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Abstract

Pancreatic cancer (PC) is a very lethal disease with a low survival rate, making timely and

accurate diagnoses critical for successful treatment. PC classification in computed tomogra-

phy (CT) scans is a vital task that aims to accurately discriminate between tumorous and

non-tumorous pancreatic tissues. CT images provide detailed cross-sectional images of the

pancreas, which allows oncologists and radiologists to analyse the characteristics and mor-

phology of the tissue. Machine learning (ML) approaches, together with deep learning (DL)

algorithms, are commonly explored to improve and automate the performance of PC classi-

fication in CT scans. DL algorithms, particularly convolutional neural networks (CNNs), are

broadly utilized for medical image analysis tasks, involving segmentation and classification.

This study explores the design of a tunicate swarm algorithm with deep learning-based pan-

creatic cancer segmentation and classification (TSADL-PCSC) technique on CT scans. The

purpose of the TSADL-PCSC technique is to design an effectual and accurate model to

improve the diagnostic performance of PC. To accomplish this, the TSADL-PCSC technique

employs a W-Net segmentation approach to define the affected region on the CT scans. In

addition, the TSADL-PCSC technique utilizes the GhostNet feature extractor to create a

group of feature vectors. For PC classification, the deep echo state network (DESN) model

is applied in this study. Finally, the hyperparameter tuning of the DESN approach occurs uti-

lizing the TSA which assists in attaining improved classification performance. The experi-

mental outcome of the TSADL-PCSC method was tested on a benchmark CT scan

database. The obtained outcomes highlighted the significance of the TSADL-PCSC tech-

nique over other approaches to PC classification.

1. Introduction

Currently, pancreatic cancer (PC) is the most incurable and lethal disease of which survival

rates have not yet been greater significantly [1]. Magnetic Resonance Imaging (MRI) guided

radiotherapy is nowadays used to decrease cancer; but anatomical changes, i.e. breathing does

not affect it due to the variability and interpatient infarction. Initial and precise detection of

the PC is a challenge [2]. Enhancing earlier detection, early treatment, and initial diagnosis is

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0292785 November 6, 2023 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Gandikota HP, S. A, M. SK (2023) CT

scan pancreatic cancer segmentation and

classification using deep learning and the tunicate

swarm algorithm. PLoS ONE 18(11): e0292785.

https://doi.org/10.1371/journal.pone.0292785

Editor: AL MAHFOODH, UNITEN: Universiti Tenaga

Nasional, MALAYSIA

Received: August 7, 2023

Accepted: September 25, 2023

Published: November 6, 2023

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0292785

Copyright: © 2023 Gandikota et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: The authors received no specific funding

for this work.

https://orcid.org/0009-0002-0072-3551
https://doi.org/10.1371/journal.pone.0292785
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0292785&domain=pdf&date_stamp=2023-11-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0292785&domain=pdf&date_stamp=2023-11-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0292785&domain=pdf&date_stamp=2023-11-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0292785&domain=pdf&date_stamp=2023-11-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0292785&domain=pdf&date_stamp=2023-11-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0292785&domain=pdf&date_stamp=2023-11-06
https://doi.org/10.1371/journal.pone.0292785
https://doi.org/10.1371/journal.pone.0292785
http://creativecommons.org/licenses/by/4.0/


of utmost importance. Computer-aided diagnoses (CAD) system has been devised with the

advancements of computer science and image processing technologies for disease diagnoses

[3]. Radiotherapists commonly use CAD systems to enhance diagnostic accuracy, help in

detecting and interpreting disease, and decrease the burden on physicians. CAD method was

recently developed in deep neural networks (DNNs) and prolonged the need for health care

services [4]. Higher pathology in PC resulted in significant interest in optimizing effectual

treatments and CAD systems where accurate pancreatic segmentation was required. Hence,

there comes a need to develop a new approach for pancreatic segmentation. Today, computed

tomography (CT) segmentations of the pancreas become a challenge. The most significant ele-

ment of the CAD is image recognition [5]. The process of detecting adenocarcinomas has 2

stages: feature extraction and feature selection.

