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Abstract

Human performance applications of mindfulness-based training have demonstrated its utility in

enhancing cognitive functioning. Previous studies have illustrated how these interventions can

improve performance on traditional cognitive tests, however, little investigation has explored

the extent to which mindfulness-based training can optimise performance in more dynamic

and complex contexts. Further, from a neuroscientific perspective, the underlying mechanisms

responsible for performance enhancements remain largely undescribed. With this in mind, the

following study aimed to investigate how a short-term mindfulness intervention (one week)

augments performance on a dynamic and complex task (target motion analyst task; TMA) in

young, healthy adults (n = 40, age range = 18–38). Linear mixed effect modelling revealed that

increased adherence to the web-based mindfulness-based training regime (ranging from 0–21

sessions) was associated with improved performance in the second testing session of the

TMA task, controlling for baseline performance. Analyses of resting-state electroencephalo-

graphic (EEG) metrics demonstrated no change across testing sessions. Investigations of

additional individual factors demonstrated that enhancements associated with training adher-

ence remained relatively consistent across varying levels of participants’ resting-state EEG

metrics, personality measures (i.e., trait mindfulness, neuroticism, conscientiousness), self-

reported enjoyment and timing of intervention adherence. Our results thus indicate that mind-

fulness-based cognitive training leads to performance enhancements in distantly related tasks,

irrespective of several individual differences. We also revealed nuances in the magnitude of

cognitive enhancements contingent on the timing of adherence, regardless of total volume of

training. Overall, our findings suggest that mindfulness-based training could be used in a myr-

iad of settings to elicit transferable performance enhancements.
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Introduction

In Western psychology, mindfulness is commonly defined as a non-judgemental awareness

and acceptance of the present moment [1]. It is formally induced by a variety of techniques,

including sitting meditations, yoga movements and body scans [2]. Such practices are becom-

ing more popular in clinical settings, as the benefits to wellbeing and mental health are increas-

ingly being demonstrated in the literature [3,4]. However, in addition to its well-established

benefits for mental health, human performance research indicates how mindfulness tech-

niques can further improve cognitive functioning [5–8]. In this domain, engaging in mindful-

ness practices have been associated with enhancements in attentional processes [7,9,10],

executive functions [11,12], working memory ability [12–14] and even creative thinking

[15,16]. Despite demonstrating promising results, these studies are limited by the narrow

nature of cognitive tasks employed (i.e., Attentional Network Task or simple motor sequence

tasks [10,17,18]), which fail to explore how mindfulness may enhance performance in more

naturalistic environments. Secondly, mindfulness regimes are typically of considerable dura-

tion [5] and investigations largely employ a between-groups approach, ignoring the individual

variability in intervention outcomes [19]. Lastly, while frameworks have been developed

regarding the underlying theoretical (e.g. through the fractioned model of executive function-

ing [11,20]) and neurobiological mechanisms of mindfulness (i.e., changes to anterior cingu-

late cortex, functional connectivity and inhibitory neurotransmitters [21,22]), there has been

little investigation into how mindfulness may relate to long-term neural changes in resting-

state electrophysiology. The current study thus aimed to implement a short-term mindfulness

intervention to investigate performance enhancements in more multidimensional and

dynamic settings (i.e., a medium-fidelity submarine simulation; the Target Motion Analysis

task [23]), while also recognising the role of individual factors (i.e., differences in adherence,

trait mindfulness, personality and resting-state neurophysiology).

Mindfulness and cognitive function

Although mindfulness interventions have predominantly been employed within the realm of

well-being and mental health, recent research has started to reveal its broader effects on cognitive

functioning and performance [5–8]. Notably, performance enhancements have been demon-

strated in a range of traditional cognitive tests including the Attentional Network Test [10,17], the

Symbol Digit Modalities Test [24], Stroop Test [25] and in sequenced motor tasks [18,26]. These

mindfulness interventions also do not need to be extensive or lengthy to produce significant

results, highlighting their propensity to be an easily accessible cognitive training tool. Even engag-

ing in very brief interventions (20 minutes each day for four days) improve visuo-spatial process-

ing, working memory and executive functioning [24] and a single session of focused attention

monitoring immediately prior to learning can improve consolidation of motor patterns [18,27].

Similar brief pre-test engagement in mindfulness techniques have reduced inattentional blindness

[28], improved Stroop Test scores [29], increased flanker task performance [30] and working

memory ability [31]. Overall, reviews in this area have concluded that practicing mindfulness is

associated with gains in the domains of executive functioning [5,32,33] and working memory

[34] that underlie generalised and transferable improvements in other cognitive functions. From

a theoretical perspective, these enhancements are thought to arise from mindfulness practice’s

influence on two domains of executive attention: the inhibition of irrelevant information and

improved attentional shifting [11]. Even with large heterogeneity in interventions, engaging in

some type of mindfulness practice (whether short-term, longer term or single session modalities)

appears to be beneficial to cognitive functioning.
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Nevertheless, reviews of this literature have also reported non-significant effects of mindful-

ness training for attention and several forms of memory [8,33], while cautioning the lack of

high quality evidence available [5]. Previous studies are further limited by their examination of

mindfulness-based cognitive enhancements using traditional laboratory tasks, which do not

address the more complex and dynamic nature of optimal performance in the real-world.

Moreover, we note that the extant literature typically employs a between-groups approach,

with a common prescribed number of sessions or session duration across the experimental

group. These studies fail to capture the potential effect of volume of mindfulness training, as

well as how individual factors may influence adherence to the training regime or reported per-

formance outcomes. In addition to this, the timing of adherence or engagement in cognitive

training sessions may play a role in derived benefits; that is, whether sessions are performed

closer to the pre or post-intervention testing sessions. Here, such investigation could help to

differentiate whether mindfulness-based training might be more beneficial as a ‘consolidation’

practice (e.g., helps to improve memory of the task instructions from the first session, theo-

rised by Brown et al. [35]) versus an attentional/state enhancing tool (e.g., helps to create an

optimal attention state for task performance in the second session; as demonstrated by single

session, brief training enhancements [18,28,31,36]). The consideration of this individual vari-

ability in adherence, alongside participant characteristics, may help to explain the inconsisten-

cies in previously reported results.

Individual factors

A recent review by Tang and Braver [19] underscores the importance of adopting this individ-

ual differences perspective in mindfulness training research to help elucidate incongruencies

in past studies. Here, they emphasise how dispositional traits are commonly reported modera-

tors of intervention effects within clinical psychotherapies [37,38] and thus also require con-

sideration within the investigation of mindfulness-based regimes.

In particular, levels of dispositional (or trait) mindfulness refer to intra-individual differ-

ences in the frequency with which individuals experience subjective awareness to the present

moment (i.e., frequency of ‘mindful states’ [39], which has been shown to interact with out-

comes of mindfulness-based interventions in depression [40] and within cognitive testing con-

texts [41]. Moreover, trait mindfulness has been shown to positively correlate with self-

reported attentional capacity [42], suggesting that it is a necessary consideration within investi-

gations of cognitive performance.

