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Abstract

Alzheimer’s disease (AD) is a highly heterogeneous disorder. Untangling this variability

could lead to personalized treatments and improve participant recruitment for clinical trials.

We investigated the cognitive subgroups by using a data-driven clustering technique in an

AD cohort. People with mild–moderate probable AD from Taiwan was included. Neuropsy-

chological test results from the Cognitive Abilities Screening Instrument were clustered

using nonnegative matrix factorization. We identified two clusters in 112 patients with pre-

dominant deficits in memory (62.5%) and non-memory (37.5%) cognitive domains, respec-

tively. The memory group performed worse in short-term memory and orientation and better

in attention than the non-memory group. At baseline, patients in the memory group had

worse global cognitive status and dementia severity. Linear mixed effect model did not

reveal difference in disease trajectory within 3 years of follow-up between the two clusters.

Our results provide insights into the cognitive heterogeneity in probable AD in an Asian

population.

Introduction

Dementia is currently a worldwide epidemic with global prevalence estimates of 50 million

people in 2020, in which Alzheimer’s disease (AD) accounts for up to 60 to 70% of all patients

[1]. The classic presentation of AD was first described in 1906 by Dr. Alois Alzheimer, who
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observed a 50-year-old woman with significant memory loss, confusion and aggression [2].

The disorder is now universally recognized by its cardinal symptom–memory impairment that

is insidious but progressive and episodic in nature. Recently, "atypical" AD syndromes have

also been well-delineated. Specifically, people with posterior cortical atrophy, primary progres-

sive aphasia, and frontal variant initially present with visual impairment, language difficulty,

and dysexecutive functions, respectively, instead of the classic fashion of amnesia [3].

Together, these phenotypic variabilities represent the heterogeneity concept of AD. Interest-

ingly, in the 1970s, these subgroups were assumed to belong to different stages and not as gen-

uinely separate entities of AD phenotypes. Subsequent evidence from positron emission

tomography (PET) studies and longitudinal follow-ups revealed that they exhibited distinct

clinical profiles, brain topographic hypometabolism and disease courses, strengthening the

idea of truly unique subtypes [4].

Multiple efforts in disentangling the heterogeneity and complexity of AD have employed

data from neuropsychological (NP) assessment, neuroimaging, biomarkers and neuropathol-

ogy features as the basis for cluster analysis [5–9]. Remarkably, the most consistently found

cognitive subtype across studies with different cohorts and clustering techniques is the mem-

ory impairment group, versus other groups with more pronounced deficits in other non-mem-

ory cognitive domains [5, 7, 8, 10]. For instance, Scheltens et al. employed a data-driven

clustering method on neuropsychological measurements and identified two subgroups of AD

with discrete cognitive profiles [5, 11]. One subgroup, the "memory" AD, had lower scores in

memory-related tests, more severe hippocampal atrophy, slower disease progression and

lower risk of mortality, compared to the remaining "non-memory" group that showed

impairment in the language or executive/visuospatial domain. This finding strongly indicates

that cognitive heterogeneity could predict individuals who are at greater risk of deterioration

in dementia.

Importantly, participant samples in most studies investigating heterogeneity in AD are pre-

dominantly from the United States and Europe, emphasizing the importance of dedicated

funding to dementia research centers to recruit and retain participants, as well as raising ques-

tions about the applicability of these findings to patients in other regions of the world. There-

fore, this study aims to investigate the cognitive subgroups by using data-driven clustering

technique in an Asian population with AD and how this heterogeneity is associated with dis-

ease progression.

Materials and methods

Patients

Outpatient visits from 2012 to 2020 at the Dementia Center and Department of Neurology of

Shuang Ho Hospital, Taipei, Taiwan were identified from medical records. We selected

patients diagnosed with probable AD dementia according to the National Institute on Aging

and the Alzheimer’s Association (NIA-AA) criteria, had available neuropsychological assess-

ment and Mini-Mental Status Examination (MMSE) scores between 16 and 27 at their first

visit [12]. We excluded data of people with clinical diagnosis of mild cognitive impairment,

mixed and non-AD dementia (i.e. vascular dementia, frontotemporal dementia, dementia

with Lewy bodies, normal pressure hydrocephalus, traumatic brain injury), or active psychiat-

ric diseases (schizophrenia, depression with concurrent psychoactive medications usage, sui-

cidality) that could contribute to cognitive deficits. This study was conducted according to the

guidelines of the Declaration of Helsinki, and approved by the Joint Institutional Review

Board (IRB) of Human Research at the Taipei Medical University (No. N202203146, Form

072/20200317, issue date April 15, 2022). This is a retrospective study of medical records, all
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data were fully anonymized before they were accessed, and the IRB committee waived the

requirement for informed consent.