Current advancements in deep learning (DL) have witnessed greater potentiality in medical

image analysis [6]. In the earlier study, it is proved that a convolutional neural network (CNN)

can precisely differentiate between PC and noncancerous pancreas. But the radiologists manu-

ally perform identification of the pancreas with the help of CNN [7]. Identification of segmen-

tation of the pancreas becomes challenging as the pancreas borders many structures and

organs and differs in size and shape, particularly in patients with PC. Still, a medically applica-

ble CAD tool must enable classification and segmentation (i.e., forecasting the absence or pres-

ence of PC), with minimum labour or human annotation [8]. The DL approach utilizing CNN

has proved much more potential in examining clinical images. The neural network (NN) con-

struction based on neurons contains activation parameters and functions that extract and

merge features in the images and establishes a method that captured intricate relationships

between images and diagnoses [9]. In the imaging identification of conditions like skin tumor,

diabetic retinopathy (DR), and liver masses, CNN achieves greater performance. Still, the

potential CNN advantages for diagnosing PC have not been studied widely [10]. Typically, PC

is unclear at an initial stage imposes issues for trained radiotherapists and presents with ill-

defined margins and irregular contours on CT.

The study developed the tunicate swarm algorithm with deep learning-based pancreatic

cancer segmentation and classification (TSADL-PCSC) technique on CT scans. The

TSADL-PCSC technique aims to accomplish enhanced PC classification results using a hyper-

parameter-tuned DL model. Primarily, the TSADL-PCSC technique employs a W-Net seg-

mentation approach to define the affected regions on the CT scans. Besides the TSADL-PCSC

technique utilizes GhostNet feature extractor for generating a group of feature vectors. For PC

classification, the deep echo state network (DESN) model is applied in this study. At last, the

hyperparameter tuning of the DESN approach occurs utilizing the TSA which assists in attain-

ing improved classification performance. The simulation results of the TSADL-PCSC algo-

rithm are tested on a benchmark CT scan dataset.

2. Related works

Vaiyapuri et al. [11] present an IDLDMS-PTC (intelligent DL-assisted decision-making medi-

cal system for PC classification) model with CT scans. The proposed algorithm develops an

emperor penguin optimizer (EPO) using the multi-level thresholding (EPO-MLT) method for

the segmenting PC. Moreover, the MobileNet architecture was employed as a feature extrac-

tion with optimum autoencoder (AE) for the classification of PC. The authors in [12] present

and validate a DL architecture, which integrates level-set, and multi-atlas registration for the

segmentation of PC from CT scans. The presented algorithm comprises three phases such as

refine, coarse, and fine phases. Initially, by using multi-atlas-based 3D diffeomorphic registra-

tion and fusion, a coarse segmentation can be attained. Next, three 2-D slice-related CNNs
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and 3-D patch-related CNN were utilized for the prediction of a fine segmentation. For the

completely automated predictive of preoperative pathological grading of PC, Zhang et al [13]

introduced a DL algorithm in this study. A DL approach for the PC segmentation was coined

first to attain lesion region. Next, each patient was divided into a test set, training set, and vali-

dation set. The features calculated from the lesion region introduced a prediction method of

PC pathological grade. Lastly, the model stability was confirmed by seven-fold cross-

validation.

The authors in [14], designed an ODL-PTNTC (optimum DL-based PC and non-tumour

classification) algorithm using CT images. This presented method exploits the adaptive win-

dow filtering (AWF) method for noise removal. Furthermore, the sailfish optimizer-based

Kapur’s Thresholding (SFO-KT) method was used for the process of segmentation. Besides,

Political Optimizer (PO) with Cascade Forward NN (CFNN) was used for the classifier pur-

pose. Bagheri et al. [15] utilized a deep CNN (DCNN) for pancreas segmentation in an openly

accessible dataset. By using the Dice similarity coefficient (DSC), the accuracy of the segmenta-

tions was evaluated. Khdhir et al. [16] developed an ALO-CNN-GRU mechanism for the seg-

mentation and classification of PC depending on DL and CT images. The images undergo

pre-processing for noise reduction. The segmentation was processed by the Antlion Optimiza-

tion (ALO) technique. The segmentation can be performed by using the classifier of the CNN

and Gated Recurrent Unit (GRU) models.