Additionally, researchers have highlighted that personality traits, such as the Big 5 [43],

should also be recognised within this context. Notably, conscientiousness and neuroticism are

often associated with facets of mindfulness [19,44–46]. Neuroticism can act as a potential bar-

rier to intervention adherence [47], but, Tang and Braver [19] also note that those with high

baseline neuroticism may demonstrate a greater propensity for beneficial outcomes from

mindfulness interventions. Conscientiousness, on the other hand, can be a facilitator of inter-

vention adherence [48,49]. Consistently, both neuroticism and conscientiousness are also

known to demonstrate correlations (negative and positive, respectively) with measures of dis-

positional mindfulness [44–46]. These studies suggest there are intricate interrelationships

between these personality constructs and mindfulness, highlighting the need for their consid-

eration within experimental contexts.

Neurophysiology of mindfulness

In addition to trait mindfulness and personality variability, individual neural differences may

also influence outcomes from mindfulness training interventions. The neuroscientific
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exploration of mindfulness has primarily focused on the investigation of on-task (or evoked)

neural dynamics, with previous literature demonstrating that practicing mindfulness medita-

tion is most consistently associated with increases in power across both alpha and theta fre-

quency bands (see [50,51] for review). However, emerging research is beginning to establish

that brain activity at rest may provide insights into the brain’s functional capacity and high-

light individual differences in information processing and performance capabilities [52–54].

While resting-state activity is often explored in the context of neurological disorder or dys-

function (e.g., [55–59]), it has also been investigated in relation to peak cognitive performance

[60–64] and thus may be able to provide insights into salutary neuroplastic changes from

mindfulness practice.

Two resting-state characteristics of electroencephalography (EEG) recordings that have

been associated with cognitive functioning and performance include aperiodic 1/f activity

[60,63–66] and the individual alpha frequency (IAF) [62,67,68]. IAF refers to the frequency

(Hz) of maximal neural power (uV) within the alpha band range (7.5–12.5Hz [69]). IAF is typ-

ically estimated during an eyes-closed resting state and has been found to positively correlate

with IQ [62], visuo-perceptual ability [68,70,71] and memory performance [67,72]. More

recent findings are demonstrating that IAF might not simply represent enhanced global cogni-

tion, but may indicate individual differences in information processing strategies [73,74]. Pre-

vious work has also demonstrated that higher IAF at rest is associated with faster adaptation to

complex and dynamic tasks [61]. While oscillatory analyses of EEG during meditation have

commonly demonstrated increases in alpha power overall [50,75], studies of IAF in particular

have shown that experienced meditators exhibit lower IAF during meditation [76,77]. How-

ever, whether these changes persist long-term (altering the resting-state) and how they relate

to enduring cognitive benefits is unknown.

Secondly, aperiodic 1/f-like activity refers to scale-free brain dynamics that have tradition-

ally been ignored or treated as a nuisance variable in electrophysiological analyses [60,78,79].

Aperiodic 1/f activity presents as a distinguishable quasi-straight line that can be observed

when the EEG signal is transformed into its power spectral density [60,78,80]. Steeper slopes

in this line during rest have been associated with increased performance on object recognition

tasks [64], working memory tasks [60] and visuomotor tasks [63], as well as faster adaptation

to novel language input [81]. However, flatter 1/f slopes have also been associated with

increased performance in memory tasks [82] and during learning in more complex and

dynamic settings [61,65]. More generally, aperiodic 1/f activity is largely thought to reflect the

excitation/inhibition balance within neural networks [83,84]. This notion has been supported

by studies exploring the influence of alcohol [85], propofol [86], sleep [79,87] and psychiatric

disorders [58,59,88] on the 1/f slope. In the context of cognitive performance, it is thought that

an optimal balance between excitation and inhibition is associated with peak cognitive func-

tioning [10,61,63].

From a physiological perspective, a review of the neurobiological correlates of meditation

suggest that it largely influences inhibitory mechanisms in the brain [21,89,90]. Therefore, as

aperiodic activity is thought to reflect the excitation/inhibition balance in the brain [83,84], it

is possible that steeper 1/f slopes may be observed long-term following brief/sustained mind-

fulness practice. Consistent with this notion, meditation interventions have been successfully

employed in the prevention of age-related declines in cognition [91,92], suggesting that medi-

tation may impede age-related flattening of the 1/f slope [93]. However, other EEG studies

during meditation suggest contrasting effects of meditation on the 1/f slope, with global power

increases across all frequency bands from pre-to-post meditation [94], significant differences

in delta and gamma between experienced meditators and novices [95] and long-term practi-

tioners of meditation exhibiting increased gamma power, when compared to those who are
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inexperienced [96]. One study specifically aiming to investigate 1/f dynamics in meditation

reported that experienced meditators showed steeper slopes during mindfulness practice com-

pared to when resting [76]. These mixed results call for further examination of both in-task

EEG dynamics of mindfulness practice, but also how these changes might persist long-term

and directly relate to cognitive functioning. Additionally, individual variability in resting-state

metrics could alternatively distinguish those with neural profiles most likely to optimally

engage in mindfulness practices and derive cognitive benefits.

The current study

In summary, previous work has demonstrated cognitive enhancement from mindfulness

training. However, findings have not been entirely straight-forward, suggesting that unac-

counted factors (e.g., levels of adherence and individual factors) might moderate these effects.

The current study therefore aims to investigate adherence to mindfulness-based cognitive

training and individual differences, alongside performance-based enhancements in cognition,

in the effort to provide more clarity to the findings. Another issue in this literature is that dem-

onstrated performance enhancements from mindfulness training have been limited to more

one-dimensional cognitive tasks (i.e., Stroop Test, Trail Making Tests, Digit Span, Attentional

Network Task [5,8,11,97]), which raises questions about the extent to which cognitive gains

from mindfulness training transfer to multifaceted, mutable tasks that are more representative

of real-world performance situations. As such, the current study aims to extend these findings

and assess the transferability of this cognitive training regime to more complex and dynamic

environments using the Target Motion Analysis (TMA) task from the Control Room Use Sim-

ulation Environment (CRUSE [23]). The TMA task mimics the computerised console of a tar-

get motion analyst (responsible for estimating the movement of surrounding ships) within a

submarine control room. Here, individuals must integrate multiple sources of information,

while prioritising and continuously monitoring surrounding vessels (contacts) to perform

well. Given the evidence that even brief interventions have been shown to induce performance

enhancements [18,24], the current study will implement a one-week mindfulness intervention.

Furthermore, to explore the accessibility of the intervention, the experiment will involve par-

ticipants who are new to mindfulness practice. Previous research has demonstrated that even

individuals who are meditation naïve can display cognitive benefits from mindfulness tech-

niques and exhibit changes in electrophysiology [18,24,51,94]. Here, we used adherence to the

mindfulness intervention as a continuous dependent variable. In this case, the study hopes to

better capture how true engagement in the mindfulness practices (not just group assignment;

and often, varied compliance), relates to performance enhancements.

