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Abstract

Air pollution is one of the most severe environmental problems that Mexico is currently fac-

ing. The objective of this paper is to quantify the most relevant socioeconomic driving forces

behind air polluting emissions and, more specifically, 7 local pollutants in Mexico. We do so

in a multilevel version of the Stochastic Impacts by Regression on Population, Affluence and

Technology (STIRPAT) model that accounts for the spatial heterogeneity at the municipal

level across the country. The results show that the most relevant variables to determine the

emissions of atmospheric pollutants are the population, the harvested area and the number

of cars, while technological development helps to mitigate such emissions. The ecological

elasticities are, in all cases, smaller than one. Our purpose is to provide quantitative informa-

tion about these socioeconomic driving forces of air deterioration as a basis to establish

some recommendations for environmental policy decision-making.

1. Introduction

Air pollution is one of the greatest environmental risks to human health and ecosystems.

Human activity generates large amounts of atmospheric pollutants, with negative effects at

global and local scales. As it has been widely documented by the IPCC reports, greenhouse

gases (GHGs) contribute to overheating the planet and, consequently, have important effects

on a global scale. Fighting climate change has become, not only a long-term, but even a short-

term challenge, since future scenarios predict unstoppable global warming if we do not imme-

diately act. Carbon neutrality is one the challenges to the next decades, especially in some parts

of the world [1]. Although the original objectives of mitigation policies for climate change and

air pollution are nor related, the reduction of CO2 emissions has benefits on the local air pollu-

tion mitigation, and vice versa [2–4].

Therefore, along with global environmental problems such as climate change, there are

other pollutants whose effects are mostly regional and local and also have significant negative

effects on the well-being of society [5–7]. To a large extent, global and local polluting share

common causes, such as the burning of fossil fuels (coal, oil and gas), mainly in the industrial

processes, heating and road transport.
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According to the World Health Organization [8], it is estimated that seven million people

die each year from exposure to the fine particles contained in polluted air. These particles pen-

etrate deep into the lungs and the cardiovascular system and cause diseases such as strokes,

heart disease, lung cancer, chronic obstructive pneumopathy and respiratory infections, such

as pneumonia.

While air pollution is a global problem, the poorest and developing nations bear the brunt

as they tend to have weaker economies, less developed health and social systems and are thus

less endowed to face the consequences. This article focuses on the case of Mexico, where poor

air quality is seen as a paramount issue of concern, not only because air emissions contribute

to global problems such as climate change, but also, for their domestic and local implications.

As we explain below, we place the emphasis on the latter but addressing local rather than

global pollutants.

The purpose of the study is twofold: (i) to identify and quantify the main socioeconomic

driving forces of air deterioration in Mexico considering the spatial heterogeneity across the

country, and (ii) to provide recommendations for environmental policy decision-making

based on the quantitative results. For that, we use the Stochastic Impacts by Regression on

Population, Affluence and Technology (STIRPAT) model [9–11]. In previous applications of

the STIRPAT model, geographical heterogeneity along a specific country has not been consid-

ered. Therefore, our study contributes to the previous literature about the socioeconomic driv-

ing forces of air pollution in several ways. First, this study incorporates the geographical

heterogeneity of emissions, using municipal rather than country-level data. Secondly, and con-

sistent with this approach, we focus on local air pollutants rather than greenhouse effect gases.

The pollutants most commonly addressed in the related literature are CO2 emissions (e.g. in

Mexico, [12, 13]). From an econometric point of view, we use a multilevel model in order to

exploit the structure of our data, which is nested in a two-level administrative structure

because all the municipalities are grouped in a reduced number of regions or states.

This research is important to sustainability, carbon neutrality, local economy, environment,

social development, etc. The paper is organized as follows. Section 2 provides a review of the

analytical framework and the related literature; Section 3 presents the methodology and the

data used in the study and Section 4 shows the results of the study. The fifth and last section

provide the main conclusions and some policy suggestions.

2. Material and methods

2.1. Air pollution and human health in Mexico

The present study departs from most of the existing studies by focusing on 7 local air pollut-

ants: suspended particles less than 10 micrometers (PM10), suspended particles less than 2.5

micrometers (PM2.5), sulfur dioxide (SO2), carbon monoxide (CO), nitrogen oxides (NOX),

volatile organic compounds (COV), and ammonia (NH3). These pollutants have in common

that they are an important source of respiratory diseases, reduce visibility, contribute to acid

rain formation and are precursors of smog and ozone.