Nishio et al. [17] introduced and evaluated a combination of DL architectures and data aug-

mentation methods for automated pancreas segmentation on CT scans. Deep U-Net and Base-

line U-Net are selected for the DL algorithms of pancreas segmentation. Data augmentation

techniques involved random image cropping and patching (RICAP), mixup, and conventional

method. Yang et al. [18] introduced AX-Unet, a DL architecture integrating an improved

atrous spatial pyramid pooling model for learning the location data and for extracting multi-

level contextual data for reducing data loss in the course of downsampling. Also, a group con-

volution model was introduced on the feature map at all the levels for achieving data

decoupling between channels. Moreover, an explicit boundary-aware loss function was pro-

posed for tackling blurry boundary problems. Compared to radiologist interpretation, the

authors in [19], investigated whether CNN discriminates individuals with and without PC on

CT. Images are pre-processed into patches, and a CNN was trained for the classification of

patches as tumorous or non-tumorous.

3. The proposed model

In this manuscript, we have developed the TSADL-PCSC method for PC segmentation and

classification on CT scans. The purpose of the TSADL-PCSC technique is to design an effec-

tual and accurate model to improve the diagnostic performance of PC. To accomplish this, the

TSADL-PCSC technique comprises four processes namely W-Net segmentation, GhostNet

feature extractors, DESN classification, and TSA-based hyperparameter tuning. Fig 1 describes

the working flow of the TSADL-PCSC system.

3.1. Image segmentation: W-Net model

At the initial stage, the input CT scans are passed into the W-Net model for the segmentation

process. The W-net-based segmentation network has been used to attain the segmentation

map of the CT scans [20]. Using the decoding and encoding path, this model preserves the

localization and content information. Furthermore, edge data maintain consistency and are

preserved to sharpen the image during segmentation. This network was planned as a progres-

sion of U-Net. Later, by connecting both U-Net topologies, a single AE was implemented. In
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U-Net, an encoder (contracting path) and a decoder (expansive path) based architecture were

applied.

The 1st module of the W-net was the encoder that encompassed a set of blocks. The

three-layer convolution and BN layers interspersed with ReLU was the essential compo-

nent of the block. The basic module is considered twice for creating a single convolutional

block. The blocks were joined by using 2×2 layers of max pooling. Using max pooling, the

count of parameters is reduced and the critical target data was preserved. During the

decoder, the kernel count of a convolutional layer is 8, increasing from 8 to 128 during the

encoder.

The second-wide path was the expansive path. Convolution and Upsampling layers

made up its infrastructure. During the contracting path, the input has been downscaled

just once, and in the expansive path, the input was upscaled four times. The mapping fea-

ture from the contracting path was concatenated with corresponding mapping features in

the expansive path for recovering lost data in max pooling and convolution procedures.

The second part is corresponding to the first, however, the outcome of the top pooling

layer was integrated, and the outcome of the unit was placed at the same level in the first U-

Net.

Like others, there is an additional block which follows the upsampling of the contracting

path and the last combination of the expansive initial block. At last, a 1×1 convolutional layer

and a softmax activation function were used for matching the desirable amount of classes and

mapping features. The cross-entropy loss (CEL) and total-variation loss (CT-loss) are

Fig 1. Working flow of TSADL-PCSC approach.

https://doi.org/10.1371/journal.pone.0292785.g001
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combined in this method.

Loss ¼ Lcr� etrp þ Ltotal� var ð1Þ

Lcr� etrp ¼ L sr0n; pcn
� �

¼ �
XK

i
pcilog sr0i

� �
ð2Þ

Ltotal� var ¼ L srf gÞ0n ¼
XW� 1

x

XH� 1

Z
ksr0

xþ1;Z
� sr0

x;Z
kksr0

xþ1;Z
� sr0

x;Z
k1 ð3Þ

In the formula, W and H characterize the width and height of input images, correspond-

ingly. sr0n;

n o
refers to the sample n’s normalized segmentation maps; {PC} represents the

pseudo segmentation mask made by the index which increases the segmentation map values.

This CT loss assists in reducing the time and memory used. Also, the segmentation mask was

significantly compressed, which negates the need for post-processing due to the features of the

CT loss.