We hypothesised that (A) performance enhancements in the TMA task from the pre- to

post-training sessions will be predicted by adherence to mindfulness sessions (whereby

improvements positively correlate with adherence). Here, we expect to see that augmentations

in performance will be differentially influenced by self-reported enjoyment and individual

timing of adherence (i.e., whether density of training is completed closer to the first or second

testing session), allowing us to theorise about underlying mechanisms of mindfulness

enhancements to performance. As an additional exploratory analysis, motivated by findings in

Brown et al. [35]—where post-training mindfulness expedited wakeful consolidation of motor

sequences—we examined how adherence to the training protocol prior to sleep might influ-

ence its direct effects on performance, irrespective of total overall volume.

Secondly, we hypothesised that (B) individual factors (dispositional mindfulness, conscien-

tiousness, neuroticism and resting-state neural metrics) will interact with benefits gained from

the mindfulness intervention. In particular, we predicted that initial levels of dispositional
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mindfulness would interact with benefits gained from the mindfulness-based cognitive train-

ing regime. Higher levels of neuroticism, and lower levels of conscientiousness, should be neg-

atively related to adherence. Further, resting-state metrics may provide insight into individual

capacity to optimally engage in mindfulness practices (and thus derive benefits), or could help

to track neural changes (associated with improved performance) following mindfulness inter-

ventions. Thus, in line with majority of findings in the performance literature–alongside in

meditation-related studies—we expect to observe steeper 1/f slopes in individuals, in compari-

son to pre-intervention measures, following the mindfulness intervention.

Method

Participants

Forty-two adults (Mage = 23.43, range: 18–38, females = 28) volunteered to participate in the

current study. To participate, individuals were screened and must have reported no history of

neurological, cognitive, psychiatric or language disorders. All participants were right-handed,

with normal to corrected-to-normal vision, and were not taking any medications that may

affect EEG. Participants also had no experience with formal cognitive training or mindfulness

programs. As to not bias participant recruitment and expectations, advertising materials did

not reference mindfulness or meditation [98,99]. Ethics approval was acquired from the Uni-

versity of South Australia’s ethics committee (project no. 204054) prior to the commencement

of data collection. Recruitment ran from 19th August 2021 to 25th January 2023. Participants

received an honorarium of AUD$120. Two participants’ data were removed due to withdraw-

ing from the study. Consequently, data from forty eligible participants were used in the final

analysis (Mage = 23.50, range: 18–38, females = 26).

Mindfulness Attention Awareness Scale (MAAS)

Participants completed the Mindfulness Attention Awareness scale [39] through an online sur-

vey accessible through Qualtrics [100]. This scale includes 15-items that measure levels of dis-

positional (trait) mindfulness. Here, participants respond to how frequently they have

experienced certain events using a 6-point Likert scale (“Almost Always” to “Almost Never”).

For example, “I rush through activities without being really attentive to them”. Individual

MAAS scores are calculated by summing responses (where “Almost Always” = 0, and “Almost

Never” = 6), with higher scores relating to higher levels of dispositional mindfulness.

Personality questionnaire

To investigate how individual personality factors may play a role in outcomes of mindfulness

interventions, participants completed a brief personality questionnaire on Qualtrics [100]

prior to visiting the lab. Questions originated from the short-form International Personality

Item Pool (IPIP; [101–103]) and aimed to target the two Big 5 [43] traits of interest (neuroti-

cism and conscientiousness). Participants are prompted to view a list of statements “that cap-

ture who you are as a person.” For each trait, 8 items are presented in the form of statements

(e.g., “I like to follow rules strictly”) where participants respond on a 5-point Likert scale from

“Strongly Disagree” to “Strongly Agree”. Individual participant scores for each trait are calcu-

lated by summing the responses (where “Strongly Agree” = 5 and “Strongly Disagree = 1) and

reverse scoring respective items as necessary. Higher scores are related to higher levels of the

specified trait. To ensure that participants responded to all items within the questionnaire, we

enforced a force-choice paradigm, in which the next question was only presented once the

prior section was answered.
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Mindfulness-based cognitive training intervention

A web-browser based online mindfulness-training program was implemented through short

audio recordings voiced by an experienced mindfulness instructor (based on mindfulness

techniques previously used in research [35,104,105]). Seven distinct audio tracks (approxi-

mately 5 minutes in length) were recorded for the current study. All transcripts and audio

recordings can be accessed by the Open Science Framework (OSF) repository here: https://osf.

io/y9hvt/. These recordings guided participants through a variety of focused attention and

open monitoring mindfulness practices (for full descriptions of these techniques, see [2,106]),

using cues such as “direct your attention to your breath”. Audio recordings on day 1 and day 2

involved observing and focusing on breathing or the body, while day 3 expanded to sequen-

tially moving attention across the entire body (in the style of focused attention meditations).

Day 4, 5 and 6 comprised of focusing attention on observing and counting the breath but

began to introduce concepts of open monitoring meditations (i.e., observing when distractions

arise). Audio recordings for days 6 and 7 gradually instructed more open monitoring tech-

niques, where attention was expanded to noticing thoughts and non-judgmentally experienc-

ing external surroundings.

Participants were able to access the audio recordings through their web-browser directed to

an online repository hosted on GitHub Pages (GitHub Inc., 2021; accessible at https://github.

com/chloeadee/cognitivetraining). Each recording was accessed individually on a daily basis

based on the layout of the webpage. HTML code for the webpage was produced using RMark-
down in R [107]. Instructions on the webpage encouraged participants to engage in the brief

mindfulness sessions three times per day; preferably in separate sessions (i.e., three exposures

to the same 5 minute recording; for a total of 15 minutes each day). Following their last session

each day, the website prompted participants to complete a ‘post-training’ questionnaire about

their experience and how many times they were able to partake in the sessions (see post-train-

ing survey below). Unbeknownst to participants, training adherence was additionally tracked

using Google Analytics and Google Tag Manager (Google Inc., 2021). Tracking metrics

recorded when and how many times participants accessed the site’s various pages and comple-

tion of a mindfulness session was counted when audio tracks were played for> 90% of their

duration. These objective metrics were used to identify individual participant adherence.

Post-training survey

To assess how individual preferences for mindfulness may influence outcomes, participants

were encouraged to complete a post-training survey following their final mindfulness session

each day. This survey aimed to capture which day of training they had fulfilled (1–7) and how

many sessions were completed (0–3), alongside measurements of how participants felt during

their exercises. Here, participants were instructed to place a moving slider from 0 (not at all) to

100 (very) in response to statements about their mindfulness session. For example, items

included “You felt calm during the exercise” and “You felt energised after the sessions.” For

the current study, we focused on item 6 (“You enjoyed the exercises”) to explore how individ-

ual participant preference for the intervention may predict cognitive outcomes. For each par-

ticipant, an average enjoyment score was calculated from the seven days of responses. We note

that some participants did not always engage in their prescribed mindfulness session (or com-

plete their surveys) and thus scores were created from any potential responses provided (range

1–9 responses; three participants provided more than one response per day, resulting in a max-

imum of 9 responses).
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Control-room-use-simulation environment

To investigate performance in a more dynamic setting, we used the dual-screen Target Motion

Analysis (TMA) task from within the Control Room Use Simulation Environment (CRUSE)

[23]. CRUSE is a medium-fidelity simulation involving multiple operator stations that mimic

the roles of individual submariners. The aim of the TMA operator within CRUSE is to create a

‘tactical picture’ of the surrounding vessels (known as contacts) by integrating multiple sources

of sensor information (see Fig 1 for a schematic of a participant engaging in the TMA task).