One of the collateral effects of the development of both, global and local emissions mitiga-

tion policies, is the improvement of human health [4]. In fact, the most obvious dimension of

the impact of air pollution, and the one that has been more widely studied in Mexico is the one

related to human health [14–18]. It has been widely reported that atmospheric pollution can

cause many diseases, especially respiratory ones. Exposure to air pollutants can cause cough-

ing, respiratory tract irritation or decreased lung function, trigger asthma-like reactions, aggra-

vate a previous asthma condition and increase cancer cases [19]. For example, according to the

Global Burden of Disease [20], chronic exposure to PM2.5 has resulted in 7,600 premature
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deaths per year in Mexico, and recent evidence also reports that exposure to PM2.5 could

increase the likelihood of COVID-19 death [14].

Air pollution also represents a serious economic problem due its associated costs, including

the private expenses that people affected by various diseases must pay in medicines and medi-

cal consultations, as well as the consequences of decreasing their work or school productivity.

In addition, the social costs of premature death materialize, on the one hand, in the loss of the

contributions that these people could make to society and, on the other hand, in the psycho-

logical and emotional costs inflicted on family and friends. The increase in morbidity also pro-

vokes a loss of competitiveness due to absenteeism and the reduction in the hours dedicated to

productive activities. Finally, the public resources, both human and material, used to care for

people affected by air pollution can be interpreted as an opportunity cost, as such resources

cannot be used to meet the other needs of the health sector [21].

2.2. Conceptual framework: The STIRPAT model

The IPAT identity, developed by [22], states that environmental impact can be split in three

factors: the population size, the level of economic activity or per capita income and the pollut-

ing intensity of economic activity. The latter is fundamentally determined by the sectoral

structure of the economy and the current production technology. In formal terms, this

approach disaggregates environmental impact (I) as the product of the population size (P),

wealth (A) and technology (T), i.e.:

I ¼ P� A� T ð1Þ

[9, 10] resumed this idea and proposed a stochastic version of the IPAT identity in order to

analyze the impact of the population, wealth and technology on the CO2 emissions of 111

countries. In their approach the technological variable is modeled as a residual, i.e., as a non-

observable term that encompasses all those factors that affect environmental impact and are

neither population nor per capita economic activity. Subsequently, [23] revisited the IPAT

identity and renamed the result as ImPACT. In the new version, the technology variable is not

included in the error term, but is disaggregated in consumption per unit of product (C) and

impact per unit of consumption (T), as follows:

I ¼ P� A� C� T ð2Þ

Based on the IPAT identity and the ImPACT model, [11] proposed a new model called STIR-

PAT. They pointed out that the previous approaches had a mere accounting nature, did not

allow for hypothesis testing and assumed a linear specification. To overcome these limitations,

STIRPAT is proposed as a non-linear stochastic model and incorporates the concept of eco-

logical elasticity to measure the sensitivity of environmental impact to the anthropogenic

forces included in the model. This approach also accounts for the technological variable T,

which is assumed to represent all the factors that have an impact on environmental deteriora-

tion, other than population and per capita income. The STIRPAT model specification is:

Ii ¼ aPb
i Ac

iT
d
i ei ð3Þ

where I, P, A and T have the same interpretation as in the IPAT identity and ei is an error

term. Subindex “i” refers to the different units (countries, regions, cities,) considered in the

model. The parameters of the model are a, b, c, d, where a is a scale term and b, c, d are the eco-

logical elasticities of environmental impact with respect to population, production and tech-

nology, respectively, which allow for inferences about the precise weight of this variables on

environmental impact [11]. Thus, the STIRPAT model can be seen as a generalization of the
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IPAT identity or, in other words, the IPAT identity can be seen as a deterministic, particular

case of the STIRPAT model with a = b = c = d = 1.