Clinical measurements

Standard dementia evaluation at Shuang Ho Hospital consisted of medical history, physical

and detailed neurological examination, neuropsychological (NP) assessment conducted by

trained neuropsychologists including MMSE, Cognitive Abilities Screening Instrument

(CASI) and Clinical Dementia Rating (CDR) scale, and neuroimaging for most patients. CASI

is a NP test battery that can be used to screen for dementia and track disease trajectory [13].

CASI individual items evaluate the following eight cognitive domains: short-term and long-

term memory, attention, concentration, orientation, language, visuospatial ability, abstraction

and judgment, and are more specifically outlined in the S1 Table. It can be tested within 15–30

minutes in people with dementia and has a total score ranging from 0 to 100, with 0 being the

worst and 100 being the best performance. The most common NP evaluation tool in Taiwan-

ese medical institutions, CASI is required by the national health insurance system to provide

payment for patients, together with MMSE and CDR [13, 14]. Raw scores of CASI and its

items were used in all analyses in this study. CDR was reported as both CDR global score and

CDR Sum of Boxes (CDR-SOB), with CDR-SOB found to be more robust in delineating

changes within and between stages of dementia severity than CDR global score [15].

Brain MRI data was also available for a subset of patients at baseline examination, including

the visual assessment of medial temporal lobe atrophy score (MTA, range 0 to 4) and the Faze-

kas scale of white matter hyperintensities (WMH, range 0 to 3) [16, 17]. For the atrophy scores,

we computed the mean values of right and left hemispheres, while for the WMH scale we

reported the deep white matter component score as it was more relevant to neurodegenerative

diseases than the periventricular white matter component [16]. Of note, while the use of neu-

roimaging software, such as FreeSurfer [18], to perform cortical parcellation and subcortical

segmentation would provide a richer dataset in this study, we have opted to include the MTA

and Fazekas measures, which are visual rating scales that can easily be applied in clinical

settings.

Clustering analysis

Nonnegative matrix factorization (NMF) was applied to identify cognitive subtypes of people

with AD, using the R package NMF version 0.24 [19]. NMF is an unsupervised machine learn-

ing algorithm that decomposes (or factorizes) a matrix V into two matrices Wx H, with all

three matrices containing no negative entries [20, 21]. Hence, it is a dimensionality reduction

technique with intrinsic clustering property [22]. In the context of this study, "matrix" V repre-

sents the n x p table of NP scores of all patients, with each row n equivalent to one of seven cog-

nitive domains (we omitted the item "Orientation" in the clustering analysis as it was not one

of the major cognitive domains being assessed in two primary AD diagnostic criteria [12, 23])

and each column p equivalent to one patient (Fig 1). Accordingly, W is the "meta"-cognition

matrix with size n x r, and H is the "meta"-cognition performance profile with size r x p. Of

note, r is the factorization rank, i.e. the number of clusters. With no a priori assumptions of the

cognitive subgroups, as is the data-driven nature of this study, it is important to determine the

optimal number of clusters, r, based on the NMF algorithm. We calculated the cophenetic cor-

relation coefficients, the most common approach to choose r, of r ranging from 2 to 6 and per-

formed 50 iterations to obtain a robust estimate of r [19]. The default "brunet" NMF algorithm

was implemented to identify the decomposed matrices W and H based on their Kullback-Lei-

bler divergence distance from the original matrix V [24].
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Statistical analysis

For the complete patient dataset and each cognitive clusters, we reported the demographic

characteristics (age, gender, education in years, duration of onset, whether patients had multi-

ple tests available from annual visits) and clinical measurements (NP test results, dementia

severity stage, MRI visual ratings of brain atrophy and white matter lesions). Comparisons of

these characteristics between the cognitive clusters were made using t test, Wilcoxon signed-

rank test or χ2 test where applicable.