Participants must combine information from SONAR, optronics and the Track Manager to

develop a ‘solution’ (an estimate of location and movement) for each surrounding contact (for

a detailed description of the task see [61]). Performance can be measured by the accuracy of

plotted solutions (known as the tactical picture error; TPE). TPE is a measure of the distance

between the coordinates of plotted solutions and the simulation’s objective truth of the sur-

rounding environment. The metric is weighted by a contact’s priority (i.e., fishing vessel or

warship), course, range and behaviour (see [23]) and is logged every twenty seconds. Here,

lower TPE signifies better performance. The simulations default solutions were included in the

Fig 1. Schematic of the TMA simulation. This figure depicts a participant engaging in the dual-screen TMA task

within CRUSE. On the left monitor, participants are presented with a geoplot of their submarine, their trial tote (for

adjusting contact parameters and setting new solutions) and current plotted solutions. On the right monitor,

participants can view the dot stacks and compare their parameters with information received from SONAR, to assess

the accuracy of their current solutions. For a more detailed diagram of the TMA task, please see [61].

https://doi.org/10.1371/journal.pone.0292501.g001
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initial calculation of TPE (with all participants beginning with a score of 17,500). Three scenar-

ios were created for current study; (1) a practice scenario (involving two contacts with simple

movement), (2) a pre- and (3) a post-training scenario. Both pre- and post-training scenarios

included five contacts (with more erratic movement) and were reflections and inversions of

each other, for comparable difficulty.

Protocol

Researchers were contacted by potential volunteers. After ensuring eligibility through an

online screening process, participants were provided access to an educational video about

TMA and a quiz to ensure they understood the general components of the task. Participants

were then invited to the Cognitive Neuroscience Laboratory at the University of South Austra-

lia’s Magill campus for a pre-intervention testing session. On the day of their visit, participants

provided written consent to participate and completed two minutes of resting state EEG

recordings with eyes closed, following their cap fitting. Participants then engaged in the prac-

tice scenario of the TMA task (approximately 30 minutes in length) where they were provided

instructions by the researcher (for the practice session script, please see the S1 File). Here, par-

ticipants could ask questions and clarify the instructions. Following the practice scenario, par-

ticipants engaged in the 40-minute testing scenario (of increased difficulty) without researcher

feedback.

Following their pre-intervention testing session, participants were provided access to the

mindfulness-based training exercises through email. Participants were encouraged to partici-

pate in the exercises three times per day (for a total of 15 minutes each day). After seven days,

participants were invited to a second testing session in the laboratory. Here, they were fitted

with an EEG cap, completed a second resting-state recording (eyes closed; two minutes in

length) and completed a subsequent 40-minute testing scenario of the TMA task. No further

practice was included in the second in-lab visit. The order of presentation of the two testing

scenarios was randomised across participants.

Data analysis

EEG recording and pre-processing

Electrophysiological metrics were calculated from two minutes of EEG recorded at rest. EEG

was recorded from 32 Ag/AgCl electrodes mounted in an elastic cap (actiCAP, Brain Products

GmbH, Gilching, Germany). Eye blinks were monitored with electrode pairs placed above/

below the left eye. Channels were amplified using a LiveAmp 32 amplifier (Brain Products,

GmbH) and sampled at a rate of 1000 Hz. Impedances were kept below 10kO. Pre-processing

and analysis of EEG data was performed using MNE-python [108]. Raw data were band-pass-

filtered from 1 to 40 Hz (zero-phase, hamming windowed finite impulse response) and re-ref-

erenced to the average of left and right mastoid electrodes (TP9/TP10). Data were also resam-

pled to 250 Hz.

Individual alpha frequency & 1/f estimation

Individual alpha frequency (IAF) was calculated in line with procedures outlined in Corcoran

et al. [109]. IAF was calculated from seven occipital-parietal electrodes (P3/P4/O1/Oz/O2/P7/

P8) using philistine.mne.savgol_iaf [110] in MNE-Python [108]. These electrodes were chosen

as the individual alpha peak is most predominantly discernible across these areas. This method

uses a Savitzky-Golay filter (frame length = 11 frequency bins, polynomial degree = 5 [111]) to

smooth the power spectral density (PSD) before determining the peak of activity within the
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defined frequency range (in this case, 7–13 Hz). Here, PSD estimates are gathered from fast

Fourier-transformed EEG signals. This method calculates IAF using both Peak Alpha (PAF)

and Centre of Gravity (CoG) techniques. For a full description of the technique, see [109].

Aperiodic 1/f activity was separated from oscillatory activity in resting-state recordings

using the irregular-resampling auto-spectral analysis method (IRASA) [112] implemented in

the YASA toolbox [113] in MNE-Python. This method distinguishes the aperiodic component

of EEG signals from narrowband signals through a process of resampling, providing both a

slope and intercept value. The slope and intercept refer to the respective metrics gathered from

a regression line fitted to the estimated aperiodic signal (see Fig 2 for an example).

Statistical analysis

R version 4.2.0 [107] was used to perform statistical analyses with the following packages: tidy-
verse v.1.3.1 [114], lme4 v.1.1.29 [115], car v.3.0.13 [116], splines v. 4.0.2 [115]. Model fits were

examined using the performance package v.0.9.0 [117]. LmerOut v.0.5.1 [118] was used to pro-

duce model output tables. To extract modelled effects and visualise data, ggplot2 v.3.3.0 [119],

ggeffects v.1.1.2 [120] and ggpubr v0.4.0 [121] were used.