Applying natural logarithm on both sides of Eq (3) we get:

lnIi ¼ a0 þ blnðPiÞ þ clnðAiÞ þ dlnðTiÞ þ ui ð4Þ

where a0 ¼ lna and ui ¼ lnei:

Technological innovation and digital economy contribute to reduce emissions and achieve

green development goals [24, 25]. The technological variable T can be disaggregated by includ-

ing different factors that theoretically influence the environmental impact. Different variables

have been used in the literature to proxy this variable. These include, among others, the energy

efficiency or intensity [12, 13, 26–34], the economic weight of the industrial sector [11, 13, 26–

28, 30, 33, 35–37], the share of the service sector in the GDP [13, 30, 36, 38], the level of trade

openness [32], and the climatic conditions [11, 32].

2.3. The data

Our database includes data at the municipal level (2457 observations) for Mexico, which are

grouped into 32 states. For the estimation of the models, we omitted incomplete observations

(289), and ended up with 2168 effective observations. Table 1 shows the name of the variables,

the code used for modelling using the statistical package STATA1, the units of measurement,

data source, and descriptive statistics.

As for the explanatory variables, as usual in this type of models, we include population (POP),

a measure of economic activity and three variables to catch the technological components.

Table 1. Variables of the model.

Variable Code Unit of measurement Data source Obs. Mean Min. Max. Std. dev.

Independent Variables

Population POP Number of people State and Municipal Database

System-INEGI

2457 48649 87 1827868 139060

Gross Production per capita GPPC Thousands of pesos per capita State and Municipal Database

System-INEGI

2457 43.50 0.027 9488.64 283.151

Households with access to computers

and internet per capita

HCI percentage 2015-INEGI Intercensal

Survey

2298 0.024 <0.01 0.288 0.028

Harvested area HA Hectares Agri-food and consultation

system

2432 8513 6 227773 15557

Transport TR Number of cars (cargo and public) per

thousand inhabitants

State and Municipal Database

System-INEGI

2352 95.396 <0.01 1321.962 91.027

Dependent Variables

Sulphur dioxide SO2 Tons National Emissions

Inventory-SEMARNAT

2457 681 0.024 197,133 7,792

Carbon monoxide CO Tons National Emissions

Inventory-SEMARNAT

2457 3,123 11.318 98,635 7,335

Nitrogen oxides. NOX Tons National Emissions

Inventory-SEMARNAT

2457 1,569 7.862 58,746 3,785

Volatile organic components COV Tons National Emissions

Inventory-SEMARNAT

2457 5,805 19.970 493,707 18,099

Suspended particles less than 2.5 m PM2.5 Tons National Emissions

Inventory-SEMARNAT

2457 309 1.085 19,445 702

Suspended particles less than 10 mm PM10 Tons National Emissions

Inventory-SEMARNAT

2457 409 1.555 21,856 930

Ammonia NH3 Tons National Emissions

Inventory-SEMARNAT

2457 338 1.018 5,699 534

https://doi.org/10.1371/journal.pone.0292752.t001
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Economic activity is represented by variable GPPC (Gross Production Per Capita), which corre-

sponds to overall production of all economic activities in the country divided by the number of

inhabitants. This variable was used as a proxy for Gross Domestic Product (GDP) because no

data of the latter are available at the municipal level. In addition, GPPC and GDP are highly cor-

related (98.8%) and thus provide essentially the same information in statistical terms.

The proxy variables for technology have been selected based on data availability and the

relation to polluting activities. The available variable that is conceptually more related to tech-

nology in the usual sense is the number of households with access to computers and the inter-

net (HCI). These variable forms part of the Technological Achievement Index proposed by the

United Nations Development Program [39], which assesses the capacity to create technology

as well as the human capacity to adapt to the New Knowledge Society.

The two other variables play basically a role of control variables. The second one is the har-

vested area (HA), which is included to capture the polluting impact of the agricultural sector,

since there is strong evidence that this sector has a significant impact on air pollution. Specifi-

cally, agricultural practices are mainly related to the emission of NOX, PM10, PM2.5, NH3 and

COV [40]. Finally, we also include the per capita number of cargo and public transport vehi-

cles (TR), because vehicles are an important source of emissions from air pollutants. Some

studies analyzed the effectiveness of public policies aimed at reducing emissions, such as the

restrictions to use of vehicles (see, e.g., [41, 42]). Private transport is not included in the model

because it shows multicolinearity with the population variable.

