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Abstract

Critical transitions describe a phenomenon where a system abruptly shifts from one stable
state to an alternative, often detrimental, stable state. Understanding and possibly prevent-
ing the occurrence of a critical transition is thus highly relevant to many ecological, sociologi-
cal, and physical systems. In this context, it has been shown that the underlying network
structure of a system heavily impacts the transition behavior of that system. In this paper,
we study a crucial but often overlooked aspect in critical transitions: the modularity of the
system’s underlying network topology. In particular, we investigate how the transition behav-
ior of a networked system changes as we alter the local network structure of the system
through controlled changes of the degree assortativity. We observe that systems with high
modularity undergo cascading transitions, while systems with low modularity undergo more
unified transitions. We also observe that networked systems that consist of nodes with vary-
ing degrees of connectivity tend to transition earlier in response to changes in a control
parameter than one would anticipate based solely on the average degree of that network.
However, in rare cases, such as when there is both low modularity and high degree disas-
sortativity, the transition behavior aligns with what we would expected given the network’s
average degree. Results are confirmed for a diverse set of degree distributions including
stylized two-degree networks, uniform, Poisson, and power-law degree distributions. On the
basis of these results, we argue that to understand critical transitions in networked systems,
they must be understood in terms of individual system components and their roles within the
network structure.

Introduction

Many systems are subject to abrupt and often irreversible regime shifts. One type of regime
shift that holds significant importance in the study of complex systems is that of a critical tran-
sition. It describes a scenario in which a small change in the forces driving a system results in a
large change in the state of that system [1]. To conceptualize a critical transition, it can be help-
ful to imagine the stability landscape of a system as a series of basins or potential wells in
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which a ball is rolling around [1] (see Fig 1). The ball represents the current state of the system
and the depth of each well represents the degree of stability in the system. The resting position
of the ball at the bottom of a well marks a stable state. Changes in the control parameter of a
system result in changes in the stability landscape of that system. Qualitative changes in the sta-
bility landscape, that is, the emergence or disappearance of potential wells, can cause the ball
to roll abruptly from its current position to an alternative potential well. This large positional
change of the ball in response to the relatively small change in the control parameter of the sys-
tem represents the system’s critical transition.

Critical transitions occur in a wide variety of real-life complex systems and prominent
examples can be found in ecology [2-7], physics [8, 9], and social science [10-12], among oth-
ers [13, 14]. To elaborate on some of these studies, an illustrative example from ecology is
observed in shallow lakes, where the state of a lake abruptly shifts from a clear to a turbid state
as the nutrient load of the lake is increased past a critical threshold [4]. In this case, the clear
and the turbid states correspond to the ball resting in either one of the potential wells and the
change of the lake’s nutrient load correspond to changes in the stability landscape of the sys-
tem. Another example from the field of physics is the ferromagnetic transition where a ferrous
material shifts from a magnetic to a non-magnetic state in response to changes in the material’s
temperature or between a negative and a positive magnetic state in response to changes in an
external magnetic field [8, 12, 15, 16]. A more recent example from sociology describes belief
traps as a system of opinions, where the resilience of a belief system changes as the objective
evidence for or against the belief is increased, creating a critical transition between two stable
yet opposing opinions [10].

Critical transitions can vary significantly depending on the system being studied. In some
cases, the entire system transitions as a unified whole. In other cases, the system transitions in
cascades, where certain parts of the system transition prior to others. To understand when a
system transitions as a unified whole and when in cascades, it is useful to take on a network
perspective that focuses on the individual system components and the structural relationship
between them. For example, the ferromagnetic system can be understood as a collection of
individual spins connected to each other on a grid-like structure. The specific arrangement of
these spins plays a crucial role in shaping the system’s transition behavior. Notably, modifying
the structure such as through the introduction of impurities and defects in the lattice, leads to
spatial variations in the coupling strength of the system [17]. As a result, this alteration dis-
tinctly affects the system’s resilience. Similarly, a social belief system can be conceptualized as

(b) (c)
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Fig 1. Shows a system’s critical transition from a stable state A to an alternative stable state B. The solid curved line represents the stability
landscape of a system in which a ball, initially resting in state A, is driven towards state B as changes in the system’s control parameter c alter the stability

landscape of the system.

https://doi.org/10.1371/journal.pone.0292935.9001
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individuals holding an opinion connected to each other in a social network structure. The
structural properties of the social network including the placement and removal of influential
individuals affect the resilience of communities, where isolated and tightly-knit groups may
transition differently when faced with changes in external factors such as increasing evidence
that contradicts current beliefs.

