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Abstract

Chagas disease by Trypanosoma cruzi (T. cruzi) infection is a leading cause of myocarditis

worldwide. Chagas cardiomyopathy is presented with a wide variety of conduction abnor-

malities including arrhythmias, first- and second-degree atrioventricular blockade, left ven-

tricular systolic dysfunction and some cases heart failure leading to the death. Currently,

there are no effective treatments available against advanced Chagas disease. With the

advance in the development of novel therapies, it is important to utilize an animal model that

can effectively replicate the diverse stages of Chagas disease, including chronic asymptom-

atic and symptomatic infection, that are akin to those observed in humans. Therefore, to

characterize the cardiac alterations during the evolution of the infection, we evaluated the

progression of cardiomyopathy caused by T. cruzi H1 infection in both BALB/c and ICR

mouse models by performing electrocardiogram (ECG) studies in unanesthetized mice

every month until 210 days post-infection (dpi). In the late chronic phase of infection, we

also performed echocardiogram (ECHO) studies to further assess cardiac function. In con-

clusion, we demonstrated that ICR mice were more susceptible to cardiac alterations com-

pared to BALB/c mice and both mouse strains are suitable experimental models to study

chronic T. cruzi infection and novel treatments.

Introduction

Chagas disease is a worldwide health problem caused by the protozoan parasite Trypanosoma
cruzi (T. cruzi) with 6–7 million people infected worldwide, mainly settled in the Americas [1].

The disease initiates with an acute phase which lasts a few weeks and is characterized by para-

sites in the bloodstream and unspecific symptoms such as nausea, headache, and fever. Next,

infected individuals progress into the symptomatic or asymptomatic chronic phase, where the
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latter is delimited by the absence of abnormalities in the physical examination and cardiac

monitoring, while symptomatic individuals, about 30 to 40% of cases, evolve to megaesopha-

gus, megacolon, and cardiomyopathy years after the infection [2, 3].

It is widely acknowledged that the pathogenesis of cardiomyopathy in Chagas disease is pre-

dominantly attributed to the persistent presence of T. cruzi within cardiac tissue, leading to

inflammation and fibrosis. These changes culminate in structural alterations to the cardiac

conduction system, resulting in the development of cardiac rhythm abnormalities such as bra-

dyarrhythmia and tachyarrhythmia which in some severe cases, can progress to heart failure

[4]. In the early chronic phase infected human patients exhibit abnormalities in myocardial

contractility and left ventricular wall motion, which generally are associated with ventricular

arrhythmia and cardiac fibrosis areas. [3, 5–7]. Studies in murine models infected with T. cruzi
have reported differences in cardiac parameters performed by electrocardiogram (ECG) and

echocardiogram (ECHO) recordings compared to naive mice. BALB/c mice infected with T.

cruzi Tulahuen strain developed alterations in the QRS complex as well as prolonged QT inter-

vals in the first 5 weeks of infection, and these alterations were maintained during the early

chronic phase at 90 days post-infection (dpi) [8]. Other alterations have been reported in

BALB/c mice infected with T. cruzi Colombian strain, where mice displayed prolonged P, PR,

and QTc wave intervals, as well decreased heart rate. In addition, an increase in the right ven-

tricle area, a reduction in the ejection fraction and elevated systolic volume in the left ventricle

were observed by ECHO assays, during the early chronic phase at 90 dpi [9]. The longest study

for chronic infection was performed in ICR mice infected with T. cruzi Brazilian strain at 150

dpi which showed a reduction in HR, left ventricular systolic function, and right/left ventricu-

lar dilation by ECHOs [10].

The chemotherapy of T. cruzi infections is based on nitrofurans and nitroimidazoles which

are unsatisfactory since both compounds have toxic-side effects, ineffective in the chronic

phase, and are associated with drug resistance [11, 12]. An alternative approach is the develop-

ment of a vaccine, which could be administered as immunotherapy either to individuals with

acute or chronic infection to prevent the development of cardiomyopathy [13–18]. Neverthe-

less, despite efforts, a vaccine is still in preclinical studies and given the difficulties to perform

non-human primates studies, there is an urgent need to optimize an adequate animal model

that reproduces ECG and ECHO abnormalities which are the signature of Chagas disease car-

diomyopathy [19]. Thus, we aimed here to characterize the progression of chronic Chagas dis-

ease cardiomyopathy in experimentally infected mice based on ECG and ECHO findings up to

210 dpi.

