real INCM can also
be replaced by reconstructing the INCM. The integral algorithm in the angle region of a signal
has a strong robustness to the direction error and can reconstruct the ICM by integrating the
Capon space spectrum in the angular sector of the interference, which can be expressed as fol-
lows:

R, = / P(0)a(0)a (0)do )

G)q
where O, represents the angular sector of the gth interference signal, and P(0) is the Capon
spectrum in the 6 direction, which can be expressed by [31]:
1

- L
k) a" ()R 'a(0) ®)

Then, the ICM reconstruction in ©, can be approximately performed using a discrete sum
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method as follows:

A L a(0)a"(0
R, ~ AHa( z)fl 1(A]) N 9)
= a"(0,)R"a(0;)
where 0, 1=1,2, ..., Lis the sample points in ©, and L represents the number of discrete sam-

ple points.

The basic idea of reconstructing the ICM by Eq (9) is to use the Capon power spectrum
integral in the angular sector where the interference is located. The Capon power spectrum is
mainly distributed in the actual signal SV [32]. In addition, it can be considered that multiple
virtual interference signals are added near the interference estimation direction 0 ;- Although
this reconstruction method can overcome the effect of direction estimation error on the calcu-
lation result to a certain extent, the acquisition of P(0) and a(0) requires accurate array cali-
bration. If other array errors exist, the ICM reconstruction by Eq (9) will lead to not ideal
results. The algorithm presented in [32] adopts a volume integral method for the INCM recon-
struction to reduce the sensitivity to array calibration error. However, the number of discreti-
zation points in the integration region of [32] is two to the power of M. When the number of
matrix elements is large, the number of discretization points will be too large to calculate.

Further, to address other errors and decrease the number of discretization points in the
integration region, the ICM reconstruction along the gradient direction from a, is proposed.
The basic idea of this method is that there can be multiple contour vectors with the same
Capon power value near an actual signal SV, and a, is one of them. Therefore, if several nomi-

nal SVs are selected in the small range near 0 , to form a hyperplane, the estimated SV a, can

be regarded as a tangent point between the hyperplane and the contour line. Then, from the
tangent point a,, the true SV can be found along the gradient direction perpendicular to the

hyperplane [33]. Based on this inference, the ICM can be constructed from the tangent point
a, in the gradient direction using the line integral method.

Next, the gradient can be obtained by using the subspace-based method to reconstruct the
scan matrix of the SV a_ in a certain range of directions as follows:

H, = [3,(0).4,(0.),..,3,(0,))] (10)

where [0, 05, . . ., Op1] is a set of (M — 1) sample points uniformly distributed in ©,.
Then the non-full rank matrix H qHZI can be constructed, and its eigendecomposition is per-

formed as follows:

M
H H
Hqu - Z quququ
m=1
(11)
M—1
H H
= Z quququ + VququqM
m=1

where y,1 > ¥2 > ... > yam represents the eigenvalues, and b, is the eigenvector correspond-
ing to ¥gum-

Let By = [bg1, bya, - - -, byar—1], which is a hyperplane space containing M — 1 eigenvectors
corresponding to the maximum of (M — 1) eigenvalues. Since matrix H qu is not full rank,
the eigenvectors corresponding to the first (M — 1) large eigenvalues are sufficient to span the
space where the hyperplane is located. According to the property of the conjugate symmetric
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matrix, the eigenvector by, is orthogonal to the other eigenvectors. Further, b, is orthogonal
to the hyperplane space, so it can be used as a gradient vector estimation of a, [33].