As the majority of patients in our study had more than one annual visit and NP evaluation,

we further investigate the association between cognitive cluster membership and longitudinal

change in NP tests results and dementia severity stage with linear mixed-effect model, using the

R package lme4 version 1.1–29 [25]. Outcome variables were MMSE, CASI, CDR global score

and CDR-SOB. Predictors were cognitive cluster, time, and the interaction between cluster and

time. We implemented a random intercept and random slope model to account for variabilities

in NP performances of each patient. Analysis was limited to within 3 years of follow-up visits to

avoid possible effect of dropout (i.e. people with more severe diseases are less likely to undergo

NP evaluation) and an imbalanced dataset unfavorable for the linear mixed-effect model [26].

Of note, there was virtually no missing data in the NP test and dementia severity grading scores,

as these measurements were mandatory for patients with dementia to receive treatments covered by

insurance and the coverage rate of national health insurance in Taiwan is approximately 99% [27].

On the other hand, the duration of onset (the time from when symptoms first presented to patients’

first hospital visit) was not available for all patients, due to either the patients or family members not

providing this information or it was not reported in the medical records by physicians. Similarly,

some patients received brain CT scans instead of MRI or had no neuroimaging, leading to missing

ratings of brain atrophy and white matter lesions. No patients were excluded because of missing val-

ues, which were handled via pairwise deletion in respective analyses.

All computations were performed with R version 4.2.0 and RStudio version 2022.02.2+485

on Macbook [28]. Statistically significant p values were set at< 0.05.

Results

Patient characteristics

A total of 112 patients with probable AD were included (Table 1). At baseline, they were

77 ± 7.9 years old and 60% of them were female. Accounting for their duration of onset of

1.3 ± 0.96 years (which were available for 65% of the patients), the age at which they first

Fig 1. Schematic overview of the nonnegative matrix factorization (NMF) algorithm.

https://doi.org/10.1371/journal.pone.0292527.g001
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presented symptoms was 75 ± 8 years. Nearly all patients (86%) had multiple (� 1) visits to the

Dementia Center or Department of Neurology, with an average of 2.8 ± 1.8 years of follow-up.

Patients had mild to moderate AD dementia, with mean MMSE, CASI, CDR global and

CDR-SOB scores being 21.1, 70.1, 0.6 and 2.4 respectively. As expected, they performed rela-

tively well in NP assessments of long-term memory (mean score 9.5, the highest possible score

is 10), language (mean 14.5, highest possible 20), and visuospatial ability (mean 8.1, highest

possible 10), which are largely preserved cognitive domains until the late stages of AD [29].

MRI scans were available in 76% of the cohort (86 of 112 patients), with mean MTA and

WMH scores of 1.18 and 1.58, respectively.

NMF-based clustering analysis revealed two subgroups with prominent

deficits in memory versus non-memory cognitive domains

We first identified the optimal number of cognitive clusters, r, by comparing the cophenetic

correlation coefficients of r ranging from 2 to 6. S1 Fig revealed that two was the most robust

Table 1. Patient characteristics.

Characteristics Total Memory Non-memory p value

n = 112 n = 70 (62.5%) n = 42 (37.5%)

Demographic
Age 77 ± 7.9 (54–99) 77.3 ± 7.5 (54–92) 76.3 ± 8.5 (58–99) 0.45

Age at onseta 75.4 ± 8.3 (50–98) 75.1 ± 7.8 (50–91) 75.9 ± 9.2 (57–98) 0.71

Gender (female %) 68 (60%) 38 (54%) 30 (71%) 0.1

Education (years) 7.9 ± 4.06 (0–18) 8.4 ± 4.1 (0–18) 7 ± 3.7 (0–16) 0.13

Duration of onset (years)a 1.3 ± 0.96 (0.5–4) 1.3 ± 1 (0.5–4) 1.28 ± 0.89 (0.5–3) 0.85