Material and methods

Ethical standards

All experimental protocols were approved by the institutional bioethics committee of the

“Centro de Investigaciones Regionales Dr. Hideyo Noguchi”, Universidad Autónoma de Yuca-

tán (Reference #CEI-08-2019) and were performed in strict compliance with the Official Mexi-

can Standards (NOM-062-ZOO-1999).

Mice and parasites

Female BALB/c (n = 13) and ICR (n = 13) mice were obtained at 4–5 weeks old (Envigo,

México) and infected with T. cruzi H1 strain, originally isolated from a human case in Yuca-

tán-México and maintained by serial passage in BALB/c mice as previously described [20].

Control groups included non-infected BALB/c (n = 3) and ICR (n = 3) mice. All animals were

housed on a 12-hour light/dark cycle in groups of 3–5 per cage attached with Smart Flow
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ventilation system (Tecniplast) and air change of 75 times per hour. Animals received food

and water ad libitum by staff with more than 3 years of experience in animal care. Mice health

and behavior were monitored daily, and cages were cleaned weekly. In order to minimize ani-

mal stress, we provide them of paper and cardboard tubes previously sterilized by ultra-violet

light. Survival was recorded up to 210 dpi which was the end of the study. The euthanasia was

performed by deep anesthesia induced with xylazine/ketamine (10mg/kg / 100mg/kg) followed

by cervical dislocation. Weight loss, poor body skin or fur condition were considered as sign

of endpoint criteria.

Electrocardiography

Electrical cardiac activity was recorded from non-anesthetized infected mice every month

until 210 dpi using ECGenie equipment (Mouse Specifics Inc.). Mice were subjected to an

adaptation period to minimize stress in the electrocardiograph plate by placing them for 10

min before recordings. The ECGs trace was obtained with standard lead (dipolar lead DII) and

amplitude settings to give 2 mV/1 msec. Typically, 20–25 well-defined successive beats were

analyzed from each tracing using the EzCG Signal Analysis Software package (Mouse Specifics

Inc.). The following ECG-wave parameters were obtained: heart rate (HR), RR interval, PQ

interval, PR interval, QT interval, QTc interval, QRS complex, and ST segment.

Echocardiography

To induce anesthesia in mice, isoflurane was administered at a dosage of 3% along with 0.5 L/

min O2 in an anesthetic chamber (Patterson Scientific). The mice were then maintained at a

dosage of 1.5–2.5% isoflurane using a face mask. Echocardiography (ECHO) recordings were

obtained using a 22 MHz linear-array ultrasound transducer of the Mylab Seven system

(Esaote Inc.). Mice were placed in a supine position on a heated surgical platform (Indus

Instruments) maintained at a temperature of 37˚C and excessive hair was removed with depil-

atory cream (NairTM). The short-axis images were obtained of the left ventricle (LV) in B and

M modes at the papillary muscle level. The systolic function of LV was evaluated by measuring

left ventricular ejection fraction (LVEF). The formula to calculate LVEF was: LVEF(%) =

[(LVEDV-LVESV)/LVEDV] x 100, where LVEDV and LVESV = LV end-diastolic/systolic

volume [21].

Data and statistical analysis

The parasitemia and ECG parameters from each time point were analyzed by Student’s t-test

and survival curves with the Mantel-Cox Long-rank test. A P-value less than 0.05 was consid-

ered significant statistically. The ECG parameters were also integrated into a multivariate anal-

ysis, and we performed Linear Discriminant Analysis (LDA) to evaluate the effect of T. cruzi
infection on ECG patterns. The statistical significance of differences was assessed by Permuta-

tional Multivariate Analysis of Variance (PERMANOVA) and Bonferroni correction to adjust

P values for multiple pairwise comparations. We further combined ECG and ECHO parame-

ters into an LDA analysis of cardiac function.