3.2. Feature extraction: GhostNet model

To derive a set of feature vectors, the GhostNet model is used. The GhostNet model removes

features with some parameters and efficiently receives unwanted data from the network [21].

The GhostNet element turns the typical convolutional function into 2-step operations. A pri-

mary stage is the typical convolutional function, however, it decreases the application of the

convolutional kernels. The secondary stage is a lightweight linear function for generating

redundant mapping features. Once the dimensional of the input mapping feature is DFxDFxM,

the convolutional kernel of standard convolutional is DkxDkxN, and the calculation amount is

DkxDkxMxDFxDFxN. A primary stage of the GhostConv element considers that m mapping

features can be created, and the calculation amount is DkxDkxMxDFxDFxm. For ensuring a

similar size as the typical convolutional output, the secondary stage of the GhostConv element

was a lightweight linear function on mapping feature outcome by the primary stage, as

depicted in Eq (4).

yij ¼ �ij y
0

i

� �
; 8i ¼ 1; � � � ;m; j ¼ 1; � � � ; s; ð4Þ

whereas ϕij represents a linear operation, y0i implies the ith mapping feature, and yij stands for

the jth mapping feature attained by the linear operation of the ith mapping feature. The Ghost-

Conv model gets N output mapping features, and N = mxs. It has been demonstrated that s-1

linear conversion that deals with computational resources was carried out, therefore the com-

puting count of the GhostConv model can be DKxDKxMxDFxDFxm + (s − 1)xDKxDKxDFxDF.

Then the computation relationship among GhostConv and typical convolutional modules is

expressed as follows

DKxDKxMxDFxDFxN
DKxDKxMxDFxDFxmþ s � 1ð ÞxDKxDKxDFxDF

� s; ð5Þ

According to Eq (5), the typical convolutional is s times as much as the GhostConv element

in the computation. Thus, the GhostNet model was built depending on GhostNet-Block could

considerably decrease the count of computation and the count of network parameters.

3.3. Image classification: DESN model

In this work, the DESN approach can be employed for the detection and classification of PC.

The important feature of the ESN is that it proceeds a random reservoir as a fundamental
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processing unit [22]. The reservoir was stimulated as a difficult internal state, which describes

the feature of an input signal by the linear incorporation. Furthermore, the input weights and

reservoir were fixed, and just the output weight was modified by linear regression during train-

ing of the ESN, which could avoid local minima, exploding, and vanishing gradients and

improve efficiency. Fig 2 displays the infrastructure of ESN.

Consider = {x1,x2, � � �,xN−1,xN} represent the internal state of reservoirs, u = {u1, u2, � � �, un
−1, un} as the input signals, x and y = {y1,y2, � � �,ym−1,ym} denotes the output signals:

x t þ 1ð Þ ¼ f Winu t þ 1ð Þ þWx tð Þ þWbacky tð Þð Þ ð6Þ

In Eq (6), f(�) denotes an activation function and Win, W, and Wback are random input,

internal, and feedback weights, correspondingly. The leaky combine was considered as a neu-

ron once the ESN was utilized for pattern detection, hence Eq (1) is changed as:

x t þ 1ð Þ ¼ 1 � agð Þx tð Þ þ gf Winu t þ 1ð Þ þWx tð Þ þWbacky tð Þð Þ ð7Þ

In Eq (7), α denotes the leaky rate and γ refers to the gain:

x t þ 1ð Þ ¼ 1 � að Þx tð Þ þ f Winu t þ 1ð Þ þWx tð Þð Þ ð8Þ

The output of ESN is:

y tð Þ ¼ g Wout u tð Þ; x tð Þ½ �ð Þ ð9Þ

Where g(�) refers to the activation function and Wout denotes the output weight.

Wout is updated during the training of the ESN. The objective function L can be represented

as follows:

LðcWoutÞ ¼ kg
� 1ðyÞ � Wout½u; x�k2

2
ð10Þ

In Eq (10), k�k2 refers to L2 norm and g−1 (�) shows the inverse function of g(�).
The resultant weightedcWout predicted was:

cWout ¼ g � 1ðyÞ½u; x�y ¼ g � 1ðyÞð½u; x�T½u; x�Þ� 1
½u; x�T ð11Þ

In Eq (11), the pseudo-inverse and the transpose of the matrix can be represented as super-

scripts † and T, correspondingly.