Multiple tests available (yes %) 97 (86%) 58 (82%) 39 (92%) 0.22

Duration of follow-up (years) 2.8 ± 1.8 (0–8) 3.4 ± 1.8 (0–8) 2.5 ± 1.7 (0–6) 0.009
Cognitive measurements
MMSE 21.1 ± 3.1 (16–27) 20.2 ± 2.5 (16–26) 22.5 ± 3.4 (16–27) 0.0001
CASI 70.1 ± 9.8 (40–92) 67.8 ± 8.8 (40–86) 73.9 ± 10.4 (51–92) 0.002

Short-term memory 5.3 ± 2.8 (1–11) 3.4 ± 1.4 (1–7) 8.3 ± 1.6 (5–11) < 2.2e-16
Long-term memory 9.5 ± 1.04 (5–10) 9.5 ± 1.06 (5–10) 9.3 ± 1 (7–10) 0.08

Attention 5.3 ± 2.8 (2–8) 6.3 ± 1.2 (3–8) 5.6 ± 1.5 (2–8) 0.01
Concentration 6.2 ± 2.2 (0–10) 6.3 ± 2.2 (1–10) 6.02 ± 2.2 (0–10) 0.51

Orientation 12.2 ± 3.8 (4–18) 11.1 ± 3.8 (4–18) 14.1 ± 3.2 (7–18) 9.03e-05
Abstraction–Judgment 8 ± 1.9 (3–12) 8.01 ± 1.9 (4–12) 7.9 ± 2.07 (3–12) 0.99

Language 14.5 ± 2.8 (6–20) 14.8 ± 2.7 (7–20) 14.1 ± 2.9 (6–20) 0.26

Visuospatial 8.1 ± 2.4 (0–10) 8.1 ± 2.5 (0–10) 8.2 ± 2.4 (0–10) 0.91

CDR global score 0.6 ± 0.2 (0–2) 0.6 ± 0.2 (0.5–2) 0.5 ± 0.2 (0–1) 0.15

CDR-SOB 2.4 ± 1.9 (0–11) 2.8 ± 2.09 (0.5–11) 1.6 ± 1.3 (0–5) 0.0006
Neuroimagingb

MTA 1.18 ± 0.91 (0–3.5) 1.25 ± 0.99 (0–3.5) 1.07 ± 0.78 (0–2.5) 0.49

WMH 1.58 ± 0.91 (0–3) 1.54 ± 0.9 (0–3) 1.65 ± 0.93 (0–3) 0.58

Abbreviations: CASI = Cognitive Abilities Screening Instrument, CDR = Clinical Dementia Rating, CDR-SOB = Clinical Dementia Rating Sum of Boxes, MMSE = Mini

Mental State Exam, MTA = medial temporal lobe atrophy score, WMH = white matter hyperintensities (Fazekas scale).

Note: Data are presented as mean ± standard deviation with range (min—max). P values were computed from t test, Wilcoxon signed-rank test or χ2 test where

applicable.
a Missing in 35.7% (40/112) of the cohort, 34% (24/70) of the memory group and 38% (16/42) of the non-memory group.
b Missing in 23.2% (26/112) of the cohort, 28.5% (20/70) of the memory, 16.6% (7/42) of the non-memory group.

https://doi.org/10.1371/journal.pone.0292527.t001
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number of clusters, with the highest cophenetic coefficient at approximately 0.95. Next, results

of the NMF algorithm with r = 2 cognitive subtypes are shown in Fig 2. The first cognitive clus-

ter included CASI items long-term memory and other non-memory domains, while the

remaining cluster only included short-term memory (Fig 2A). Fig 2B shows the "meta"-cogni-

tion profiles matrix of the patients as a heatmap, with each column corresponding to one

patient. Columns were arranged by cluster membership, i.e. either one of the two clusters that

the patient belongs to, as illustrated by the uppermost thin row (pink and blue colors). Subse-

quent comparison of the NP scores of the two clusters (Fig 2C and Table 1) confirmed that the

patients belonging to the first cluster had significantly lower scores in short-term memory and

orientation and higher scores in attention, while scores in the remaining categories were simi-

lar between the two subgroups. Hence, we identified the first cluster as the "memory" cluster

for their primary deficit in memory, accordingly the second cluster was named "non-

memory".