Results

Susceptibility of mice to T. cruzi infection

To follow the progression of the T. cruzi infection towards the chronic phase, the blood para-

site burden and survival were measured in both BALB/c and ICR mice infected with 500 blood

trypomastigotes from a considered lethal dose of infection with the T. cruzi H1 strain. At 23
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dpi, we observed that the levels of parasitemia were significantly higher in ICR compared to

BALB/c mice (Fig 1A). This data was correlated with survival, as ICR mice showed high mor-

tality 5/13 (38.47%) starting at 27 dpi and ending at day 32, while in BALB/c strain there was

no mortality. Thus, all BALB/c mice survived up to 210 dpi and only 8/13 (61.53%) of ICR

mice survived infection (Fig 1B). As expected, no mortalities were observed in non-infected

control groups during that time. None mice showed sign of endpoint criteria.

Progression of ECG alterations in T. cruzi infected mice

Electrical cardiac activity in non-anesthetized ICR and BALB/c mice showed differences in the

infection by T. cruzi (from 0 to 210 dpi.). Among the significant cardiac alterations found in

infected ICR mice, we observed that 100% (8/8) of mice at 37 dpi showed a decreased HR,

which was correlated with an increase in the ST segment (Fig 2A and 2G). In addition, at the

beginning of the chronic phase at 70 dpi, 87.5% (7/8) of infected ICR mice showed a decreased

HR and by 105 dpi PQ and PR intervals as well as ST segment were increased compared to

non-infected ICR mice (Fig 2C, 2E and 2G). In the late chronic phase, 87.5% (7/8) of infected

ICR mice also showed an increased PQ and PR intervals at 175 dpi (Fig 2C and 2E) and an

increased ST segment at 210 dpi compared to non-infected mice (Fig 2G). All this data sug-

gests that T. cruzi H1 strain changes the cardiac electrical activity in ICR mice throughout

infection. In contrast, no significant difference in any of the ECG parameters measured was

detected in infected BALB/c mice compared to those uninfected during T. cruzi infection (Fig

2B, 2D, 2F and 2H).

Multivariate analysis of ECG parameters during T. cruzi infection

We then integrated ECG parameters into a multivariate analysis to assess global changes in

ECG patterns in response to T. cruzi infection during the acute phase of infection (0, 37 and 70

dpi) compared to the early (105 and 140 dpi) and late chronic phases (175 and 210 dpi)

through Linear Discriminant Analysis (LDA) for both ICR and BALB/c mice. A significant

effect of T. cruzi infection on ECG patterns was detected in both mouse strains (PERMA-

NOVA F = 2.4, P = 0.033 for BALB/c and F = 8.23, P = 0.0003 for ICR mice, respectively).

However, the time course of cardiac alterations differed between BALB/c and ICR mice.

Indeed, combined ECG alterations observed in BALB/c mice during the acute phase of T.

Fig 1. Parasitemia and survival in T. cruzi-infected mice. BALB/c (n = 13) and ICR (n = 13) mice were infected with

500 blood trypomastigotes of H1 T. cruzi by intraperitoneal injection. A total of 3 mice were used as the non-infected

control group for each mouse strain and received only saline solution. A) Parasitemia is shown as mean ± S.D.

Significant differences were calculated with the Mann-Whitney´s U-test, and is indicated as follow *, P�0.05. B)

Survival was monitored during 210 dpi. Significant differences were calculated using Mantel-Cox log-rank test, *,
P<0.05.

https://doi.org/10.1371/journal.pone.0292520.g001
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Fig 2. ECGs from non-infected (white dots) and infected mice (marron and blue dots for ICR and BALB/c,

respectively). ECGs were recorded monthly from day 0 (before infection) to 210 dpi. The following recordings were A,

B) Heart rate, C, D) PQ interval, E, F) PR interval and G, H) ST interval. Data are shown as mean ± SEM. Significant

differences were estimated with Student´s t-test comparing infected and non-infected mice, and is indicated as follows *,
P�0.05.

https://doi.org/10.1371/journal.pone.0292520.g002
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cruzi infection were contrasting compared to the chronic late phase (Fig 3A and Table 1).