The explained variables (POL) are the municipal emissions of seven pollutants: PM10,

PM2.5, SO2, CO, NOX, COV and NH3. Fig 1 (maps 1 to 7) represent total emissions per munic-

ipality. It is worth noting that in the southern state of Oaxaca emissions of all pollutants are

clearly lower than average, but for the rest of the states, the distribution of pollutants is quite

heterogeneous.

The data correspond to 2013, which is the most recent year in which the relevant data are

available at the municipal level. For variables whose data were not available for 2013 at the

municipal level, we took the closest year available. Thus, the population variable refers to the

number of inhabitants per municipality in 2010 and the number of households with access to

computers and the internet refers to 2015.

2.3. Econometric approach. The multilevel model

Different econometric approaches have been used to estimate the STIRPAT model. These

include Ordinary Least Squares [11], Generalized Least Squares [38], Robust Minimum

Squares [43], Partial Least Squares [12, 44], Fixed Effects Models [29, 45], among others.

We employ a multilevel model in order to exploit the structure of our database. Multilevel

models, also called hierarchical models, are specifically designed to deal with nested or hierar-

chically structured data [46]. In our case study there is a hierarchical structure in the sense that

municipalities are nested in states. We specify seven versions (one for each pollutant under

analysis) of a same multilevel model for the Mexican municipalities.

In a multilevel model there are two types of parameters: fixed (intercepts and elasticities)

and random parameters (variances and covariance matrix). In each of the seven versions of

our model, there are two levels. Level 1 expresses the dependent variable (amount of emis-

sions) for observation i (municipality) within unit j (state) as:

LPOLij ¼ b0j þ b1jLPOPij þ b2jLGPPCij þ b3jLHCIij þ b4jLHAij þ b5jLTRij þ εij ð5Þ

where εij � Nð0; s2

εÞ
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where LPOL is the natural logarithm of the volume of emissions (for every pollutant). Level 1

coefficients β0j. . .β5j represent the scale term (β0j) and the elasticities (β1j. . .β0j) with respect to

the explanatory variables and LPOP, LGPPC, LHCI, LHA, and LTR represent the logarithm of

the explanatory variables. Finally, εij is the random term of level 1, which is assumed to have a

normal distribution with zero mean.

In the second level of the model, each of the coefficients β0j. . .β5j defined in level 1 are

expressed as random variables, with a common term for all states and a stochastic term that

varies across states:

bhj ¼ bh þ mhj with h ¼ 0; 1; . . . ; 5 ð6Þ

For example, according to Eq (6), the level 1 coefficient β0j, which is the scale coefficient, can

be expressed as the aggregation of two components. The first one is the systematic part, β0,

which measures the average emissions of states when the explanatory variables are omitted.

The second part, μ0j, represents the random differential component of the jth state’s emissions

Fig 1. Emissions of air pollutants in Mexico.

https://doi.org/10.1371/journal.pone.0292752.g001
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with respect to the average value of all states. Similarly, the elasticity with respect to the popula-

tion β1j, can be split into the average elasticity of all the states, β1, and the differential part of

state j, which is the random tem μ1j. The same interpretation applies to the rest of coefficients.

By inserting Eq (6) into (5), we can rewrite the whole model as:

LPOLij ¼ b0 þ m0j þ ðb1 þ m1jÞLPOBij þ ðb2 þ m2jÞLGPPCij þ ðb3 þ m3jÞLHCIij þ ðb4

þ m4jÞLHAij þ ðb5j þ m5jÞLTRij þ εij ð7Þ

where β0 represents the average emissions of all the states, β1. . .β5 is the average elasticity of

emissions with respect to the corresponding explanatory variable (LPOB,. . .,LTR), μ0j is the

idiosyncratic term of the j-th state in terms of scale, μ1j..μ5j are the idiosyncratic effects of the j-

th state in terms of the corresponding elasticities and εij is the level-1 error term.

3. Results

Eq (7) is estimated for each of the pollutants under study, with the purpose of determining the

influence of the considered variables on the amount of emissions per municipality for every

pollutant. The results are shown in Table 2. The estimations are carried out by maximum like-

lihood using STATA1 software, and robustness analyses were performed to test the effects of

Table 2. Multilevel model results.