Often, researchers have to simplify a system by taking an aggregated system perspective,
where local differences in the underlying network structure are averaged out or reduced to a
mean-field representation. This simplification, however, can overlook crucial information
about the true transition behavior of a networked system, where components may respond dif-
ferently to external changes depending on their position within the network structure. For
example, some system components may be embedded in highly resilient structures allowing
them to transition quite late in response to changes in a control parameter, while others are
embedded more weakly causing them to respond earlier to changes in a control parameter. In
this context, it has been observed that changes in the network structure, such as modifying
connections or altering node degrees, can significantly alter the onset of a system’s critical
transition [15], and that peripheral components in the networked system appear to be more
sensitive to changes in an external or control parameter [16]. In particular, previous results
show that:

1. In a networked system, isolated components undergo a transition independently from each
other [17], where components composed of low degree nodes transition earlier than com-
ponents composed of high degree nodes [16].

2. A randomly networked system composed of multiple node degrees transitions as a unified
whole and it transitions earlier in a response to changes in a control parameter than a com-
parable one-degree network of equal average degree, i.e. a random k-regular graph [15].

These results are intriguing as they demonstrate that the local arrangement of nodes can
significantly impact a system’s transition behavior. They also give rise to additional questions,
specifically:

1. How does the transition behavior of the networked system transform from an isolated com-
ponent-wise transition to a unified transition, especially, one that responds earlier to what
one would expect given the average degree of the network?

2. And under what, if any, structural requirements does a networked system composed of
multiple node degrees, transition at the same control parameter value as a comparable one-
degree network of equal average degree, i.e. a random k-regular graph?

To address these questions, this paper highlights a crucial but often overlooked aspect of
critical transition behavior in networked systems: the modularity of the system’s underlying
network structure. A system structure with low modularity indicates that connections between
system components are relatively similar or uniform while a system structure with high modu-
larity indicates differences and diversity among the components in terms of their connections
and roles within the network. We argue that in highly modular systems, understanding the
transition behavior requires considering the individual components and their roles within the
network. Simply reducing the system to an aggregated state or mean-field is inadequate for
accurately capturing the tipping behavior of a networked system. To support this claim, we
conduct a comprehensive analysis of how controlled changes in the local network structure of
a networked system affect its transition behavior. We place these findings within a spectrum
from high to low modularity, providing a contextual framework for understanding the impact
of local network structure on critical transition behavior.
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Methodology

In the following we describe how we simulate critical transitions on arbitrary networks, how
we iteratively alter a system’s network structure through local rewiring, and how we measure
the network’s modularity during this process.

Simulating critical transitions with the Ising model

Critical transitions are simulated using a computational implementation of the Ising model
[18]. Although the Ising model is typically linked to statistical physics and the investigation of
ferromagnetic phase transitions, its simplistic working mechanism, which will be outlined in
detail below, makes it applicable to a wide range of disciplines. For instance, in social science,
the Ising model has been employed to study collective phenomena like opinion formation
[19]. In ecology, it has been used to study spatial patterns in tree yield by considering root
grafting and the coupling of trees [20]. Additionally, the Ising model has found utility in biol-
ogy for examining brain functions, cancer behavior, and protein folding processes [21-24].

The standard Ising model describes a field of spins connected in a grid-like structure (see
Fig 2a). For our purposes, this constraint is loosened to include any given network structure
(see Fig 2b).

The nodes in the network represent spins which can be in one of two states. A node i with
spin up is denoted as s; = +1 and a node with spin down is denoted as s; = —1. The edges in the
network represent possible spin interactions. The specifics of the interaction between spins
shall be referred to as the coupling mechanism of the Ising model, where every node in the net-
work seeks a low energy state and flips its spin to minimize its potential gain in energy. This
potential gain in energy is dependent on the node’s current spin and the spins of its neighbor-
ing nodes. It is given by

E = 2Si(Gi+H) (1)

where s; is the spin of a single node, G; is the sum over all spin states in the direct neighborhood
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Fig 2. Ising model. (a) Standard 2D grid spinfield reproduced from [15]. (b) Spinfield on an arbitrary network. Every node in the network represents a
spin that can be in two states, i.e. spin up or spin down. The spin states of a node’s immediate neighborhood determine the potential gain in energy for
that node and thus its probability for flipping its spin.