Linear mixed effect models fit by restricted maximum likelihood (REML) estimates were

used to test hypotheses (consistent with the approach in [61]). Models took the following gen-

eral form:

TPEi ¼ b0 þ b1 timei∗b2 adherencei∗b3 measureþ b4 baseline TPEi þ b5 declinei þ subject0i þ ε;

Here, time relates to sequential twenty second epochs recorded across the experiment and

adherence denotes the number of cognitive training sessions completed. Baseline TPE was

included to account for individual differences in baseline performance (during the first testing

Fig 2. Example schematic of aperiodic (1/f) and oscillatory activity in the raw EEG trace (mixed signal). The EEG components of interest are

indicated in the legend. Here, the y-axis specifies log-transformed power (i.e., strength of neural activity; higher values indicate greater activity)

while frequency (Hz, cycles per second) is represented on the x-axis (values further to the right indicate higher frequency). Note the clear spectral

peak in the 10Hz range (representing individual alpha frequency; denoted by a blue circle) and 1/f-like pattern (demonstrated by the green dashed

line).

https://doi.org/10.1371/journal.pone.0292501.g002
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session of the TMA task) and subject was specified as a random effect on the intercept. Mea-
sure refers to the respective neural or personality measure of interest within each model (e.g.,

MAAS scores or IAF). Decline refers to individual participants slopes in the TPE metric to

account for changes in performance within the first 500 seconds (which were highly correlated

across all participants; see examples of individual participant data in [61]). Smoothing splines

were added to Time in each model, to allow for fitted values to capture non-linear trends in the

data (see [122] for an overview of the spline function). Asterisks indicate interaction terms,

including all subordinate main effects; pluses denote additive terms. TPE was specified as the

outcome variable. Within our models, categorical factors were sum-to-zero encoded [123],

allowing for the directionality of effects to be examined through visualisation [124]. An 83%

confidence interval (CI) threshold was used as this corresponds to the 5% significance level

with non-overlapping estimates [125,126]. P-value estimates were calculated using Type II

Wald χ2-tests from the car package [116]. Simple linear regressions were also used to deter-

mine how changes in individual neural metrics related to adherence to cognitive training.

Results

On average, data recorded on Google Analytics demonstrated that participants completed a

total of 9.8 mindfulness sessions across the one-week period (SD = 6.98, range = 0–21), with a

mean number of 1.47 session per day. A linear regression demonstrated that the average num-

ber of sessions completed across all participants increased by 0.045 each day. Overall, partici-

pants had lower TPE scores (thus superior performance) in the post-meditation (MTPE = 6987,

SD = 2450, range = 2171–11532) than the pre-meditation session (MTPE = 5515, SD = 2383,

range = 2427–11287; see Fig 4B). While, on average, participants performed better in their sec-

ond (post-meditation) session, individual participant data demonstrated that practice effects

were not consistent, and some participants performed more poorly in the second than the first

session (see individual data points; Fig 4A). For full descriptive statistics of all individual-level

variables of interest, see Table 1. Internal consistency of MAAS responses within the current

sample was α = 0.89. For correlations between all experimental variables of interest, see Fig 3.

Resting-state neural metrics

Fig 4 demonstrates changes in neural metrics (IAF and 1/f slope and intercept) between the

first (pre-meditation) and second (post-meditation) sessions. Fig 5 shows the average neural

metrics for each session, by topography. We note that these distributions are similar to com-

parative samples observed within the literature [61,69,128,129]. For all neural metrics, mean

values were consistent (within two decimal points on average) between testing sessions. In the

first session, the average IAF was 9.93Hz (SD = 0.67, range = 8.75–11.5), compared to the sec-

ond session, where the average recorded IAF was 9.94 Hz (SD = 0.58, range = 8.75–11). The

mean 1/f slope for the first session was -1.02 (SD = 0.34, range = -1.75–-0.22) while for the sec-

ond session, the average slope was -1.05 (SD = 0.3, range = -1.57 –-0.38). For the 1/f intercept,

Table 1. Means, standard deviations and range of individual-level variables of interest.

Mean (SD) Min Max

Mindfulness Attention Awareness Scale 3.44 (0.83) 1.75 5.42

Conscientiousness 29.86 (5.45) 12 40

Neuroticism 19.70 (3.64) 12 27

Enjoyment 71.53 (17.67) 29.14 100

https://doi.org/10.1371/journal.pone.0292501.t001
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the average recorded value in the first session was -25.11 (SD = 0.81, range = -26.55–-23.56)

and -25 for the second session (SD = 0.78, range = -26.51–-23.22).

For aperiodic 1/f activity, linear regressions demonstrated that levels of adherence to cogni-

tive training did not predict individual resting-state metrics in the second session, when con-

trolling for baseline metrics gathered from the first session. The regression predicting post-1/f
slope from initial 1/f slope and levels of adherence to training was statistically significant (R2 =

0.53, F(37) = 21.17, p< 0.001). However, the only significant predictor of the second 1/f slope

was initial 1/f slope (β = 0.65, p< 0.001). This was also the case for the 1/f intercept (R2 = 0.58,

F(37) = 25.61, p< 0.001) with initial intercept significantly predicting post-intervention 1/f
intercept (β = 0.75, p< 0.001). For IAF, a significant linear regression (R2 = 0.82, F(37) =

83.56, p< 0.001) demonstrated that adherence to cognitive training was predictive of second

session IAF (β = -0.016, p< 0.05), alongside initial IAF (β = 0.77, p< 0.001). We note that this

was only a small coefficient (see model outputs in S2 File).

Fig 3. Relationship between cognitive, personality and neural metrics of interest. Here, IAF denotes individual alpha

frequency, MAAS indicates Mindfulness Attention Awareness Scale scores and TPE is tactical picture error (i.e.,

performance). Adherence denotes adherence to the cognitive training intervention. Correlogram illustrates the correlation

coefficients between each of the metrics of interest. Negative (blue) values indicate a negative association, while positive

(green) values indicate a positive association. Values denote Pearson’s r coefficients. Note that statistically significant

associations are denoted with a * (p< 0.001). Plot created using the corrplot package [127].

https://doi.org/10.1371/journal.pone.0292501.g003
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Modelling adherence to cognitive training to predict performance

The first model aimed to determine whether adherence to cognitive training was associated

with performance in the post-intervention testing session. Here, we found that TPE in the sec-

ond session was modulated by the cubic Time term and cognitive training (χ2 (4) = 121.33,

p< .001), where greater adherence to cognitive training was related to lower TPE (better per-

formance) in the second testing session. This effect was more pronounced at later time points

(see Fig 6A). All model outputs are presented in S3 File.

Timing of intervention (skew analysis). To assess whether the timing of individual

adherence to the mindfulness-based cognitive training program was related to second session

TPE scores, we calculated individual skew for each participants’ adherence across the seven

days. This measure aimed to capture whether individual participant adherence was positively

skewed (i.e., they completed a higher density of training sessions closer to the first lab visit) or

negatively skewed (i.e., they completed a higher density of training sessions closer to the sec-

ond lab visit). Skew metrics were calculated while controlling for individual participant means

to avoid the interpretability issues with skew values close to zero (i.e., a skew of zero does not

distinguish those who have consistent strict adherence versus consistent low adherence). In

this case, we used skew measures derived according to the method proposed by Sinha et al.