We next examined the demographic and clinical characteristics of the two clusters

(Table 1). Importantly, memory and non-memory patients were similar in age, gender, years

of education, and duration of onset, demonstrating that these possible confounding effects

were not driving the heterogeneity found from cognitive clustering [9]. Both groups were also

comparable in levels of medial temporal lobe atrophy and cerebrovascular burden. In terms of

cognition-related measurements, the memory group had lower MMSE and CASI and higher

CDR-SOB scores, indicating that they had worse global cognitive status and dementia severity

at baseline.

Fig 2. Results of NMF clustering analysis. (A) Heatmap generated from the "meta"-cognition matrix W with rows

representing 7 cognitive items of CASI and columns representing two cognitive clusters. The cognitive items are colored

using a red–yellow scale. The closer to the red hue, the higher the item scores are (better cognitive performance) and vice

versa. (B) Heatmap from the "meta"-cognition performance profiles matrix H with rows representing two cognitive

clusters and columns representing each patient. (C) Comparison between CASI items of two cognitive clusters, memory

and non-memory. CASI = Cognitive Abilities Screening Instrument.

https://doi.org/10.1371/journal.pone.0292527.g002
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Comparable rate of dementia progression between the two subgroups

Next, we investigated the disease progression of patients in two cognitive clusters. The trajec-

tory of MMSE, CASI, CDR global and CDR-SOB raw scores during 5 years of follow-up is

illustrated in Fig 3. Patients in both groups showed considerable variability in changes of

CASI, MMSE and CDR scores, with some progressing to more severe stages within a few years

while others appeared to be relatively stable.

We employed linear mixed effect model on a subset of patients with available follow-up

results (n = 97 [86% of the original dataset], memory group n = 58 [60%], non-memory group

n = 39 [40%]). We only included data within three years of follow-up as from the fourth year

on the number of participants with available data dropped substantially (n = 43 from 112),

which could induce the linear mixed effect model algorithm to fail to converge, i.e. it would

not reach a stable solution with maximum likelihood. It was revealed that within three years of

follow-up, patients in both groups significantly worsened over time (Fig 4 and Table 2). Specif-

ically, patients in the memory group were predicted to have annual MMSE decreased by

1.1 ± 0.2 points, CASI decreased by 3.8 ± 0.7 points, and CDR-SOB increased by 0.8 ± 0.1

points. In the non-memory group, patients were estimated to have MMSE decreased by

1.2 ± 0.3 points, CASI decreased by 3.3 ± 0.8 points, and CDR-SOB increased by 0.7 ± 0.1

points per year. However, the interaction between follow-up time and cluster membership was

not statistically significant for all cognitive measurements (p values from 0.6 to 0.99), suggest-

ing that both memory and non-memory groups had similar rates of progression.

Consistency of clustering analysis over time

Finally, we performed NMF clustering analysis on patient’s NP test scores at year 1, 2, and 3

after the baseline visit. Remarkably, Fig 5 shows that patients at each year for the first 3 years

Fig 3. Longitudinal trajectory of cognitive measurements during 5 years of follow-up (raw scores). (A) MMSE, (B)

CASI, (C) CDR global score, (D) CDR-SOB.

https://doi.org/10.1371/journal.pone.0292527.g003
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are clustered similarly to their baseline cognitive performance, i.e. one group with primary def-

icits in short-term memory and the other in the remaining domains, emphasizing the consis-

tency of the 2-cluster solution over time.

We further analyzed the stability of this clustering results over the year, as in whether

patients consistently belong to the same group or shift their cognitive membership. As shown

in Fig 6, the rates of stability, calculated as the sum of patients with similar cluster membership

as the previous year divided by the total visits of that year, ranged from 71% to 85% over 3

years, indicating that the majority of patients displayed a steady profile of cognition with

regard to memory versus non-memory.

Discussion

Emphasizing the 2-cluster solution in cognitively heterogeneous AD

In this study, we implemented NMF, a data-driven clustering technique, to investigate the cog-

nitive heterogeneity in people with mild to moderate AD and found two subgroups showing

Fig 4. Predicted change in cognitive measurements after 3-year follow-up. (A) MMSE, (B) CASI, (C) CDR global score,

and (D) CDR-SOB.

https://doi.org/10.1371/journal.pone.0292527.g004

Table 2. Longitudinal analysis of cognitive measurements.