https://doi.org/10.1371/journal.pone.0292935.9002
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of node i, and H is an external magnetic field. A node flips its spin

if E <0 or p< exp< %) (2)

where p is random real number in the open interval [0, 1), and T is the internal temperature of
the system. To simulate one iteration of the Ising model, all spins in the network are selected
in random sequential order and updated according to the above equation. The critical transi-
tion, i.e. a first-order phase transition, is induced by iteratively varying the external magnetic
field H of the system and fixing the temperature T so that the system is locked in a bistable
state (see Fig 3). The system’s current state is expressed by its magnetization M which is calcu-
lated as the average spin over all nodes in the network.

1
M:NZS,. (3)

where N is the number nodes in the networked system. In the ball and potential well scenario,
the current state of the system or the average spin M of the spinfield correspond to the position
of the ball and changes in the external magnetic field H correspond to changes in the stability
landscape of the system. As the external magnetic field is increased or decreased over a certain
threshold, the system critically transitions from one stable state to an alternative stable state
(see Fig 3). Special emphasize shall be put on the tipping point Hy of the networked system,
which marks the value of the external magnetic field H for which half of the transition to the
alternative stable state has occurred.

Critical transition

Bistable system fixation with tipping point Hr
(a) (b)
— stable state — stable state
1.0 — : _ -
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0.8 0.84 7 transition f 1
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Fig 3. Critical transition in the Ising model run on an Erdgs-Rényi random graph with N = 1000 and q = 0.008. (a) Shows how a networked system
is locked in a bistable regime by fixing the temperature to T = 1. (b) Shows how the system critically transitions from M ~ —1 to M = 1 as the external
magnetic field H is iteratively increased from H = -1 to H = 1. The tipping point H marks the value of the external magnetic field H for which half of

the transition has occurred.

https://doi.org/10.1371/journal.pone.0292935.9003
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Altering the local network structure

The local network structure of a system is altered such that the degree assortativity coefficient r
of the network changes. Is is calculated using [25, 26].
L Tle,—ab) "
0,0y
where e, is the fraction of edges that connect nodes of degrees x and y, a, and b, are the frac-
tion of edges that start and end at vertices with degrees x and y, and ¢, and o, are the standard
deviations of a, and b, [25].

The degree assortativity coefficient r describes the degree correlation in the network and is
defined on the closed interval r € [-1, 1]. A positive degree assortativity coefficient means that
high degree nodes tend to be connected to other high degree nodes, and low degree nodes
tend to be connected to other low degree nodes. This scenario is often observed in social net-
works such as actor collaboration networks where influential individuals are connected to
other influential individuals, and solitary individuals are connected to other solitary individu-
als [25]. A negative degree assortativity coefficient means that high degree nodes tend to be
connected to low degree nodes and vice versa. This scenario is observed in many biological
and technological networks such as protein interaction networks, animal food webs, and
power grid networks, among others [25].

To analyze how the extent of degree assortativity in a network affects the shape and onset of
a system’s critical transition we iteratively rewire the network structure from degree assortative
to degree disassortative. This is done following a degree sequence preserving rewiring proce-
dure by [27]. Degree sequence preserving means that the degree sequence of the network is
not altered. A node i with given degree stays that degree, i.e. deg(i) = const. Only its relative
position in the network changes. The algorithmic implementation works as follows. Step 1:
Select two random edges with four distinct nodes. Step 2: Sort the nodes from highest to lowest
degree. Step 3: To increase the degree assortativity coefficient, create two new edges by linking
the two highest degree nodes and the two lowest degree nodes together. To decrease the degree
assortativity coefficient, create two new edges by linking the node with the highest degree to
the node with the lowest degree and the two remaining nodes. Step 4: Accept new edges if they
do not create multi-links, otherwise repeat the rewiring procedure by selecting two new ran-
dom edges with four distinct nodes.

It is worth noting that a degree assortativity coefficient of 1 or -1 respectively, may not be
achievable for most degree sequence due to an unbalanced amount of nodes with different
degrees [28]. In extreme cases, for example, in power law degree distributions, the maximum
achievable degree assortativity or disassortativity coefficient can be much lower than the theo-
retic interval boundaries of .