Fig 4. Boxplots of mean metrics for tactical picture error (A), individual alpha frequency (peak alpha frequency; (C) and centre of gravity; D), 1/f slope (E) and

1/f intercept (F). Here, metrics measured in the pre-meditation session (1) are shown in blue, and metrics measured post-meditation intervention are shown in

green. Individual data points represent individual participant values. Horizontal lines join participant values from the first (pre-meditation) to second (post-

meditation) sessions. Plot (B) demonstrates the mean tactical picture error across experimental time, collapsed across all participants.

https://doi.org/10.1371/journal.pone.0292501.g004
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[131]. For the current sample, individual participant cognitive training adherence had, on

average, a skew of 0.19 (SD = 0.96, range = -1.62–1.62). When modelling skew as a predictor

of TPE across time (controlling for baseline performance, decline, and individual participant

variation), we observed a significant interaction of Time, cognitive training adherence and

skew (χ2 (4) = 25.25, p< .001). Here, we found that negative skew (late adherence) was related

to larger effects of levels of adherence, where greater adherence was related to superior perfor-

mance. For positive skew (early adherence), levels of adherence did not differentiate perfor-

mance as noticeably. However, collapsing across total levels of adherence, the model suggests

that early adherence was related to superior TPE scores, when compared to late adherence. See

Fig 6B for visualisations of the modelled data.

To further analyse whether mindfulness prior to participants’ first sleep was influential in

predicting outcomes, we also coded individual participants as 1 and 0 (depending on if they

engaged in mindfulness prior to first sleep or not) and included this factor into the model. In

the current study, there were 22 participants who completed at least one mindfulness session

prior to their first sleep (i.e., on the first day of training), while 18 participants did not engage

in any sessions until the second day of the intervention. We found that training prior to first

sleep did significantly predict outcomes (Time x Adherence x Prior Sleep (χ2 (4) = 36.57, p<
.001), but did not change the overall pattern (where greater adherence was related to superior

performance for most time points). Here, results demonstrated that lower levels of adherence

to the cognitive training were still related to better performance (when compared to low levels;

starting after the first day) if mindfulness exercises were completed on the first day, prior to a

participant’s first sleep. See Fig 6C for modelled effects.

Enjoyment. To assess whether self-reported enjoyment of the mindfulness-based cogni-

tive training exercises influences cognitive training outcomes, we created an average enjoy-

ment score for each participant across all seven days. The model predicting TPE from levels of

adherence alongside enjoyment demonstrated a significant interaction of Time, cognitive

training adherence and enjoyment (χ2 (4) = 80.59, p< .001). Here, we observed that higher

levels of enjoyment were related to more distinguished effects of levels of adherence. At lower

Fig 5. Topoplots demonstrating average neural metrics across sessions (pre- and post-mindfulness training intervention). Changes in aperiodic 1/f
activity (1/f slope and intercept) are shown on the left, while changes in individual alpha frequency (both Peak Alpha Frequency and Centre of Gravity) are

shown on the right. Dark blue indicates lower values, while lighter green indicates higher values. Plots created using the eegUtils [130] package in R.

https://doi.org/10.1371/journal.pone.0292501.g005

PLOS ONE Mindfulness as cognitive training

PLOS ONE | https://doi.org/10.1371/journal.pone.0292501 May 20, 2024 14 / 30

https://doi.org/10.1371/journal.pone.0292501.g005
https://doi.org/10.1371/journal.pone.0292501


levels of enjoyment, data suggested that individuals demonstrated superior performance

(when collapsing across levels of adherence), when compared to greater levels of enjoyment.

See Fig 6D for modelled effects.

MAAS scores. To investigate whether levels of dispositional mindfulness modulated the

effects of cognitive training, we modelled TPE against MAAS scores. Modelling revealed a sig-

nificant interaction between Time, MAAS scores and adherence to cognitive training (χ2 (4) =

99.06, p< .001), whereby the differential effects of cognitive training were more pronounced

in lower/moderate levels of dispositional mindfulness (i.e., greater adherence was associated

with better performance), but higher MAAS scores were related to lower TPE scores when col-

lapsed across adherence. See Fig 7A for modelled effects.

Personality traits. We modelled the effects of individual levels of conscientiousness and

neuroticism to determine how personality may interact with benefits gained from mindful-

ness-based cognitive training interventions. Here, we observed a significant interaction of

Time, cognitive training adherence, neuroticism and conscientiousness (χ2 (4) = 131.73,

Fig 6. Modelled effects of (A) cognitive training adherence, (B) timing of adherence (skew), (C) prior sleep and (D) enjoyment on TPE. TPE is represented on the y-axis

(higher scores indicate poorer performance), while experimental time is represented on the x-axis. Colours indicate varying levels of adherence to the cognitive training

intervention (beige indicates high levels of adherence, green for moderate and blue for low adherence). Facets represent varying levels of variables of interest. Differences

in factors are categorised as low, moderate and high based on the sample’s first quartile, median and third quartile, respectively. Statistical models included these

predictors as continuous variables, however, categories were created for visualisation purposes. For comparative purposes, we note that as a general ‘practice effect’ (i.e.,

model predicted values when adherence = 0), participants demonstrate an average TPE of 5541 across experimental time.

https://doi.org/10.1371/journal.pone.0292501.g006
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p< .001). While a significant effect was reported, visualisations demonstrated only very subtle

effects of these variables, with the overarching pattern (greater adherence associated with supe-

rior scores) still evident across all levels of personality metrics. We note that this model pro-

vided the best model fit (see Table 2 for model fit comparison), however all models

demonstrated R2 values of>.69 indicating good fit overall. See S1 Fig for modelled effects of

personality traits.

Overall, these findings suggest that the most prevalent factor predicting second session per-

formance was the level of adherence (i.e., number of sessions). While models demonstrated

small nuances of individual factors (MAAS, personality, enjoyment), higher adherence was

consistently related to better performance. Notably, our models demonstrated that timing of

adherence did exert influence on TPE scores, with early adherence, especially prior to a partici-

pant’s first sleep, associated with greater performance outcomes irrespective of total volume of

training.

Neural metrics. Next, we investigated whether resting-state neural metrics interact with

the effect of cognitive training. The model of IAF demonstrated a significant interaction of the

Fig 7. Modelled effects and interactions of cognitive training adherence with (A) mindfulness attention awareness scores, (B) individual alpha frequency, (C) 1/f slope

and (D) 1/f intercept. TPE is represented on the y-axis (higher scores indicate worse performance), while experimental time is represented on the x-axis. Colours indicate

varying levels of adherence to the cognitive training intervention (beige indicates high levels of adherence, green for moderate and blue for low adherence). Facets

represent varying levels of neural metrics. Differences in neural metrics are categorised as low, medium, and high or steep, moderate and flatter based on the first quartile,

median and third quartile, respectively. Statistical models included these predictors as continuous variables, however, categories were created for visualisation purposes.

https://doi.org/10.1371/journal.pone.0292501.g007
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cubic Time term, initial IAF and adherence to cognitive training (χ2 (4) = 137.74, p< .001).

Across all levels of IAF, there was a consistent pattern of improved performance with higher

levels of adherence to the cognitive training regime. For lower levels of IAF, however, perfor-

mance was more similar across levels of adherence, when compared to moderate and high,

particularly within the first half of the testing session (see Fig 7B). Additionally, collapsing

across levels of adherence, performance for those with lower IAF appears to be better overall

when compared to those with higher IAF.