Conversely, ICR mice showed significant ECG alterations in all stages of infection (acute,

early, and late chronic) with increased deviation from normal ECG patterns from uninfected

mice over time (Fig 3B and Table 1). Accordingly, the reclassification of individual mice into

their respective groups based on their ECG patterns was correct for only 45.9% of BALB/c

mice, although it reached 61.5% for mice in the acute phase of T. cruzi infection. Reclassifica-

tion was more accurate for ICR mice, reaching an average of 60.5% correct reclassification,

and uninfected and late chronically infected mice were best identified with 76.4% and 75%

correct reclassification, respectively (S1 Table). We then incorporated ECHO data from 210

dpi for the analysis of cardiac alterations in chronically infected mice. As shown in Fig 4, there

was a major effect caused by T. cruzi infection on cardiac function from ICR compared to

BALB/c mice in the late chronic phase. Overall, 87.5% of mice could be correctly reclassified

according to their combined ECHO and ECG parameters (S2 Table).

Discussion

As Chagas disease remains a public health problem, so has the milestone of developing a vac-

cine to halt or delay the pathology by T. cruzi infection [14, 16–18, 22]. Thus, an adequate

murine model plays a key for the discovery and testing of new antigens in experimental

Fig 3. Effect of T. cruzi infection on the ECG profiles of BALB/c and ICR mice. ECG parameters were analyzed by

LDA/PERMANOVA. A) BALB/c mice presented significant differences in ECG patterns following T. cruzi infection

(PERMANOVA, P = 0.03), mostly during the acute phase of infection (P = 0.021). B) ICR mice also presented

significant differences in ECG patterns following T. cruzi infection (PERMANOVA, P = 0.0003), for all periods

(P = 0.031, P = 0.003 and P = 0.0006 for acute, early, and late chronic phases vs uninfected saline control, respectively.

Chr: Chronic.

https://doi.org/10.1371/journal.pone.0292520.g003

Table 1. Pairwise comparisons of ECG patterns in T. cruzi infected mice. Bonferroni-adjusted P values for pairwise comparisons are indicated for BALB/c mice

(Above the diagonal) and for ICR mice (Below the diagonal).

Uninfected Acute Early Chronic Late Chronic

Uninfected - 0.95 1 0.92

Acute 0.031* - 0.27 0.021*
Early Chronic 0.003* 1 - 1

Late Chronic 0.0006* 0.97 1 -

* Indicates a statistically significant difference.

https://doi.org/10.1371/journal.pone.0292520.t001

PLOS ONE Cardiac alterations in Trypanosoma cruzi infected-mice

PLOS ONE | https://doi.org/10.1371/journal.pone.0292520 October 5, 2023 6 / 12

https://doi.org/10.1371/journal.pone.0292520.g003
https://doi.org/10.1371/journal.pone.0292520.t001
https://doi.org/10.1371/journal.pone.0292520


studies. Previously, BALB/c and ICR mice have been used for the study of both acute and

chronic phases of experimental T. cruzi infection [23–26]; however, there are scarce studies

focused on cardiac alterations in chronically T. cruzi-infected mice. Hence, in this study, we

report for the first time a multi-variate analysis of the comprehensive cardiac pathology parame-

ters in T. cruzi-infected BALB/c and ICR mice, indicating major differences in the progression

and severity of cardiac pathology depending on the mouse strain. Our results could contribute

to the selection of an adequate murine model for the study of new immunotherapies against

chronic Chagas disease using a lethal/sub-lethal infective-dose for BALB/c and ICR mice by

inoculation of 500 blood trypomastigotes of T. cruzi H1 strain, according to previous studies

[20]. Here, we showed that both ICR and BALB/c mouse strains are good experimental chronic

T. cruzi-infection models. Our data indicate that ICR mouse strain was more susceptible to T.

cruzi H1 infection, showing a higher blood parasite burden, decreased survival and more fre-

quent cardiac alterations compared to BALB/c mice infected with the same parasite dose.