Baseline Predicted annual change

Memory Non-memory p value Memory Non-memory p value

MMSE 20.1 ± 2.6 22.6 ± 3.3 0.0001 –1.1 ± 0.2 –1.2 ± 0.3 0.6

CASI 67.5 ± 8.9 73.8 ± 10.1 0.002 –3.8 ± 0.7 –3.3 ± 0.8 0.7

CDR global 0.63 ± 0.2 0.55 ± 0.2 0.1 0.06 ± 0.02 0.07 ± 0.02 0.99

CDR-SOB 2.8 ± 2.1 1.5 ± 1.3 0.002 0.8 ± 0.1 0.7 ± 0.1 0.6

Abbreviations: CASI = Cognitive Abilities Screening Instrument, CDR = Clinical Dementia Rating, CDR-SOB = Clinical Dementia Rating Sum of Boxes, MMSE = Mini

Mental State Exam.

Note: For baseline scores, data are presented as "mean ± standard deviation" and p values computed from t test or Wilcoxon signed-rank test. For predicted annual

change, data are presented as "estimate ± standard error" and p values were computed from linear mixed effect model analysis.

https://doi.org/10.1371/journal.pone.0292527.t002
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prominent deficits in memory (62.5%) and non-memory (37.5%) cognitive domains. The

higher number of patients in the memory subgroup was expected as people with dementia

most commonly seek medical care due to memory complaints. This result is largely in line

with previous studies that identified two cognitive subgroups in AD, with the memory or typi-

cal group comprising 48% to nearly 80% of the sample [5, 7]. Further scrutiny of the NP profile

revealed that non-memory patients performed better on two cognitive domains (namely,

short-term memory and orientation) and worse on attention compared to the memory group;

while scores on concentration, abstraction–judgment, visuospatial ability and long-term mem-

ory were similar across both groups. Comparably, Qiu et al. reported that AD atypicality was

Fig 5. Heatmaps generated from the "meta"-cognition matrix W at Year 1, 2, and 3 of patients’ NP test results.

https://doi.org/10.1371/journal.pone.0292527.g005

Fig 6. Stability of the 2-cluster solution at Year 1, 2, and 3. Columns were scaled according to the patient count in the

memory (green) or non-memory (orange) groups.

https://doi.org/10.1371/journal.pone.0292527.g006
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associated with better episodic memory and worse attention/executive function, and that typi-

cal and atypical patients had similar scores in language and visuospatial skills [7].

One particular finding of the study was that patients assigned to the memory group had

more severe dementia (lower MMSE and CASI, higher CDR-SOB scores) than the non-mem-

ory group at baseline. This could imply that the variance identified from subtype analysis was

actually driven by different disease stages, thus not true cognitive heterogeneity per se [9]. On

the other hand, one could argue that temporal and phenotypic heterogeneity are unavoidably

intertwined in diseases and develop algorithms that take into account both simultaneously, as

was performed in Young et al. [30]. In our study, we believe that disease stage did not substan-

tially contribute to the identification of cognitive subgroups, because age at onset and duration

of illness did not differ significantly between the two groups. While we could have validated

the cognitive clusters following stratification for disease severity, i.e. split the cohort into two

groups using the median MMSE scores at baseline and repeated the cluster analysis on each

group to see if the results would be similar [5], we elected not to because splitting the original

cohort of 112 participants further would likely result in too small sample size.