The estimated nominal interference SV is adjusted by adding a scaled gradient vector:

a,=a,+nb,y (12)

where 7 € [-¢, &].
Inspired by [33], the gradient-based reconstruction ICM can be expressed as a discrete sum
of the adjusted SV, which can be expressed as follows:

. =, aal A
WY ———An 13
q = Q?R,léq ( )

Combining Eqs (9) and (13), the final ICM can be reconstructed as follows:

R, = i (R, +R,) (14)

q=2

Noise power estimation and SV optimization. Using the idea presented in [34], the
noise power for the noise covariance matrix can be estimated as follows:

2 = Ma? (15)

G, = 121271 (16)
" T4 aH(0)R1a(0)

where 0; is a discrete sample point in the noise region ©,, and J is the number of sample
points.
Then, the reconstructed INCM is given by:

Rin = Ri + 6-ZIM (17)

The desired signal’s SV can be optimized by adopting the idea of maximizing the beamfor-
mer’s output power [21]. In addition, to prevent the estimated desired SV from converging to
other interference regions, the ICMs obtained in two different ways, by Eqs (9) and (13), are
both considered when designing the constrain conditions:

min (&, +V3L)HR;:1(Q] + Vsi)

Vi1

st. av, =0
&, +v, ) "Rya,+v,) <4 "R,
&, +v,)"R, (& +v,) <a"Ra,

where R, = 25:2 ﬁdq +6°1,,and R, = 5:2 ﬁeq + 671, v, is one of the components of v,
and it is orthogonal to a,; v, is the mismatch vector of a,, and it can be decomposed into two
components, namely \4 andv, ;v, is parallel to a, and does not affect the beamforming qual-

ity. Therefore, v, is not considered in Eq (18).

il
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~

W_(M-2)

W_(m-3)

The optimization problem in Eq (18) represents a quadratically constrained quadratic pro-
gramming (QCQP) problem and can be solved by a convex optimization toolbox. The opti-
mized SV is expressed asa, = a, + v, »and the weight vector obtained based on the actual

array can be calculated by:

—-1Z
w = Rin al

- 2HD 12
al Rin al

(19)

Beamforming algorithm based on virtual extended array

By using the real data received from an actual array, a virtual array can construct the received
data at the virtual element to expand the array. The proposed2 method extends the ICM recon-
struction method in proposed1 to the virtual extension array using the virtual element. Com-
pared with the original actual array, the advantage of a virtual extended array is that it can
increase the number of degrees of freedom.

Extended array data generation. A virtual extended array based on the MVDR method
has three tasks to solve. The first task is to determine the expansion mode of a virtual array,
that is, to determine the expansion array’s SV. The second task is to generate the virtual array’s
received data, and the third task is to construct the INCM of the extended array. To extend the
aperture and degree of freedom of an array, this study designs a virtual extended array using
the conjugate symmetry of ULA [35]. The extended array is shown in Fig 1.

If the first element x; of a real array is the point of symmetry, then the real and virtual ele-
ments are axially symmetric about x;. The number of sensor elements in an extended array is
(2M - 1), of which (M — 1) elements are virtual elements. Assume that the signal SV of an
actual array with DOA Qisa(0) = [1,e 720/ g2r-Ddsin 07 then the SV of a virtual
element is estimated to be expressed from right to left as follows:

5‘/(9) — [eand sin (;/x7 el 2n(M~1)d sin o/x]T (20)

where A represents the signal wavelength, and d is the spacing between adjacent sensors.

\/ Physical Sensor ./ Virtual Sensor h/

Fig 1. The structure of an extended sensor array.

https://doi.org/10.1371/journal.pone.0293012.g001
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According to Eq (20), the SV of a virtual element is conjugate of the SV of an actual array.
Thus, the extended-array SV estimation can be expressed as follows:

5(6) — [ej2rz(M—1)d sin 0/)\.7 . 7ej27'wl sin ()/k’ 1’ o e—j2n(M—])d sin ()/X]T (21)

For the purpose of facilitating the subsequent calculation, the received data of a virtual
extended array are expressed as follows:

X(k) = [y (k); X gy (k) - -5 X (), %, (K), x5 (K), - 50 (K)] (22)

Generally, except a DOA estimation algorithm can predict the DOA, information on each
signal in an array is unknown, so the received data at a virtual element cannot be calculated
directly by Eq (1). However, a linear prediction method can be used to generate a virtual array
element’s data [27, 36]. For a conjugate virtual extended array, the mth forward prediction sen-
sors can be estimated in an iterative way as follows:

xfm(k) = [xlfm (k)a s Xy 1em (k>]Ta (23)

where m=0,1,2,..., M -2, @ = R;'d, is the forward prediction coefficient, and R, is the
cross-correlation matrix of the input matrix for a linear system, which is expressed by:

. 1 &

R, = > % (k) (k) (24
k=1

In the forward prediction method, the first real element is usually regarded as reference data,

and the second to Mth elements are considered the input matrix, which is expressed as xz(k) =

[x2(k), . . ., xas(k)]”. Further, dp is the cross-correlation between xx(k) and x,(k), and it is
defined by:
1 K
& = 2> 5 (K2 () (25)
=1

Extended INCM reconstruction and SV optimization. The extended SCM can be
expressed as follows:

R-2 > x(k)X" (k) (26)

where R is a semi-positive definite matrix with a dimension of 2M — 1) x (2M — 1), and its
condition number is defined by:

E
d, = o 27
cond, =% (27)

where &, and &,,,, are the largest and the smallest eigenvalues of R, respectively.

It should be noted that when the number of virtual sensor array elements increases, the
dimension and condition number of R will increase accordingly. A high condition number
causes numerical instability in matrix inversion, which can lead to errors in Capon spectrum
estimation [27].

Since the condition number is related to the matrix’s eigenvalue, the eigenvalue can be
changed using a diagonal loading algorithm to reduce the condition number. Assume that R,
is the covariance matrix modified by applying a diagonal loading method on R; then, it holds
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that R, = R + 11,,, ,. Therefore, a new condition number resulting from the diagonal loading
level 1 can be expressed as follows:

cond,,, = = 28
v+1 gm,'n +1 ( )
To avoid relying on experience when designing 1, cond,,,, can be limited by the condition
number cond, of R. Further, define cond, ,, < cond,, such that:
gimax Jr 1 S 'C::mux (29)
gmin +1 Emin

are the maximum and minimum eigenvalues of R, respectively. The value
of a diagonal loading level needs to satisfy the following condition:

where £, and &

min

!

E. .
max™ min (30)

max min

M

1> gmin max

m>
m>

Therefore, the extended Capon spectrum in 6 can be expressed as follows:

~ 1
O SR a) &y

According to Eq (7), the extended ICM related to the incident direction of the gth interfer-
ence can be reconstructed as follows:

N (32)

Similarly, the gradient-based extended ICM corresponding to the gth interference can be
reconstructed as follows:

—1—Ay (33)

where a =, + nb o and b ou 1 the gradient vector estimation obtained based on the qth
interference signal’s extended SV.
Combining Egs (32) and (33), the final extended ICM can be reconstructed by:

B =3 (R, + R (31)

q=2

Furthermore, the estimated extended INCM can be calculated by:

Rin = f{'i + 6-3;IQM—1 (35)
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In this study, the extended SV of the desired signal is optimized using the method defined
by Eq (18) as follows:

. 0 = . 0 =
whereR; = > ", R,,andR, = > ", R
signal; v, is one of the components of v, and it is orthogonal to a ; v, is the mismatch vector
ofa,.

a, is the extended SV estimation of the desired

80 1
optimal
= = =~ INCM-volume
40 + |— — — INCM-Simplified
----- INCM-subspace
----- INCM-MCP
30 == SFV
— LPV
= = = =INCM-SDC
o 20 + |~ = ~ proposed1
< proposed2
(@p]
5
5 10
-
2 .
o L=
;o - - );
- /
/
]
7
"10 T _____”/
_20 1 1 1 1 1 1 1 J
-10 -5 0 5 10 15 20 25 30
SNR (dB)
Fig 2. The output SINR versus the input SNR.
https://doi.org/10.1371/journal.pone.0293012.9002
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Fig 3. Deviations from the optimal SINR versus the SNR value.

https://doi.org/10.1371/journal.pone.0293012.9g003

The convex optimization toolbox can also be used to solve the QCQP problem in Eq (36).
The extended optimized SV is expressed asa, = a, + v, »and the weight vector obtained
based on the virtual extended array can be calculated by:

R 'a
W=l (37)
af’R; 'a,

Finally, the corresponding extended array beamforming output is given by:

y(k) = w"x (k) (38)

Simulation results

In this study, a ULA with M = 10 omnidirectional sensors was used. There were four indepen-
dent signals impinging from the directions of 5°, —30°, 30°, and 50°. It was supposed the first
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https://doi.org/10.1371/journal.pone.0293012.9004

signal was the desired signal while the other signals were interference signals. The interfer-
ence-to-noise ratio (INR) of the first interference signal was 10 dB, and the INR of the second
and the third interference signals was 30 dB. The proposed beamformer was compared with
the INCM reconstruction-based beamformer with volume integration (INCM-volume) [32],
INCM reconstruction method based on simplified interference power estimation (INCM-Sim-
plified) [37], the second INCM reconstruction method based on a subspace (INCM-subspace)
[34], INCM reconstruction beamformer based on a local maximum of the Capon power
(INCM-MCP) [33], INCM reconstruction method with subspace decomposition, steering vec-
tor estimation and correction [38] (INCM-SDC), the extended virtual method based on linear
prediction [27] (LPV), and signal vector estimation [26] (SFV). In this section, the proposed
beamforming method that uses Eq (19) to obtain the weight vector is referred to as proposedl,
and the method that uses Eq (37) to determine the weight vector is denoted as proposed2.

The interference and SOI angular sector were ®, = [é =9 0 , +57]and

0, = [0, — 5°,0, + 5°), respectively; the complement sector of interference and SOI was
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Fig 5. The output SINR versus the actual DOA.

https://doi.org/10.1371/journal.pone.0293012.9g005

defined as a noise region ®,,. A uniform sample angular interval 0.1° was used in all angular
sectors. The number of SVs constructed for H, in the actual experiment was the same as the
number of samples in O, to achieve better performance. The number of sampling points in
0;,,; was I = 40 for the INCM-volume method. The number of dominant eigenvectors was set
as seven in the INCM-subspace method. The parameter & in the INCM-MCP and proposed
methods was 0.1 with an interval of 0.01. The number of virtual elements in the LPV was set
to 20. The virtual element in the SFV was obtained by using the virtual conjugate extended
array.

In the SINR calculation, the INCM of all virtual array methods was obtained using the
data received by the real extended array. When the SNR of the SOI changed, the number of
snapshots was fixed to K = 1, 000. When the number of snapshots varied, the SNR was fixed
to 10 dB. The sample data used in all simulations contained the SOI at all times, and all the
results are the average of 200 Monte Carlo runs. The QCQP problem was solved using the

CVX [39].
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Exactly known signal steering vector

This example considered the situation where the exact steering vector was known. Fig 2 dis-
plays the output SINR of the proposed methods versus the SNR, and Fig 3 shows the deviations
between all tested methods and the optimal SINR. The performance of the SFV beamformer
based on a virtual extended array was higher than the proposed algorithms and optimal values
in this test. This is because there is no error in the SV, and when the information of the SV is
completely known, this method can obtain more accurate incident signals. Then the ICM
obtained by combining the incident signals with the known extended SV will be close to the
ICM of the real extended array. The output of the extended virtual array beamformer LPV was
also higher than the optimal values when the SNR was less than 6 dB. However, the output per-
formance of LPV deteriorates as the input SNR increases. The output SINR of the tested beam-
formers versus the number of snapshots is presented in Fig 4, where it can be seen that the
output SINR results of the SFV and LPV were better than those of the proposed methods and
other tested beamformers.
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https://doi.org/10.1371/journal.pone.0293012.9g007