Measuring the structural diversity in the network

In addition to shifting the degree assortativity of the network, we keep track of the network’s
modularity. The modularity Q is calculated on a community split obtained by Louvain com-
munity detection as well as Clauset-Newman-Moore community detection [26, 29]. It
describes the extent to which a network can be grouped into clusters or communities and pro-
vides a way to identify cohesive subgroups or functional units within a network. A network
with high modularity exhibits strong modular structure meaning that nodes in the network
are organized into distinct and well-defined modules or communities. In contrast, low modu-
larity refers to a network where the modular structure is weak or absent, meaning that nodes
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in the network are less likely to form distinct modules or communities. Instead, the connec-
tions between nodes are more evenly distributed.

We further keep track of the standard deviation over the edge-betweenness centralities of
the network, denoted as EBC ¢. This provides us with another measure of the network struc-
ture’s diversity. If edges perform similar roles to each other, the standard deviation over the
edge-betweenness centralities will be low. Contrary, if edges perform different roles from each
other, for example, with some edges forming important bridges between communities, the
standard deviation over the edge-betweenness centralities will be high.

Simulation setup

To analyze how changes in the local network structure impact the transition behavior of a net-
worked system, we devise the following simulation setup that covers four degree distributions:
(a) two-degree networks, (b) uniform degree distribution networks, (c) Poisson degree distri-
bution networks, and (d) power-law degree distribution networks:

(a). Two-degree networks are constructed using the configuration model [30] applied to a
degree sequence comprised of nodes with two distinct degrees. We investigate two-
degree networks exhibiting a small degree discrepancy constructed from a degree
sequence (31,35, ..., 3,, 61, 65, . . ., 6,,,) with n = 600 and m = 300, and two-degree net-
works exhibiting a larger degree discrepancy constructed from a degree sequence
(41,45, .. .5 4,121, 12,, ..., 12,,) with n = 1200 and m = 400. The number of nodes n
and m are chosen such as to ensure that a degree assortativity coefficient of -1 and 1 is
achievable. The small degree discrepancy network has N = 900 nodes and an average
degree (k) = 4. The large degree discrepancy network has N = 1600 nodes and an aver-
age degree of (k) = 6.

(b). Uniform degree distribution networks are constructed using the configuration model
[30] applied to a degree sequence (21, ..., 2,, 31, .- 3 - .- 104, .., 10,,) with n = 100
resulting in a network with N = 900 nodes and an average degree (k) = 6.

(c). Poisson degree distribution networks are constructed using the Erdés—Rényi model with
N =1000 nodes and a probability for edge creation of g = 0.008 resulting in an average
degree (k) ~ 8. The Erdés-Rényi model operates by considering a fixed number of nodes
and adding edges between pairs of nodes independently with a given probability, creating
a graph where each potential edge exists with a certain probability, resulting in a range of
graph structures from sparse to dense.

(d). Power-law degree distribution networks are constructed using the Barabasi-Albert
model with N = 1000 nodes and the number of edges to attach from a new node to exist-
ing nodes m = 2, resulting in an average degree (k) & 4. The Barabasi-Albert graph gener-
ator constructs a graph by iteratively adding nodes with edges that preferentially connect
to existing nodes with higher degrees, leading to a scale-free network characterized by a
few highly connected nodes and many nodes with few connections.

The networks constructed as described above have a degree assortativity coefficient r
approximately equal to 0. To change this coefficient, we perform a series of rewiring steps on
the network. These steps involve modifying the connections in the network to either increase
or decrease the degree assortativity following the previously outlined rewiring process by [27].
We perform a total of 10° rewiring steps, aiming to achieve both assortative (connections
between nodes with similar degrees) and disassortative (connections between nodes with dif-
ferent degrees) networks given the underlying degree sequence.
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To understand the effect of local rewiring on the transition behavior of the networked sys-
tem, we simulate critical transition curves. This involves running an Ising simulation on alto-
gether 4000 rewired networks where networks are chosen from the range of networks between
the highest and lowest degree assortativity achieved during the rewiring process.