Average coefficients (Standard errors in parentheses)
PM10 PM2.5 SO2 CO NOX COV NH3

POP 0.553***
(0.026)

0.609***
(0.023)

0.857***
(0.025)

0.829***
(0. 016)

0.611***
(0.022)

0.572***
(0.03)

0.535***
(0.022)

GPPC 0.036*
(0.016)

0.027

(0. 014)

0.263***
(0.034)

-0.016

(0.009)

0.078***
(0.014)

0.025

(0.02)

0.008

(0.012)

HCI -0.168***
(0.021)

-0.198***
(0.024)

-0.032

(0.03)

-0. 138*** (0.021) -0. 093**
(0.028)

-0. 291*** (0.04) -0. 143*** (0.023)

HA 0.357*** (0.029) 0.308*** (0.027) 0.161*** (0.021) 0.125*** (0.019) 0.241*** (0.023) 0.216*** (0.03) 0.308*** (0.024)

TR 0.029

(0.028)

0.024

(0.034)

0.438***
(0.038)

0.222***
(0.042)

0.342***
(0.033)

0.01

(0.051)

0.156***
(0.032)

Constant -3.889*** (0.274) -4.386*** (0.291) -9. 501***
(0. 371)

-3. 282*** (0.287) -3.235***
(0. 32)

-0.605

(0.424)

-3.693***
(0.241)

Typical deviations from random parameters (Standard errors in parentheses)
POP 0.010**

(0.004)

0.007**
(0.003)

<0.01

(<0.01)

0. 002*
(0.001)

0.005**
(0.002)

0.013**
(0.005)

0.007**
(0.003)

GDP 0.002

(0.001)

0.001

(0.001)

0.018*
(0.008)

<0.01

(<0.01)

0.001

(0.002)

0.004

(0.002)

<0.01***
(0. 001)

HA 0.017**
(0.006)

0.014**
(0.005)

0.001

(0.001)

0.007**
(0.003)

0.009**
(0.003)

0.016**
(0.006)

0.011**
(0.004)

HA 0.002

(0.003)

0.005

(0.003)

0.002

(0.003)

0.005*
(0.002)

0.009*
(0.004)

0.026*
(0.011)

0.006*
(0.002)

TR 0.003

(0.004)

0.008

(0.006)

<0.01

(<0.01)

0.028

(0.011)

0.007

(0.004)

0.033

(0.015)

0.009

(0.004)

var(Constant) 0.379*
(0.247)

0.516*
(0. 306)

0.072

(0.080)

1.032

(0.392)

0.901**
(0.383)

2.041**
(0.823)

0.220*
(0.192)

var(Residual) 0.321***
(0.010)

0.311***
(0.010)

0.999***
(0.031)

0.169***
(0.006)

0.313***
(0.010)

0.387***
(0.012)

0.253***
(0.008)

* p<0.10

** p<0.05

*** p<0.001

https://doi.org/10.1371/journal.pone.0292752.t002
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several specifications for the random parameters. As expected, some differences were found

depending on the statistical assumptions, but the internal validity of results remained for all the

specifications. The obtained values of Akaike Information Criterion decrease significantly in

the completely random model, which implies a better adjustment of the completely random

model as compared to the null model. The “average coefficients” displayed on Table 2 are inter-

preted as the corresponding ecological elasticities (EE) associated to each independent variable.

The existing heterogeneity in emissions in municipalities can be also observed in the

Table 2. Specifically, we can observe how the standard deviations of the random parameters

are statistically significant at 90% level for different explanatory variables and different pollut-

ants. This is an indicator of existing spatial heterogeneity and the adequacy of using a multi-

level model. However, obtaining individual recommendations (i.e. by municipality) is

something that escapes our analysis. Combining information technology and social science is

an emerging research trend [47]. For this, a specific analysis should be carried out using geos-

tatistical methods and air quality models [48], which goes beyond the objectives of this article.

In all the estimated models, the ecological elasticity of population is found to be significant,

positive, and larger than the coefficients associated to the other explanatory variables. This

result suggests that population is the most relevant factor for the considered pollutants in

quantitative terms. Nevertheless, the ecological elasticity of population is always smaller than

one, which means that the effect of an increase in population on polluting emissions is less

than proportional. Across pollutants, the highest population elasticities are those correspond-

ing to SO2 (0.857) and CO (0.829), which means that these pollutants are particularly sensitive

to the population size. For the rest of pollutants, the corresponding elasticity is between 0.535

and 0.611.