Fig 2. Architecture of ESN.

https://doi.org/10.1371/journal.pone.0292785.g002
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3.4. Hyperparameter tuning: TSA model

For optimum hyperparameter tuning of the DESN model, the TSA is used. TSA is inspired by

the social behavior of tunicates watching for prey [23]. While hunting, the marine invertebrate

exploits swarm intelligence and water jet to find prey. All the tunicates could quickly release

the inhaled seawater using siphons of the atrium that make a type of jet propulsions which

drives it quickly. Besides, tunicate displayed SI once it can share search details about the food

location. The tunicate must meet the succeeding three limitations for establishing the mathe-

matical modelling of its jet propulsion method:

• Avoid clashes among all the search agents.

• All the agents are guaranteed to move towards the fittest individual.

• Create the search agent joins toward the region adjacent to the fittest individual.

To prevent clashes between each search agent, the below formula was used for calculating

the novel location of the agent:

A⃑ ¼
G⃑
*M

ð12Þ

G⃑ ¼ c2 þ c3 � F⃑ ð13Þ

F⃑ ¼ 2 � c1 ð14Þ

Where A⃑ denotes the vector used to find the newest location of all the agents; G⃑ refers to grav-

ity; F indicates water flow in the deep sea; and c1, c2, and c3 represent three random integers

within [0,1].
*M denotes the vector value as social strength between the searching agents as fol-

lows:

~M ¼ Pmin þ c1 � Pmax � Pminð Þ ð15Þ

In Eq (15), Pmin and Pmax signify the primary and secondary speeds that allow the search

agent to construct social interaction and Pmin and Pmax are fixed to 1 and 4.

Each one move towards the neighbouring individual with the maximal fitness values (FV),

after solving clashes between neighbouring search agents as follows:

*PD ¼
�
�*Xbest � rrand �

*X tð Þ
�
� ð16Þ

In Eq (16),
*Xbest denotes the food at the position of the present optimum individual;

*PD
denotes a vector, which is the spatial distance among target food as well as tunicates; rrand
denotes the arbitrary integer in zero and one; and

*X tð Þ shows the location data of the present

search agent at t-th iterations.

To create the search agent and execute sufficient local exploration of neighbouring fittest

individuals for finding the better solution of the present iteration, the location was evaluated

by:

X tð Þ ¼
Xbest � A⃑ �

*PD; if rrand < 0:5

Xbest þ A⃑ �
*PD; if rrand � 0:5

ð17Þ

(

At t iteration, all the searching agents explore the region adjacent to the fittest individual

Xbest and allocate the outcome to X(t) for upgrading the place.
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The swarming behaviour of the tunicates transfers location data between the searching

agents. This process can be driven by the location of the present search agents and can be

attained as per the location upgraded by the present search agents. The fittest individual and

the upgraded place by the prior individual using the swarm act can accomplish this:

Xi
*t þ 1
� �

¼!

Xi
*
ðtÞ þ Xi� 1

*
ðt þ 1Þ

2þ c1

if i > 1

Xi
*
ðtÞ if i ¼ 1

8
><

>:
ð18Þ

Here i = 1, . . ., N, N denotes the population size, Xi
*t þ 1
� �

shows the location of the exist-

ing search agents, and Xi� 1

*
ðt þ 1Þ represent the place of prior search agents at the following

iteration.

To demonstrate the procedure of TSA, the steps to upgrade the location of the search agent

are given below:

Step1: Initializes the original population of searching agents X.

Step2: Allocate value to initial parameters and max -iterations.

Step3: Evaluate the FV of all the tunicates and choose the individual with better FV as a better

search agent.

Step4: Upgrade the place of all the search agents based on Eq (18).

Step5: Keep all the search agents from the search space.

Step6: Measure the FV of all the upgrade searching agents; if there were fittest individuals than

the prior best-searching agents from the population, update Xbesi.

Step7: If the maximum iteration was obtained, and the process stops. Or else, return to steps 4

to 7.

Step8: Print the optimum individual (Xbest)

The TSA system produces a fitness function (FF) to obtain greater efficacy of classification.