With regards to details for the Ising mechanism, we construct a transition curve, i.e. an
average magnetization timeseries, by initializing the networked system with all spins pointing
down, i.e. s; = —1. By fixing the temperature T = 1 such that the system is locked in a bistable
state, and then increasing the external magnetic field H iteratively from -1 to 1 until a transi-
tion is induced, we obtain the critical transition curve (as in Fig 3). Note that in each iteration,
we go over all spins in random and sequential order and flip their spin according to the rules
outlined previously. The tipping point Hz, marks the control parameter value for which half of
the transition has occurred. In our case, starting from an average magnetization M = -1, we
define the tipping point H as the control parameter value H for which the average magnetiza-
tion M of the system initially crosses M > 0 (as shown in Fig 3).

Results

In the following we present our results for simple two-degree networks, i.e. networks con-
structed from degree sequences containing only two distinct degrees, and networks con-
structed from more diverse degree distributions, covering uniform, Poisson, and power-law
degree distributions.

Two-degree networks

Fig 4 shows how the shape of a networked system’s critical transitions is influenced by the
degree assortativity in the underlying network. It shows critical transition curves in a two-
degree network with degree assortativity r =~ —1, r &~ 0, and r =~ 1. We observe that a randomly

Critical transition

Degree sequence:
(31,32,...,31,61,62,...,6m)
with n =600, m =300

oo two-degree
081 network
= 0.6 —_—r=1
c 0.4 1 — =0
@ 027 . —_—r=-1
0] e :
= o ! random
g i : graphs
% o ' 3-regul
< 0.6 A -regular
—0.8 1 : --- 4-regular
-1.0 % & g s . - -+ 6-regular

—4 -2 0 2 4
External field H

Fig 4. Critical transition from stable state M = —1 to M = 1 simulated in a two-degree network constructed from a
degree sequence containing degrees 3 and 6. The red, black, and cyan solid lines corresponds to the transitions curves
of the two-degree network with degree assortativity r =~ -1, r = 0, and r = 1. The dotted and dashed lines are intended
as reference lines and mark transition curves of random k-regular graphs or random one-degree networks, i.e.
randomly configured networks constructed from a degree sequence containing only nodes of equal degree.

https://doi.org/10.1371/journal.pone.0292935.g004
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configured two-degree network (Fig 4, r = 0, black solid line) tips on average earlier than a
randomly configured one-degree network of equal average degree, i.e. random k-regular net-
work (black dashed line), confirming the results presented in a previous study which showed
that randomly placed low-degree nodes disproportionally destabilize a networked system [15].
We also observe that a highly assortative two-degree network (Fig 4, r ~ 1, cyan solid line),
transitions in cascades, confirming the results presented in [16, 17]. This observation can be
explained by considering that in a network with high degree assortativity, nodes with the same
degree can be considered as almost independent networks where nodes of the same degree
form coherent groups that are mostly disconnected from each other. Since groups with lower
degrees transition earlier than those with higher degrees, the system transitions in cascades.
Interestingly, a highly degree disassortative two-degree network (Fig 4, r ~ -1, red solid line)
tips at roughly the same control parameter value as the one-degree network of equal average
degree, i.e. random k-regular graph(black dashed line). This suggests that the findings from
[15] can be put further into context by considering local network structure to determine the
limits to which tipping can occur earlier.

Fig 5 shows the change in tipping points Hr of nodes grouped by their degree as the degree
assortativity coefficient r of the network is varied between -1 and 1. With regards to our
research questions where we ask how the transition behavior of a networked system trans-
forms from a component-wise transition to a unified transitions, we find that components do
not approach the unified tipping point symmetrically. As the degree assortativity of the net-
worked system is decreased, the tipping point of the high node degree group shifts significantly
more downwards than the tipping point of the low degree group shifts upwards. We further

Tipping behavior

Degree sequence:
(31,32,...,31,61,62,...,6m)
with n =600, m =300

o M e i R s S
random 6-regular graph

2.762 1
2.495 1
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1.00 0.75 0.50 0.25 0.00 —0.25-0.50-0.75-1.00
Degree assortativity coef. r

Fig 5. Tipping trajectories in a two-degree network. Shows change in tipping points Hr, of nodes grouped by their
degree, in response to changes in the degree assortativity coefficient r of the underlying network constructed from a
degree sequence containing degrees 3 and 6.

https://doi.org/10.1371/journal.pone.0292935.g005
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find that the speed of convergence toward unified tipping seems to be influenced by the dis-
crepancy between individual degree groups. In particular, we observe fast convergence for
smaller degree discrepancy networks such as the two-degree network constructed from nodes
with degrees 3 and 6 (as in Fig 5) and slower convergence for larger degree discrepancy net-
works such as the two-degree network constructed from nodes with degrees 4 and 12 (not
shown).