Two important results of our study diverge from previous works and merit serious consid-

eration. Firstly, we observed no group differences in age, gender, duration of onset, and neuro-

imaging variables, in contrast to three studies reporting that patients in the non-memory

cluster were younger, more often male and had less severe hippocampal atrophy. [5–7]. It has

been suggested that subgroups identified from unsupervised clustering techniques should be

interpreted with caution, as they could be driven by variances unrelated to disease expression

patterns, like age, gender and disease stages [9]. In this respect, it could be argued that our

2-cluster finding is less likely to have been confounded by these variables. Furthermore, it is

possible that MRI visual rating scores, while can be routinely acquired in the clinical setting,

could not capture brain regions as fine-grained as specialized neuroimaging software suites,

e.g. FreeSurfer. Secondly, we discovered that cluster membership, memory versus non-mem-

ory, did not contribute to differences in disease progression after 3 years of follow-up. Qiu

et al. performed cluster analysis on a sample of more than 4,000 patients from the U.S.’s

National Alzheimer’s Coordinating Center and revealed that atypicality was significantly

related to less severe dementia and slower cognitive decline [7]. Conversely, Scheltens et al.
included a total of 1,066 AD patients from the Netherlands, German and two U.S. sites (Alz-

heimer’s Disease Neuroimaging Initiative–ADNI and University of California San Francisco–

UCSF) and showed that the non-memory group had worse MMSE scores and faster disease

progression, but only in the UCSF cohort. Apparently, the relationship between memory ver-

sus non-memory impairment with global dementia and longitudinal rate of cognitive decline

remains open to question.

Overall, our findings highlighted the existence of two distinct subgroups with cognitive def-

icits in memory and non-memory domains. Previous studies striving to identify clusters of

cognitive impairments in AD have reported from two to as many as thirteen clusters [5–7, 31–

36]. Approaches varied mostly in terms of patient inclusion criteria, types of NP tests and clus-

tering methods. For example, studies either included patients at all stages of AD [32, 33, 36] or

only those in the mild and moderate stages, using MMSE cut-off values at 10 [6], 14 [34], 15

[5] or 16 [7] as one of the inclusion criteria to avoid the impact of floor effects on clustering

results. In addition, aside from the typical "memory" subgroup that was consistently found

across studies, researchers have also identified other subgroups characterized by cognitive

impairment other than memory or those at different levels of cognitive severity. Previous work

by Cappa et al., which employed one of the most comprehensive NP battery, found four hier-

archical clustering-derived subtypes, namely the memory, visuospatial/perceptual, perceptual/

calculation, and language from a cohort of patients with AD and posterior cortical atrophy
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[32]. Similarly, Zangrossi et al. identified four AD groups– typical, mild, visuospatial, and non-

amnestic–that were partly explained by differences in sex and global cognitive functioning

[37]. Scheltens et al. employed latent class analysis and identified eight AD cognitive clusters

characterized by discrete neuropsychological performance and disease severity [6]. Evidently,

the more subgroups recognized by distinct clustering algorithms, the more detailed and fine-

grained these subtypes are revealed [9]. However, we believe that while not a single number of

clusters is yet considered to be optimal and clinically meaningful, there is a trade-off between

the degree of clustering resolution and the ability to interpret and apply this heterogeneity in

the clinical settings.

Heterogeneity incorporating multi-dimensional data and its underlying

mechanisms

The present study focused on investigating the heterogeneity in patients with AD using results

from NP assessment. We employed CASI, a battery of NP test commonly used in medical

institutions across Taiwan and multi-center cohort studies worldwide (e.g. Multi-Ethnic Study

of Atherosclerosis–MESA [38, 39], Adult Changes in Thought–ACT study [40, 41], and Shiga

Epidemiological Study of Subclinical Atherosclerosis–SESSA [42]). In comparison with NP

measures used elsewhere, the CASI consists of a more comprehensive set of cognitive domains

(with the addition of item "Abstraction and Judgment", which is rarely assessed formally in

cognitive evaluations [13]) and has been specifically modified from the original English ver-

sion to accommodate Chinese elders of limited educational backgrounds (outlined in S1

Table) [43]. However, several items of the CASI could be regarded as more limited in scope,

especially the "Short-term Memory" item, which only required participants to recall three

words and five objects, compared to the more exhaustive Rey Auditory Verbal Learning Test

and Logical Memory test used in the multisite ADNI study, which assess the ability to recall 15

words and a short story, respectively [44–46].