Mismatch caused by look direction error

In the second example, the effect of the signal’s look direction error on the output SINR was
considered. It was assumed that the DOA estimation mismatches of all signals varied from —6°
to 6°. The output SINR performances of the tested algorithms are shown in Fig 5. Although
the SFV algorithm achieved the best results when the SV was specified, it was extremely sus-
ceptible to DOA mistakes. Similarly, the INCM-MCP and INCM-Simplified were also suscep-
tible to the look direction error. The INCM-volume and proposedl methods were not
sensitive to the look direction error in the range of [-4°, 4°]. Because the INCM-volume and
proposedl methods collected more potential information about the SVs of the interferences
during the ICM reconstruction process, they can work well under the mismatch caused by
look direction error. In addition, the INCM-subspace and proposed2 methods were insensitive
to the look direction error in the range of [-2°, 2°], but the INCM-subspace method per-
formed worse than the INCM-volume, proposedl, and proposed2 methods. The LPV was

PLOS ONE | https://doi.org/10.1371/journal.pone.0293012 October 19, 2023 15/25


https://doi.org/10.1371/journal.pone.0293012.g007
https://doi.org/10.1371/journal.pone.0293012

PLOS ONE

Covariance matrix reconstruction-based adaptive beamforming for small aperture array

20

18

16

N -
N H

OUTPUT SINR (dB)
o

w2l o - Ig-ut—a —:'/7,...-_-‘. (— '_\__:' &= =
- — » /, \\
— p, "
4 \
4 \
i /195 M,
,/
J o1 T
- Aoo® T T T =
4
7 18.5
/ 900 950 1000
_ y Ik o
— — — —r/’—-—’ \_"’\ ’/ N /’
— 7 d .
optimal /
:—;z s, | R 1101 T s I i R S sy
o | |NCM-SImp|lﬁed B e L
| INCM-subspace
A~ INCM-MCP
PN — SFV
Y LPV
= = = INCM-SDC
C.-=|= = = proposed1
proposed2
100 200 300 400 500 600 700 800 900 1000

Number of snapshots

Fig 8. The output SINR versus the number of snapshots.
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insensitive to the look direction error in one incident direction, while the look direction error
in the other directions affected its output to a certain extent.

Mismatch caused by multiple model errors

In this case, look direction error, gain error, phase error, and location perturbation were all
considered. The look direction error was assumed to be uniformly distributed in [-2°, 2°].
The gain error and phase error were randomly distributed according to N(0, 0.05%) and
N(0, 0.17°), respectively, and the sensor location error was uniformly distributed in the
interval [-0.05, 0.05] measured in sensor space. The mean output SINR versus the input
SNR for a fixed number of snapshots is given in Fig 6. Fig 7 shows the deviation of each
beamformer from the optimal beamformer. This shows that the proposed1l method per-
forms well in the whole SNR range while the performance of the proposed2 method
decreases when the input SNR increases. The output SINR versus the number of snapshots
for fixed input SNR is given in Fig 8. The results for the proposed methods were close and
better than the other techniques.
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Mismatch caused by coherent local scattering

In this scenario, the effect of a mismatch in the desired signal SV caused by coherent local
scattering [40] on the array output was examined. Under this condition, the actual desired
signal SV was expressed asa = a(0,) + Zﬁzl ¢ a(0,,), where a(,) is the direct path, a(6y,)
is the pth coherently scattered path in a direction 6;,, and all 6, p = 1, 2, 3, 4 are randomly
distributed in a Gaussian distribution with mean of 5° and standard deviation of 1°; ¢, repre-
sents the path phase, whose value was independently and randomly generated from the inter-
val of [0, 27]. The look direction mismatch corresponding to the signals was uniformly
distributed in the range of [~1°, 1°]. It should be noted that the look direction mismatch, 6y,
and ¢, changed from run to run but were fixed from snapshot to snapshot.

The output SINR results of all tested methods versus the input SNR are presented in Fig 9,
and the deviations between them and the optimum result are presented in Fig 10. The results

demonstrated that the proposedl had the best performance among all methods, especially
for the SNR values from —10 dB to 10 dB. This mismatch did not affect the results of the
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Fig 9. The output SINR versus the input SNR.
https://doi.org/10.1371/journal.pone.0293012.9g009
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https://doi.org/10.1371/journal.pone.0293012.9g010

INCM-volume, proposedl, and proposed2 methods but had a negative effect on the results
of the LPV, SFV, INCM-MCP, and INCM-Simplified methods. The output SINR results of
all tested algorithms versus the number of snapshots are displayed in Fig 11. The results
show that the proposed1 had the best performance among all methods for different numbers
of snapshots, and the number of snapshots affected the output of the INCM-subspace
method.