To understand why the tipping points of a two-degree network and a one-degree network
of equal average degree come together as the degree assortativity coefficient is decreased, it is
imperative to consider the network’s structural diversity (see Fig 6. To reiterate, structural
diversity describes the degree of similarity or uniformity in the connectivity patterns within a
network. Here, it is expressed through the standard deviation of edge-betweenness centralities
EBC ¢ and the modularity Q of the network. We see that, as the degree assortativity coefficient
ris decreased, EBC ¢ and network modularity Q quickly drop, indicating that the network
structure has becomes less diverse. In our two-degree networks, the highest level of structural
homogeneity is achieved when the network exhibits complete degree disassortativity. This is
particularly evident in the drop of the standard deviations of the edge-between centralities,
EBCo.

Intuitively, it makes a lot of sense that the level of structural diversity plays an important
role here. If a small portion of the network contains significant information about the entire
network, a global metric like the average degree would be sufficient to inform about the tipping
point of the entire network. In contrast, if different parts of the network hold diverse and
locally distinct structures, such that one part does not provide much insight into the rest of the

Network modularity
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Fig 6. Shows changes in the standard deviation of edge-betweenness centralities EBC o and modularity Q in
response to changes in the degree assortativity coefficient r in a network constructed from a degree sequence
containing degrees 3 and 6. The modularity Q is calculated on a community split obtained by Louvain community
detection and Clauset-Newman-Moore greedy community detection.

https://doi.org/10.1371/journal.pone.0292935.9006
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network, then approximating the tipping point solely based on the average degree would not
be informative. In such cases, the local differences in the network structure outweigh the global
average, making it a less reliable indicator of the tipping point. Note that this represents an
exceptional scenario, and as we will explore further, it is unattainable within alternative degree
distributions.

Other degree distributions

To provide a comprehensive view, we contextualize our previous results by presenting out-
comes for alternative degree distributions. Visual representations depict the results for the uni-
form degree distribution, while for the Poisson and power-law degree distributions, which
exhibit similar qualitative patterns, we provide a verbal discussion.

Fig 7 shows the change in tipping points Hr of nodes grouped by their degree as the degree
assortativity coefficient r of a uniform degree distribution network is varied between -1 and 1.
As the degree assortativity in the network is decreased to a random configuration, we observe
that the network transforms from component-wise tipping to a more unified tipping, where
the tipping point of high node degree groups shift significantly more downwards than the tip-
ping point of low degree groups shift upwards. However, as the network is further driven into
degree disassortativity, we observe, again, a tendency towards component-wise tipping. The
reason for this lies in the diversity of the degree distribution. As the network becomes more
disassortative, more extreme node pairs are formed (connecting nodes with the lowest degree

Tipping behavior

Uniform degree distribution:
(21,...,2p,31,...,3n,...,101,...,10p)
with n=100

6.621 9 f-------mmmmmmmm oo
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Fig 7. Tipping trajectory and structural homogeneity in a uniform degree distribution network. Left shows change
in tipping points Hr, of nodes grouped by their degree (see degree histogram) in response to changes in the degree
assortativity coefficient . Right shows change in structural homogeneity (standard deviation of edge-betweenness
centralities EBC 0 and modularity Q) in response to changes in the degree assortativity coefficient r.

https://doi.org/10.1371/journal.pone.0292935.g007
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Network modularity
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Fig 8. Shows changes in the standard deviation of edge-betweenness centralities EBC ¢ and modularity Q in
response to changes in the degree assortativity coefficient r in a uniform degree distribution network. The
modularity Q is calculated on a community split obtained by Louvain community detection and Clauset-Newman-
Moore greedy community detection.

https://doi.org/10.1371/journal.pone.0292935.g008

to nodes with the highest degree, second lowest to second highest, and so on). As is shown in
Fig 8, this leads to the network becoming more modular, which in turn causes the tipping tra-
jectories to split apart.

Results are confirmed for both the Poisson and the power-law degree distribution net-
works. Note that, in the case of a power-law degree distribution network, the attainable range
of degree assortativity after 10° rewiring steps is considerably narrower. This arises due to
nodes with extremely high degrees that cannot be effectively isolated from the rest of the net-
work during the rewiring process.