For the 1/f slope, we found a significant interaction of Time, pre-intervention 1/f slope and

adherence to cognitive training on performance in the TMA task (χ2 (4) = 50.26, p< .001).

These results showed that greater adherence to cognitive training was consistently associated

with greater performance across all levels of the 1/f slope. However, these differences were more

pronounced for flatter 1/f slopes, in comparison to steep and moderate slopes (see Fig 7C).

Lastly, we modelled the relationship between 1/f intercept and performance on the TMA

task, noting a significant interaction between Time, pre-intervention 1/f intercept and adher-

ence to cognitive training (χ2 (4) = 60.71, p< .001). Here, we observed that superior perfor-

mance related to adherence to the cognitive training regime was most distinguishable in

higher 1/f intercepts. However, for lower intercepts, performance appeared to converge most

consistently across time.

Overall, our findings indicated that individual levels of resting-state neural metrics did not

interact with the effects of mindfulness-based training (whereby, for most, stricter adherence

was consistently related to better performance). These results highlight the potential generali-

sability of mindfulness-based training. However, we note there were subtleties in the magni-

tude of this effect, with some levels of neural metrics (lower IAF and higher 1/f intercept)

related to less distinguishable performance outcomes associated with less adherence. For these

groups, performance appeared to be more similar across levels of adherence at the beginning

of the testing period, but separated at later time points. This may demonstrate that for these

individuals, enhancements from mindfulness training are more prominent at longer durations

of task participation.

Discussion

The potential for mindfulness training to enhance cognitive function has drawn increased

interest for a range of applications. However, two key issues are present within the

Table 2. Comparison of all model fits.

Model R2 R2 (marginal) ICC RMSE Sigma AIC weights BIC weights

Personality* 0.752 0.289 0.651 1513.674 1528.482 < 0.001 < 0.001

Skew 0.695 0.273 0.58 1638.875 1651.59 1 1

IAF 0.728 0.309 0.606 1598.025 1610.031 < 0.001 < 0.001

MAAS 0.726 0.313 0.602 1615.519 1627.852 < 0.001 < 0.001

Prior Sleep 0.724 0.295 0.609 1608.571 1620.656 < 0.001 < 0.001

Intercept 0.723 0.289 0.611 1611.679 1623.788 < 0.001 < 0.001

Adherence** 0.709 0.29 0.59 1633.233 1643.75 < 0.001 < 0.001

Note. All models follow a similar structure (TPEi = β0 + β1 timei * β2 engagementi * β3 measure + β4 baseline TPEi + β5 decline0i + ε,). Models are ordered according to

best fit, however, note that not all models were fit to identical datasets (i.e., missing values may be different). Model’s information criterion (IC) weights are calculated as

per the performance package in R [117], whereby IC weights are computed as exp(-0.5*delta_ic)/sum(exp(-0.5*delta_ic). Here, delta_ic denotes the difference between

the model’s IC value and the minimal IC value of all comparative models [132]. *Personality includes conscientiousness and neuroticism as interacting factors.

**Adherence model includes no other individual factors.

https://doi.org/10.1371/journal.pone.0292501.t002
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mindfulness-based cognitive enhancement literature. Firstly, mixed findings have been sum-

marised in recent systematic reviews [8,33] and discussions are highlighting how an individual

differences approach is crucial to reconcile these inconsistencies [19]. Second, studies are typi-

cally limited to traditional cognitive tests, and do not demonstrate transferability to more com-

plex and dynamic situations. The current study aimed to investigate how a one-week

mindfulness-based cognitive training regime can augment performance in more dynamic

tasks (i.e., the target motion analyst task [23]) while recognising the influence of individual dif-

ferences. Using linear-mixed effect models with cubic splines, we showed that greater adher-

ence (i.e., higher number of sessions) to the mindfulness-based exercises was associated with

superior performance in the second testing session, when compared to lower levels of adher-

ence. Further, our findings demonstrated that this effect was consistent across all levels of rest-

ing-state EEG metrics, and was not accompanied by individual changes in these metrics across

time. In line with our hypotheses, some individual factors were significantly associated with

the results, however, the most consistent predictor among models was adherence to the cogni-

tive training regime.

Adherence to cognitive training

Our study employed a one-week mindfulness-based training regime to determine how indi-

vidual levels of adherence may relate to enhancements in cognitive performance. Here, partici-

pants self-selected the number of times they engaged in the guided mindfulness practices,

from 0 to 21 sessions of the prescribed 5-minute exercises. This opposes the commonly

employed between-groups approach in mindfulness-based cognitive training research, in the

endeavour to better characterise the effect of volume of training. Our results showed that

greater adherence to the cognitive training regime was associated with superior performance

in the TMA task (when accounting for individual baseline performance) and this effect was

consistent even across multiple additions of interacting factors (discussion below). These

results extend on the multiple studies examining the effects of mindfulness-based training on

traditional laboratory tasks (e.g., [10,17,24–26]) and provide evidence for the transferability of

this type of training even to dynamically changing settings. These findings speak to a ‘more is

better’ but ‘some is always good’ approach to mindfulness engagement, with performance

enhancements directly proportionate to all levels of adherence. Such results could also be con-

sidered in relation to findings from studies employing single-session mindfulness practices

prior task engagement [31,36,133]; raising questions about the differences in how performance

benefits are derived from brief mindfulness practice prior to task engagement, versus higher

volumes of more sustained practice over time.

Strikingly, our training regime was correlated with individual enhancements in perfor-

mance even across a short time frame (up to 15 minutes per day, for one week), consistent

with Zeidan et al. [24]. In our study, participants were able to undertake exercises on their own

accord, and our use of Google Analytics helped to minimise bias of self-reporting of adherence

to the intervention. While the use of online audio recordings meant that we were unable to

account for individual participant surrounds, our approach provided a practical and accessible

way for individuals to engage in cognitive training. From this perspective, our findings high-

light how mindfulness-based cognitive training may be a useful and accessible way to improve

performance across a variety of cognitively demanding contexts.

Timing of intervention adherence

To further characterise the neural correlates of mindfulness-based cognitive training, we

examined how the timing of adherence might influence its effects. From this perspective, we

PLOS ONE Mindfulness as cognitive training

PLOS ONE | https://doi.org/10.1371/journal.pone.0292501 May 20, 2024 18 / 30

https://doi.org/10.1371/journal.pone.0292501


explored the timing of an individual’s density of mindfulness exercise (i.e., whether more

training was completed near the first testing session versus nearer the second testing session).

Secondly, as an exploratory analysis, we tested differences in how mindfulness practice com-

pleted on the first day of training (after learning the target motion analyst task; and before

sleep), versus practice beginning on the second day, influenced the observed relationships. For

the timing of adherence (measured by skew of participants’ adherence), we found the same

pattern of higher levels of adherence (more = better) in individuals who were late adherers

(that is, those with a higher density of sessions were completed closer to the second testing ses-

sion). For those who were early adherers, performance was overall better across all levels of

adherence, when compared to later adherers. This finding was consistent with the results of

our first day/prior to sleep analysis, where effects of adherence were more pronounced if par-

ticipants did not complete a mindfulness session on the first day; and those who completed an

exercise on the same day of learning the task, performed better overall (regardless of total level

of adherence). These findings allow us to theorise potential mechanisms of mindfulness

engagement and appear to speak to a strong consolidation-based effect of the training [18,98].