In this study, we assessed the cardiac electrophysiology of unanesthetized mice during

experimental T. cruzi H1 infection using electrocardiograms. It was essential to evaluate the

cardiac function of unanesthetized animals, as the administration of anesthetics has to

decrease the LV systolic function, HR, as well as blood pressure depending on the type of anes-

thetic used [10, 27, 28]. ECGs recordings showed that during T. cruzi infection, BALB/c mice

did not exhibit electrical alterations, conversely to ICR mice which showed altered electrocar-

diographic parameters for all stages of infection. Upon the early stages of chronic T. cruzi
infection, ICR mice exhibited a reduction in HR, suggestive of sinus bradycardia, at 37 and 70

dpi. However, from 105 dpi onward, infected mice demonstrated normalization of HR, indi-

cating a potential compensatory mechanism to preserve cardiac function. At the early (105

dpi) and late (175 dpi) chronic phase, prolonged PQ and PR intervals associated with first-

degree atrioventricular (AV) blockade were observed in infected ICR mice but not in BALB/c

mice. In humans, Chagas disease patients with positive serology from rural communities in

Fig 4. Effect of T. cruzi infection on ECG and ECHO profiles of BALB/c and ICR mice during the late chronic

phase. Data were analyzed by LDA/PERMANOVA. Significant ECG and ECHO alterations for ICR mice at 210 days

post-infection (PERMANOVA, P = 0.009) indicated more severe cardiac disease in ICR mice compared to BALB/c

mice.

https://doi.org/10.1371/journal.pone.0292520.g004
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Brazil and Bolivia also showed longer PQ and PR intervals, and as a consequence of these con-

duction disturbances patients develop first- and second-degree AV blocks [29]. The first and

second-degree AV blocks are abnormalities found in T. cruzi-infected dogs during the acute

or chronic phase [30, 31]. Likewise, first-degree AV conduction disturbance, systolic dysfunc-

tion, and ventricular arrhythmias are also ECG abnormalities found in rhesus macaques

(Macaca mulatta) chronically infected with T. cruzi Colombian strain. The electrical distur-

bances observed in Chagas disease patients as right bundle branch block, ventricular tachycar-

dia, second or third-degree AV block, left bundle branch block, and atrial fibrillation [32–34]

are consistent with our findings in ICR mice that appear to be developing chronic chagasic

cardiomyopathy. Myocardial ischemic is also a common anomaly detected in chronic Chagas

disease patients with heart disease, as well as in naturally infected dogs during early and late

stages of infection, with most presenting a longer ST segment [35–37]. Here, infected ICR

mice also showed prolonged ST segment, suggesting myocardial ischemia in acute, early, and

late chronic infection, but additionally, sinus bradycardia in the acute infection and AV block-

ade in early and late chronic phases whereas ECGs of BALB/c mice revealed no changes in

conduction abnormalities during all stages of T. cruzi infection.

ECHOs further revealed a more severe dysfunction in the ejection fraction from ICR mice

compared to BALB/c in the late chronic phase at 210 dpi. Consistent with our data, prior

investigations of cardiac function in BALB/c mice infected with T. cruzi H1 strain revealed a

steady ejection fraction at 208 dpi of 54.76% ± 9.35 compared to naïve mice with 48.33% ± 9

[38]. Similarly, T. cruzi-infected BALB/c mice exhibited an ejection fraction during chronic

infection at 212 dpi with no significant differences with control mice [39].

Hence, we speculate that cardiac alterations evaluated by ECGs and ECHOs may be a result of

cardiac fibrosis and inflammation caused by T. cruzi H1 infection. Additionally, a previous study

using Brazil, Tulahuen, or Sylvio-X10/4 T. cruzi strains suggested that ECGs can be used as a non-

invasive method to screen chronic histopathology damage in infected BALB/c mice [8].