The role of per capita production turns to be much weaker than that of population. The

estimated values are well below one and, actually, they are always below 0.1 except for SO2,

which is 0.263, meaning that a 1% increase of per capita output will result in an average

increase of 0.263% of SO2 emissions. Apart from SO2, in statistical terms, the estimated elastic-

ity of this variable is significant only for PM1O, and NOx emissions.

The ecological elasticity of the proxy for technology, i.e., the proportion of households with

a computer and access to the internet, is negative in all cases except for SO2, where it is not sta-

tistically significant at 90% level. The highest value of this parameter is found for COV with an

ecological elasticity equal to 0.216. This result is consistent with the belief that technological

progress can contribute to decrease environmental deterioration.

The variable related to the agricultural harvested surface area was found to be statistically

significant and positive for all the pollutants, with values ranging from 0.125 (CO) to 0.357

(PM10). It means that pollutant emissions are increasing, but not very strongly, in the har-

vested area. These results are consistent with the fact that agriculture is mainly related to emis-

sions of particulate matter, NH3 and NOX.

As expected, the relative number of cargo and public transport vehicles has a positive effect

on some pollutants, notably SO2 (with an elasticity equal to 0.438), NOX (0.342) and, to a lesser

extent, CO (0.222) and NH3 (0.156). On the other hand, the effect of this variable is insignifi-

cant in statistical terms to explain the difference across municipalities of the emissions of

PM10, PM2.5, and COV. To some extent, this result may be linked to the omission of private

transport from our analysis due to absence of data.

4. Discussion

In general terms, the studies based on the STIRPAT model conclude that energy intensity is

positively linked (or, conversely, energy efficiency is negatively linked) to polluting emissions
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or environmental deterioration. The weight of the industrial sector is also typically found to

have a positive impact on pollution, with an elasticity that varies between 0.3 and 1, whereas a

larger share of the service sector on GDP is commonly associated with a lower environmental

impact.

Most applications of the STIRPAT model also conclude that population and per capita eco-

nomic activity have a positive effect on environmental deterioration with an observed ecologi-

cal elasticity equal or close to one. [12] concluded that in middle-high income countries,

where Mexico is classified, the ecological elasticity for population and income is positive but

smaller than one. On the other hand, [13] concluded that for middle-income countries the

population elasticity is between 1.231 and 1.907, while income elasticity ranges from 0.467 to

1.011. At the regional level, [43] estimated a cross-sectional data model for the Southeastern

United States and found out that the elasticity of CO2 emissions with respect to population is

not different from one while the results with respect to income are mixed. In a study for 20

emerging countries, including Mexico, [45] found an elasticity of 0.786 for the population and

1.121 for income.

Our empirical results about the impact of population on pollution is in line with previous

studies, such as [12], who carried out an analysis in which countries are ranked by income and

Mexico is considered within the medium-high income group. [45] also find a coefficient less

than 1. On the other hand, in a study where Mexico is raked as a middle-income country, [13]

find coefficients above 1. In a state-level sudy for the USA in 2010, [49] found similar estimated

elastices than ours for CO, SO2 and PM10. Similar conclusions are also found in other studies

that consider developed and developing countries together, such as [11, 28, 30, 38]. In regard

to the role of the income, our results are consistent with the findings of [12], who find coeffi-

cients for the income variable with respect to CO2 and N2O emissions less than 1. In contrast,

[45] find a coefficient greater than 1 for this variable. Finally, our empirical results suggest that

ecological elasticity of technology can be related with the Environmental Kuznets Curve

hypothesis. [50] proposed to apply the seminar study by [51], who found an inverted-U rela-

tionship between economic growth and inequality, to the relationship between economic

growth and environmental degradation [52]. According to this hypothesis, in a first phase of

growth there is an increase in pollution levels, up to a certain moment in which a turning

point is reached and, further increases in income are associated with a decrease in pollution. If

this framework is taken as valid, our results about the effect of technology can be understood

as corresponding to the decreasing part of an Environmental Kuznets Curve.