Performance comparison for different arrays apertures

This experiment was conducted to analyze the performance of beamformers at different array
apertures. The input SNR was fixed at 10 dB, the number of snapshots was set to 1, 000, and
the input signals were unaltered. The look direction mismatch corresponding to the signals
was uniformly distributed in the range of [-2°, 2°].
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First, the sensor number was fixed at 10, and it was examined how the test methods per-
formed when the inter-sensor spacing was altered. The output SINR results of different meth-
ods versus the ratio of inter-sensor spacing d to signal wavelength A are presented in Fig 12,
where d/) represents the ratio of array spacing to wavelength. The proposedl and proposed2
methods could achieve stable performance when d/A was higher than 0.3. While the output of
the INCM-volume method and the LPV algorithm tended to be stable when d/A was larger
than 0.4, and the LPV algorithm was stable only when d/A was from 0.5 to 0.7. The output
SINR results of the other methods fluctuated with the value of d/A.

Next, the interval of elements was set to half wavelength to verify the output performance of
the test algorithms for a different number of elements. The output SINR results of all tested
algorithms versus the number of elements are presented in Fig 13, where it can be seen that
the output results of the INCM-volume, proposedl, and proposed2 methods increased with
the number of components. The proposed algorithms had the best performance among all
methods when the number of array elements was less than nine.
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Performance comparison under extra degrees of freedom

The last example analyzed the beamforming performance under extra degrees of freedom
(DOFE). In this test, the number of input signals increased to 11, the sensor number was
fixed to 10, and the spacing between array elements was half wavelength. The information
on each input signal is shown in Table 1. It was supposed that the first signal was the desired
signal.

Since the LPV and proposed2 method are processed on the virtual extended array, both can
realize the beamforming when the number of incident signals exceeds the number of array ele-
ments. The output SINR results of different methods versus the input SNR and the number of
snapshots are shown in Figs 14 and 15, respectively, where it can be seen that the output of the
proposed2 method was better than that of the LPV method. The LPV output results were stable
when the number of snapshots was larger than 300. In addition, the output of the proposed2
method was better when the number of snapshots was less than 400 than when it was higher
than 400.
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Table 1. The settings of the input signals.

Conclusions

This paper proposes two RAB methods based on covariance matrix reconstruction denoted by
proposedl and proposed2. The proposedl method performs angular sector integration and
gradient vector integration to reconstruct the ICM and combines the estimated noise covari-
ance matrix to reconstruct the INCM. Then the rebuilt ICM and INCM are used to optimize
the desired signal’s SV. Simulation results demonstrate that this method can achieve good per-
formance under different errors and a small array aperture by improving the robustness of the

Input signal 1 2 3 4 5 6 7 8 9 10 11
Actual DOA (°) 5 -72 -60 -48 -35 -23 -10 20 40 53 65
Input SNR (dB) / 10 30 10 10 30 30 10 20 30 20

https:/doi.org/10.1371/journal.pone.0293012.t001
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beamformers. The proposed2 method employs a virtual extended array and uses the conjugate
property of a linear array. Data received at a virtual array element are produced by the linear
prediction method, and the INCM of the extended array is reconstructed based on the ICM
reconstruction algorithm similar to that used in the proposedl method. The proposed2
method performs well for different array apertures and can increase the number of degrees of
freedom of the beamformer by adding virtual elements. The complexity of the proposd2
method is higher than that of proposd1 due to the introduction of the extended array. To
ensure beamformer robustness and consider computational efficiency, the proposedl method
should be considered when the number of signals is less than the number of array sensors.
When the number of signals exceeds the array sensors, the proposed2 method should be con-
sidered. However, the output of the proposed2 method decreases as the look direction error
increases. As a result, the robustness of the proposed2 method is an important issue to investi-
gate in our future work.
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