In the last years, LDA/PERMANOVA analysis has been used as a robust method to inte-

grate multiple variables to evaluate associations in many biological, ecological, and environ-

mental data sets [40, 41]. In ECG data analysis, the use of univariate statistics was unable to

identify significant differences in any of these parameters, hence, multivariate analysis had a

greater power to identify statistical changes [42]. Our analysis allowed us to estimate the effect

of T. cruzi infection on ECGs profiles in both murine models.

Strengths and limitations

To our knowledge, this is the first study comparing the progression of chronic Chagas disease

cardiomyopathy based on ECG and ECHO findings in two experimental T. cruzi (H1)-infec-

tion models. A strength of this study is that our findings align well with the three phases of T.

cruzi infection in both murine models: an acute phase (0–70 dpi), an early chronic phase (105–

140 dpi), and a late chronic phase (175–210 dpi) and shed light on the progression of cardiac

disease in these two mouse strains.

A limitation of this study is that we could not measure fibrosis and inflammatory cell infil-

tration in the cardiac tissue of the infected mice. However, a previous study from our group

showed cardiac fibrosis and inflammation after 200 dpi in BALB/c mice infected with the T.

cruzi H1 strain [38, 39].

Conclusion

In sum, we demonstrated that the ICR mouse strain is significatively more susceptible to T.

cruzi H1 infection than BALB/c mice, and it develops more severe cardiac disease. This study
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supports the use of both mouse strains as suitable experimental models to study chronic T.

cruzi infection and novel treatments, as each strain presents different profiles of cardiac alter-

ations that are consistent with the well-characterized variability observed in human Chagas

disease cardiomyopathy.
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17. González-López C, Chen WH, Alfaro-Chacón A, Villanueva-Lizama LE, Rosado-Vallado M, Ramirez-

Sierra MJ, et al. A novel multi-epitope recombinant protein elicits an antigen-specific CD8+ T cells

response in Trypanosoma cruzi-infected mice. Vaccine. 2022; 40(45): 6445–9. https://doi.org/10.1016/

j.vaccine.2022.09.068 PMID: 36184402.

18. Bunkofske ME, Perumal N, White B, Strauch EM, Tarleton R. Epitopes in the Glycosylphosphatidylino-

sitol Attachment Signal Peptide of Trypanosoma cruzi Mucin Proteins Generate Robust But Delayed

and Nonprotective CD8+ T Cell Responses. J Immunol. 2023. https://doi.org/10.4049/jimmunol.

2200723 PMID: 36603035.

19. Chatelain E, Scandale I. Animal models of Chagas disease and their translational value to drug devel-

opment. Expert Opin Drug Discov. 2020; 15(12): 1381–402. https://doi.org/10.1080/17460441.2020.

1806233 PMID: 32812830.

20. Dumonteil E, Escobedo-Ortegon J, Reyes-Rodriguez N, Arjona-Torres A, Ramirez-Sierra MJ. Immuno-

therapy of Trypanosoma cruzi infection with DNA vaccines in mice. Infect Immun. 2004; 72(1): 46–53.

https://doi.org/10.1128/iai.72.1.46–53.2004 PMID: 14688079.

21. Stypmann J, Engelen MA, Troatz C, Rothenburger M, Eckardt L, Tiemann K. Echocardiographic

assessment of global left ventricular function in mice. Lab Anim. 2009; 43(2): 127–37. https://doi.org/10.

1258/la.2007.06001e PMID: 19237453.