Discussion

This paper focused on understanding how changes in the local network structure affect
the transition behavior of a networked system. Specifically, we simulated critical transi-
tions in networked systems and investigated how controlled changes in the degree assorta-
tivity of the network influence the system’s tipping point. Below we briefly summarize our
results:

1. Networked systems that exhibit low modularity transition as a unified whole, while net-
worked systems exhibiting high modularity transition in cascades, confirming the results
presented in [16, 17]. Cascading transitions can be attributed to the fact, that in modular
network structures, groups of nodes form separate communities that transition indepen-
dently of the rest of the network [17].
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2. In two-degree networks, i.e. networks constructed from nodes with two distinct degrees,
we find the following: Randomly configured two-degree networks (r ~ 0) transition earlier
than comparable one-degree networks of equal average degree. Degree assortatively config-
ured two-degree networks (r ~ 1) transition in cascades or in isolated node-groups of equal
degree. Most notably, however, is that highly disassortatively configured two-degree net-
works (r = —1) transition as a unified whole and close to the same control parameter value
as a comparable one-degree network of equal average degree. This can be explained by the
fact that in our two-degree networks, every low degree node can be linked exclusively to
high degree nodes and vice versa. This creates an exceptionally low modular network struc-
ture where the average degree is able to capture most of the network’s information. Thus,
tipping in degree disassortative two-degree networks that are have exceptionally low modu-
larity can be well approximated by one-degree networks with the same average degree, i.e.
random k-regular graphs.

3. In uniform, Poisson, and power-law degree distribution networks, we find the following:
Again, randomly wired network configurations transition earlier than comparable one-
degree networks of equal average degree, and degree assortatively wired networks transition
in cascades or in isolated node-groups of equal degree. Interestingly, degree disassortatively
wired networks also transition in cascades. This can be explained by the fact that in more
complicated degree distributions, exceptionally low modularity is not achievable through
high degree disassortativity. Nodes with the highest degree form an almost isolated group
with nodes with the lowest degree, and nodes with the second highest degree form a group
with nodes with the second lowest degree, and so on. The resulting network becomes
increasingly modular and, thus, tips in cascades.

4. Finally, in all networked systems investigated, we find that isolated components do not
approach the unified tipping point symmetrically. As the degree assortativity of the net-
worked system is decreased, the tipping point of high node degree groups shift significantly
more downwards than the tipping point of low degree groups shift upwards.

These results raise an interesting point with regards to the reducibility of a networked sys-
tem. When a network has low modularity, it means that the nodes and connections are quite
similar throughout the system. In case of exceptionally low modularity, which is, depending
on the degree distribution, very difficult or even impossible to achieve, a simplified representa-
tion of the network, for example using a mean-field approximation, can be used to describe
the entire system. The simplification works because in exceptionally low modular networks
each part of the network is self-similar. Therefore, global network metrics like the average
degree can be very informative about the whole system.

However, this approach has its limitations, especially when dealing with real-world network
systems, which are often far from homogeneous. Many biological, technological, and sociolog-
ical networks, for example, exhibit highly modular structures, with distinct communities or
groups of nodes that may have different characteristics and connections. In such networks,
relying solely on global network metrics or mean-field approximations may lead to inaccura-
cies in our understanding of the system’s transition behavior.

Another aspect in this regard is that networks with low modularity have similar resilience
throughout the entire structure. This comes, however with certain cost. As has been shown in
this study as well as in previous research by [15], well-mixed low degree nodes can dispropor-
tionally reduce the overall resilience of the system. On the other hand, in highly modular net-
works with distinct and tightly-knit communities, these communities can undergo transitions
at different control parameter values. This means that some communities might transition
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sooner, while others might transition later. This creates, perhaps, a more flexible system that,
as a whole, can exist longer in-between two stable states.

This highlights the importance of considering the individual responses of each component
in the network structure rather than relying on the aggregated state of the system. To design
and understand robust and resilient systems, further investigations into network structure of
tipping systems are required. Understanding how different network structures and individual
nodes influence the system’s behavior can provide valuable insights for creating more adaptive
and stable networks. This is crucial for various fields, from social networks, to biological food
webs and technological infrastructure, as it can help us build systems that can withstand and
recover from disruptions more effectively.
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