Certainly, NP pattern is not the only modality in dementia that has been leveraged to disen-

tangle its heterogeneity. Extensive works have applied clustering methods on neuroimaging

(structural/functional/diffusion tensor MRI, tau/amyloid/FDG-PET), cerebrospinal fluid

(CSF) biomarkers and neuropathology [8, 10, 47–49]. Given the development of multicenter

databases and computational techniques, integrating high-dimensional, multi-modality and

longitudinal data is particularly appealing. That being said, regardless of the modality and clus-

tering approach, it is crucial to recognize possible mechanisms underlying AD heterogeneity.

APOE ε4 genotype, age-related and dementia-specific brain pathology, among others, have

been proposed as putative drivers [9]. Cerebrovascular burden, as measured with the white

matter hyperintensities Fazekas scale, were similar across two clusters in our study. We were

unable to examine the effect of genetic data and tau/amyloid profiles on cluster membership,

but previous researchers have suggested that atypical AD patients had lower probability of

APOE ε4 and less severe neurofibrillary tangle (tau) pathology, which may have an impact on

tau-targeting therapies in AD [7].

NMF among other data-driven clustering approaches to unravel AD

complexity

In neuropsychological research, the most commonly used clustering algorithms include hier-

archical clustering, optimization clustering (including k-means clustering) and model-based

clustering [50]. With the advances of computational methods in recent years, more diverse

approaches have been employed by researchers. NMF is a data-driven clustering method that

has been implemented to understand heterogeneity in AD in various studies [51–54]. In the
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field of computational biology, its applications ranged from molecular pattern discovery, class

comparison and prediction, to biomedical informatics and others with success as it could

unravel biologically meaningful clusters [20, 21, 24]. Its objective is to interpret high dimen-

sional data with a reduced number of components, or matrices, that when combined corre-

spond to the observed data as close as possible, rendering it similar in concept to principal

component analysis (PCA) and other dimensionality reduction techniques [19]. A distinctive

feature of NMF is that it imposes a nonnegativity constraint on the factorized matrices, making

it more complex algorithmically. Despite this, NMF remains popular due to its simple explana-

tion of the factors, in contrast with the negative-sign results from PCA that often contradict

physical reality and lack intuitive interpretation [21].

Limitations

Our study is limited by the relatively small sample size and lack of pathologic confirmation of

AD diagnosis. Several variables were not available for all patients, for example duration of

onset and MRI measurements, as data were pulled from hospital-based outpatient records

with some patients only undergoing brain CT, or having MRI scans from other hospitals that

were not harmonized into our center’s database. Furthermore, lack of data on comorbidities,

genetic profiles, CSF and/or plasma biomarkers also precluded us from investigating their pos-

sible role as drivers of the underlying heterogeneity.

Finally, without evidence of AD postmortem neuropathology, as is the case with most stud-

ies in clinical settings, we cannot rule out the possibility that the results could have been partly

driven by misdiagnosis, i.e. dementia due to cerebrovascular disease, frontotemporal lobar

degeneration, or Lewy body disease [55]. For instance, in comparison with AD patients, those

with vascular dementia demonstrate better performance on verbal learning and worse on exec-

utive functions, while scores in tests of language, attention, and visuospatial abilites were simi-

lar between the two groups [56]. Importantly, each type of dementia is a highly heterogeneous

entity by itself, hence evaluation based on neuropsychological test profiles is challenging due

to individuals with different dementias showing overlapping patterns of cognitive impairment.

In this study, we attempted to include participants with AD based on careful selection from a

cohort of dementia patients being followed up at our medical institution. As AD dementia

remains primarily a clinical diagnosis and the sensitivity and specificity of the NIA-AA diag-

nostic criteria have been shown to be 71%, we believe that the likelihood of misdiagnosis

remains a concern but has been minimized as best as we could [55]. Future efforts will concen-

trate on acquiring the missing data from a larger cohort of patients, as well as validating the

result of clustering technique across time and subsets of patients with available neuropatholog-

ical examination.

Conclusion

Our results confirmed that patients with mild to moderate AD demonstrate cognitive hetero-

geneity as two subgroups with predominant deficits in memory and non-memory domains,

respectively. Whether these cognitive profiles have prognostic implications, i.e. show different

rates of progression, remains inconclusive. Large-scale, longitudinal and multicenter cohorts

with well-phenotyped AD participants will strengthen the findings of cognitive heterogeneity

and elucidate its causal mechanisms.
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