It defines positive integers to signify the better outcome of the solution candidate. The decline

of the classifier error rate is regarded as FF.

fitness xið Þ ¼ ClassifierErrorRate xið Þ ¼
number of misclassified samples

Total number of samples
∗100 ð19Þ

4. Performance validation

The pancreatic cancer classification results of the TSADL-PCSC method are tested on the

benchmark BioGPS datasets [3]. The dataset consists of 500 samples with two classes [24] as

represented in Table 1.

Table 1. Details of database.

Class No. of Samples

Pancreatic Tumor 250

Non-Pancreatic Tumor 250

Total Samples 500

https://doi.org/10.1371/journal.pone.0292785.t001
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In Fig 3, the confusion matrix of the TSADL-PCSC technique is analysed on pancreatic

cancer classification. The results indicate that the TSADL-PCSC technique recognized pancre-

atic cancer and non-pancreatic cancer proficiently.

In Table 2 and Fig 4, the PC classifier result of the TSADL-PCSC method under 80:20 of

TRP/TSP. The experimental values detect pancreatic cancer proficiently. For example, on 80%

of TRP, the TSADL-PCSC method gains average accuy of 96.98%, precn of 97.18%, sensy of

96.98%, specy of 96.98%, and Fscore of 97%. At the same time, on 20% of TSP, the TSADL-PCSC

technique gains average accuy of 99.02%, precn of 99%, sensy of 99.02%, specy of 99.02%, and

Fscore of 99%.

Fig 3. Confusion matrices of TSADL-PCSC method (a-b) 80:20 of TRP/TSP and (c-d) 60:40 of TRP/TSP.

https://doi.org/10.1371/journal.pone.0292785.g003
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In Table 3 and Fig 5, the PC classifier outcome of the TSADL-PCSC system under 60:40 of

TRP/TSP. The experimental values detect pancreatic cancer proficiently. For instance, on 60%

of TRP, the TSADL-PCSC technique gains an average accuy of 99.64%, precn of 99.69%, sensy
of 99.64%, specy of 99.64%, and Fscore of 99.66%. Simultaneously, on 40% of TSP, the

TSADL-PCSC method gains an average accuy of 99.55%, precn of 99.44%, sensy of 99.55%,

specy of 99.55%, and Fscore of 99.49%.

Fig 6 examines the accuy of the TSADL-PCSC method during training and validation pro-

cesses on 60:40 of TRP/TSP. The figure notifies that the TSADL-PCSC technique attains the

highest accuy values over maximum epochs. Furthermore, the maximum validation accuy over

training accuy exhibits that the TSADL-PCSC methodology attains effectively at 60:40 of TRP/

TSP.

The loss analysis of the TSADL-PCSC method during training and validation is illustrated

on 60:40 of TRP/TSP in Fig 7. The outcome indicates that the TSADL-PCSC method attains

Table 2. PC classifier outcome of TSADL-PCSC technique on 80:20 of TRP/TSP.

Class Accuy Precy Sensy Specy Fscore
Training Phase (80%)

Pancreatic Tumor 93.97 100.00 93.97 100.00 96.89

Non-Pancreatic Tumor 100.00 94.37 100.00 93.97 97.10

Average 96.98 97.18 96.98 96.98 97.00

Testing Phase (20%)

Pancreatic Tumor 98.04 100.00 98.04 100.00 99.01

Non-Pancreatic Tumor 100.00 98.00 100.00 98.04 98.99

Average 99.02 99.00 99.02 99.02 99.00

https://doi.org/10.1371/journal.pone.0292785.t002

Fig 4. Average outcome of TSADL-PCSC approach on 80:20 of TRP/TSP.

https://doi.org/10.1371/journal.pone.0292785.g004
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Table 3. PC classifier outcome of TSADL-PCSC technique on 80:20 of TRP/TSP.