5. Conclusions

Air pollution and its external effects is currently one of the main axes of debates in the public

sphere and the policy arena. Since the Industrial Revolution, the use of fossil fuels and the

increasing demand of energy have generated a global map of strong environmental degrada-

tion, with an increase in pollutant emissions that endangers ecosystems and human well-

being. This is true worldwide but, especially, in developing countries. Air pollution is a serious

problem in Mexico due to several socioeconomic causes, mainly through the negative effects

on health and wellbeing. The emissions of local air pollutants analyzed in this study can cause,

from a simple cough, to some cancers. In addition, these pollutants reduce visibility, contribute

to the formation of acid rain and are precursors of smog and ozone. To shed some light on this

problem, we have applied a bi-level version of the STIRPAT model to identify the main causes

of air deterioration in Mexico along available data at municipal level for a set of socioeconomic

variables representing the different dimensions of the model: population, per capita income,

technology, harvested area and the number of cargo and public transport vehicles. Unlike
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most previous applications of the STIRPAT model, we have focused on local pollutants and

used data at the municipal level. Using a multilevel model allows to capture the variability that

exists between municipalities belonging to a state and municipalities that share characteristics

of another state.

Population is found to be clearly the variable that has the greatest impact on the emissions

of the 7 pollutants analyzed, followed by the agricultural harvested area. Per capita production

was not significant for all models and the ecological elasticity always had a clearly lower value

than one, which can be interpreted as a refutation of the traditional IPAT identity, where the

elasticities are assumed to be equal to one. Our measure of technological development has a

negative sign when statistically significant, which suggests that more technological advance

municipalities tend, ceteris paribus, to pollute less. Finally, cargo and public transport vehicles

turn out to be relevant for some pollutants, but not for all. Although population is the variable

with a greater ecological elasticity, it is perhaps the one over which it is more difficult to act

from a political point of view, at least in the short and the medium term. It seems more feasible

to address the rest of the relevant variables to improve air quality in Mexico.

Finally, we highlight the two main limitation of this study. The first one refers to lack of

updated local data. The database corresponds to 2013, which is the more recent year in which

the relevant data are available at the municipal level. The second one is related to the analysis

of territorial data. The STIRPAT model presents a structure defined from the economic theory.

However, there are other analysis tools that would make it possible to delve into territorial dif-

ferences. Mexico is not a single unit, since, as in other countries, there are areas where pollu-

tion problems are completely different, with contrast between big cities such as Mexico City,

Guadalajara, or Monterrey, and cities with less socio-economic development, such as Pachuca,

Querétaro, Chilpancingo, among others. New geospatial analyses can be a good complement

to the STIRPAT model, providing specific territorial information for which this model is not

intended.

6. Policymaking suggestions

Coping with the reduction of air quality and mitigating its negative effects on well-being repre-

sents a crucial challenge for national, local and regional policymakers. In order to launch effec-

tive policies and programs, it is crucial to have a good picture of the problem and, thus, a

particularly relevant question is the identification and assessment of the main factors that

determine the volume of polluting emissions. We did so by carrying out an analysis based on

the STIRPAT model.

The fact that technological development seems relevant to mitigate environmental deterio-

ration, together with the relevant impact of the agricultural harvested area, and the number of

vehicles, suggest that an effort to improve agricultural practices and have a more efficient pub-

lic transport and cargo system through technological improvements, could result in a signifi-

cant improvement in air quality, life and health in Mexico. Obviously, this is a general

recommendation that should be adapted to the territorial particularities and geographical

restrictions. In this sense, the development of specific measures favoring the more rural terri-

tories could contribute to correct the negative externalities that urban pollutants caused on the

rural environments [53]. This information can help policy-makers to improve public pro-

grams oriented to improve air quality, which is one of the challenges for the next years in

Mexico and in the whole world.
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53. Geng Y, Liu L., Chen L. (2023c). Rural revitalization of China: A new framework, measurement and

forecast. Socio-Economic Planning Sciences 89: 101696.

PLOS ONE Socioeconomic driving forces behind air polluting emissions in Mexico

PLOS ONE | https://doi.org/10.1371/journal.pone.0292752 October 12, 2023 13 / 13

https://doi.org/10.1016/j.scitotenv.2021.148876
http://www.ncbi.nlm.nih.gov/pubmed/34311358
https://doi.org/10.1371/journal.pone.0292752