PLOS ONE Cardiac alterations in Trypanosoma cruzi infected-mice

PLOS ONE | https://doi.org/10.1371/journal.pone.0292520 October 5, 2023 10 / 12

https://doi.org/10.1590/0074-02760160334
https://doi.org/10.1590/0074-02760160334
http://www.ncbi.nlm.nih.gov/pubmed/28225900
https://doi.org/10.1136/hrt.2003.018960
http://www.ncbi.nlm.nih.gov/pubmed/15145872
https://doi.org/10.1590/s0037-86822011005000020
http://www.ncbi.nlm.nih.gov/pubmed/21503552
https://doi.org/10.1161/CIR.0000000000000599
https://doi.org/10.1161/CIR.0000000000000599
http://www.ncbi.nlm.nih.gov/pubmed/30354432
https://doi.org/10.1645/GE-2396.1
http://www.ncbi.nlm.nih.gov/pubmed/20738200
https://doi.org/10.1371/journal.ppat.1005947
https://doi.org/10.1371/journal.ppat.1005947
http://www.ncbi.nlm.nih.gov/pubmed/27788262
https://doi.org/10.1016/s0020-7519%2801%2900320-4
https://doi.org/10.1016/s0020-7519%2801%2900320-4
http://www.ncbi.nlm.nih.gov/pubmed/11812498
https://doi.org/10.1590/s0074-02762002000100001
http://www.ncbi.nlm.nih.gov/pubmed/11992141
https://doi.org/10.1093/infdis/jit420
http://www.ncbi.nlm.nih.gov/pubmed/23945371
https://doi.org/10.1586/erv.12.85
http://www.ncbi.nlm.nih.gov/pubmed/23151163
https://doi.org/10.1371/journal.ppat.1004594
https://doi.org/10.1371/journal.ppat.1004594
http://www.ncbi.nlm.nih.gov/pubmed/25617628
https://doi.org/10.1016/j.actatropica.2022.106334
http://www.ncbi.nlm.nih.gov/pubmed/35101415
https://doi.org/10.1371/journal.pntd.0010258
https://doi.org/10.1371/journal.pntd.0010258
http://www.ncbi.nlm.nih.gov/pubmed/36095001
https://doi.org/10.1016/j.vaccine.2022.09.068
https://doi.org/10.1016/j.vaccine.2022.09.068
http://www.ncbi.nlm.nih.gov/pubmed/36184402
https://doi.org/10.4049/jimmunol.2200723
https://doi.org/10.4049/jimmunol.2200723
http://www.ncbi.nlm.nih.gov/pubmed/36603035
https://doi.org/10.1080/17460441.2020.1806233
https://doi.org/10.1080/17460441.2020.1806233
http://www.ncbi.nlm.nih.gov/pubmed/32812830
https://doi.org/10.1128/iai.72.1.46%26%23x2013%3B53.2004
http://www.ncbi.nlm.nih.gov/pubmed/14688079
https://doi.org/10.1258/la.2007.06001e
https://doi.org/10.1258/la.2007.06001e
http://www.ncbi.nlm.nih.gov/pubmed/19237453
https://doi.org/10.1371/journal.pone.0292520


22. Teh-Poot C, Tzec-Arjona E, Martı́nez-Vega P, Ramirez-Sierra MJ, Rosado-Vallado M, Dumonteil E.

From genome screening to creation of vaccine against Trypanosoma cruzi by use of immunoinfor-

matics. J Infect Dis. 2015; 211(2): 258–66. https://doi.org/10.1093/infdis/jiu418 PMID: 25070943.

23. Padilla AM, Rosenberg C, Cook P, Sanchez-Valdez F, McElhannon C, Tarleton RL. Delayed Activation

of T Cells at the Site of Infection Facilitates the Establishment of Trypanosoma cruzi in Both Naive and

Immune Hosts. mSphere. 2023;e0060122. https://doi.org/10.1128/msphere.00601-22 PMID:

36695605.

24. Rios LE, Lokugamage N, Garg NJ. Effects of Acute and Chronic Trypanosoma cruzi Infection on Preg-

nancy Outcomes in Mice: Parasite Transmission, Mortality, Delayed Growth, and Organ Damage in

Pups. Am J Pathol. 2022; 193(3): 313–331. https://doi.org/10.1016/j.ajpath.2022.11.010 PMID:

36565805.

25. Barry MA, Versteeg L, Wang Q, Pollet J, Zhan B, Gusovsky F, et al. A therapeutic vaccine prototype

induces protective immunity and reduces cardiac fibrosis in a mouse model of chronic Trypanosoma

cruzi infection. PLoS Negl Trop Dis. 2019; 13(5): e0007413. https://doi.org/10.1371/journal.pntd.

0007413 PMID: 31145733.

26. Cruz-Chan JV, Villanueva-Lizama LE, Versteeg L, Damania A, Villar MJ, González-López C, et al. Vac-
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