Class Accuy Precy Sensy Specy Fscore
Training Phase (60%)

Pancreatic Tumor 100.00 99.38 100.00 99.28 99.69

Non-Pancreatic Tumor 99.28 100.00 99.28 100.00 99.64

Average 99.64 99.69 99.64 99.64 99.66

Testing Phase (40%)

Pancreatic Tumor 100.00 98.89 100.00 99.10 99.44

Non-Pancreatic Tumor 99.10 100.00 99.10 100.00 99.55

Average 99.55 99.44 99.55 99.55 99.49

https://doi.org/10.1371/journal.pone.0292785.t003

Fig 5. Average outcome of TSADL-PCSC technique on 70:30 of TRP/TSP.

https://doi.org/10.1371/journal.pone.0292785.g005

Fig 6. Accuracy curve of TSADL-PCSC approach on 60:40 of TRP/TSP.

https://doi.org/10.1371/journal.pone.0292785.g006
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nearby values of training and validation losses. The TSADL-PCSC method efficiently gains on

60:40 of TRP/TSP.

A brief precision-recall (PR) analysis of the TSADL-PCSC technique is shown on 60:40 of

TRP/TSP in Fig 8. The outcome stated that the TSADL-PCSC approach outcomes in the high-

est values of PR. The TSADL-PCSC method could obtain the highest PR values in 2 classes.

In Fig 9, a ROC analysis of the TSADL-PCSC technique is shown on 60:40 of TRP/TSP.

The figure defines that the TSADL-PCSC method resulted in maximum ROC values. In addi-

tion, the TSADL-PCSC system shows maximum ROC values on all classes.

A brief comparison study is made in Table 4 and Fig 10 in order to highlight the outper-

forming outcomes of the TSADL-PCSC method [11]. The outcome indicates that the CNN-

Fig 7. Loss curve of TSADL-PCSC approach on 60:40 of TRP/TSP.

https://doi.org/10.1371/journal.pone.0292785.g007

Fig 8. PR curve of TSADL-PCSC approach on 60:40 of TRP/TSP.

https://doi.org/10.1371/journal.pone.0292785.g008
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50x50 model has obtained poor performance with the least results. In addition, the

ODL-PTNTC, WELM, KELM, and ELM algorithms have attained slightly improved perfor-

mance. Although the IDLDMS-PTC technique reaches near-optimal performance, the

TSADL-PCSC technique gains outperforming results with maximum sensy of 99.55%, specy of

99.55%, and accuy of 99.55%. These results indicate the promising performance of the

TSADL-PCSC technique in terms of different measures.

5. Conclusion

In this study, we have developed the TSADL-PCSC method for PC segmentation and classifi-

cation on CT scans. The TSADL-PCSC technique aims to accomplish enhanced PC classifica-

tion results using a hyperparameter-tuned DL model. To accomplish this, the TSADL-PCSC

technique comprises four processes namely W-Net segmentation, GhostNet feature extractor,

DESN classification, and TSA-based hyperparameter tuning. The TSA helps to avoid the man-

ual trial and error hyperparameter selection process, which in turn increases the overall classi-

fication performance. The experimental result of the TSADL-PCSC method was tested on a

benchmark CT scan database. The obtained outcomes highlighted the importance of the

Fig 9. ROC curve of TSADL-PCSC approach on 60:40 of TRP/TSP.

https://doi.org/10.1371/journal.pone.0292785.g009

Table 4. Comparative outcome of TSADL-PCSC method with other techniques.

Methods Sensitivity Specificity Accuracy

TSADL-PCSC 99.55 99.55 99.55

IDLDMS-PTC 99.15 98.84 99.35

ODL-PTNTC 98.73 97.75 98.40

WELM Model 97.76 97.67 97.26

KELM Model 96.66 97.53 96.69

ELM Model 96.27 97.27 96.21

CNN-50x50 91.10 86.50 87.30

https://doi.org/10.1371/journal.pone.0292785.t004
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TSADL-PCSC technique over other approaches. In the future, the performance of the

TSADL-PCSC system was boosted by deep ensemble classifier algorithms.
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Flight Strategy for Solving Optimization Problems. Mathematics, 10(18), p.3405.

24. https://www.kaggle.com/datasets/salihayesilyurt/pancreas-ct

PLOS ONE Pancreatic cancer segmentation and classification using deep learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0292785 November 6, 2023 16 / 16

https://www.kaggle.com/datasets/salihayesilyurt/pancreas-ct
https://doi.org/10.1371/journal.pone.0292785