That is, mindfulness training can enhance performance if completed shortly after learning a

new task, irrespective of the volume of training across the total intervention period. However,

volume of training might still be important when individuals miss this crucial early window,

with higher volumes of training still augmenting performance, perhaps by creating optimal

attention states for performance at the time of testing [36,134].

Enjoyment

In addition to timing of adherence, we investigated how individual-level enjoyment of the

mindfulness exercises was associated with performance outcomes. As suggested by Tang and

Braver [19], individual preferences for certain types of mindfulness practices can influence

adherence. In our sample, however, we did not observe a relationship between self-reported

enjoyment and adherence to the cognitive training regime. Our analysis did demonstrate that

enjoyment was a significant predictor of performance; but again, interacting effects of enjoy-

ment only altered the magnitude of variation between low and higher levels of adherence, and

did not change the overall main effect of adherence. We do acknowledge, however, that indi-

vidual enjoyment reports may be influenced by social desirability bias. Nevertheless, it is

hoped that these effects are mitigated by the use of online reporting tools, in which participants

are not required to interact with the researcher.

Dispositional mindfulness

Next, we examined how dispositional mindfulness (as measured through the Mindful Atten-

tion Awareness Scale [39]) interacted with cognitive training to predict performance. Consis-

tent amongst results in other psychological interventions [37,38,135], we found that individual

levels of dispositional mindfulness were related to enhancements associated with the mindful-

ness-based training program. Here, we found that lower levels of dispositional mindfulness

were correlated with more distinct differences in lower and higher levels of adherence (similar

to higher IAF, flatter slopes and higher 1/f intercepts; see below). That is, across the entire test-

ing session, greater adherence was related to superior performance. For individuals with

higher self-reported dispositional mindfulness, the effect of adherence was pronounced only

towards the second half of the testing session, with more similar performance at the beginning

of testing. However, when disregarding the main effect of adherence, those with higher self-

rated trait mindfulness were likely to demonstrate improved performance overall, when com-

pared to those with lower trait mindfulness. These results are consistent with findings of
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Anicha et al. [136], Ruocco and Wonders [137] and Schmertz et al. [138], where self-reported

trait mindfulness has been shown to relate to cognitive function (i.e., less omissions or better

sustained attention during testing). Our results provide converging support for Tang and

Braver’s [19] proposal that those with high trait mindfulness may already be at the upper

capacity of their attentional capacity, whereby further mindfulness-based training does not

result in further improvement to their abilities. Nevertheless, while those with high MAAS had

converging performance at the beginning of the testing session, fluctuations in performance

across time demonstrated that greater adherence was still related to better performance in the

second half of the testing session, suggesting that adherence to the cognitive training regime

still enhanced sustained attentional capacity to some extent.

Individual personality traits

As previous studies have further demonstrated relationships between personality traits and

intervention outcomes, we examined how conscientiousness and neuroticism were related to

performance enhancements. Unlike Anderson [47], Chapman et al. [48] and Sanderson and

Clarkin [49], we found that these personality traits were not predictive of individual adherence

to the intervention. However, consistent with other studies [44–46], we were able to replicate

the negative association between neuroticism and dispositional mindfulness scores. This find-

ing is congruent with the relationship between neuroticism and poorer subjective well-being

[139–141], while mindfulness is known to mitigate neurotic behaviours [3,142] and is related

to enhanced psychological well-being [143]. When examining how these personality factors

might interact with the effect of adherence, we did find significant interactions of conscien-

tiousness, neuroticism and adherence on performance. However, we note that these effects

were very subtle differences in performance across time, and the main effect of greater adher-

ence relating to better performance was most prominent across all interactions of conscien-

tiousness and neuroticism. Again, these findings highlight how mindfulness-based training

regimes may provide cognitive benefits for a wide range of individuals, irrespective of baseline

personality traits or individual preferences.

Individual resting-state EEG metrics

In an effort to illuminate neural mechanisms that may underlie performance enhancements

from cognitive training, we explored how individual resting-state EEG metrics (IAF and 1/f)
interacted with mindfulness-based training adherence to predict performance on the TMA

task. Here, we found that resting-state neural metrics did not change across sessions; that is,

distributions were similar across pre- and post-intervention testing, regardless of individual

involvement in the training regime. Our analyses demonstrated that individual resting-state

metrics in the second session were only predicted by the same measures at baseline testing,

with no effects of adherence. These findings speak to the test re-test stability of IAF [144–146]

and 1/f activity [147,148] demonstrated in other neuroscientific studies. More specifically,

these results align with findings of cognitive training on a larger scale (i.e., 100 hours) by

Grandy et al. [144] where IAF was stable across testing sessions. Together, these outcomes

demonstrate that EEG resting-state metrics appear to be resistant to acute and longer-term

cognitive training interventions. As such, these metrics may serve as viable “fingerprinting”

tools, whereby individuals can be reliably identified across time (as discussed in biometric

research, e.g., [149–151]).

However, we note that the short-term nature (only one-week) of mindfulness-based train-

ing may be the catalyst for these null findings. Previous studies that have observed differences

in the EEG of long-term meditators [95,96] have investigated individuals with years of
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experience (e.g., mean of 20 years) and analysed recordings during meditation. It may be the

case that mindfulness practice does not relate to long-term resting-state EEG changes. Alterna-

tively, it could also be that 1.5 hours of mindfulness-based training is not a sufficient catalyst

for enduring EEG change. Nevertheless, irrespective of changes in resting-state neural metrics,

we discovered that performance enhancements were still evident. These findings highlight the

need for future research to explore other avenues of neurophysiological change that may be

underlying benefits from this style of cognitive training. For example, individuals may exhibit

variations in oscillatory activity in-task (relating to attention or inhibition [152]. Alternatively,

other physiological changes from mindfulness, like heart rate variability [153,154]—also

related to cognition [155–157]—may provide insights into the underlying mechanisms of per-

formance improvements.

On top of this, we found that individual neural characteristics at baseline were not associated

with the general effects of mindfulness adherence. That is, all individual levels of IAF and 1/f
activity were still related to benefits from stricter adherence to the cognitive training regime.

There were, however, small subtleties demonstrated across different levels of individual resting-

state neural metrics. For example, higher levels of IAF, flatter slopes and higher 1/f intercepts

demonstrated more distinct relationships to levels of high versus low adherence (i.e., more

adherence was correlated with superior performance and less adherence was correlated with

poorer performance across the entire testing session). Contrastingly, for steeper 1/f slopes,

lower IAF and lower 1/f intercepts, performance was more likely to converge at certain time

points, even though similar trends were present overall. Nevertheless, this shows promise for

mindfulness-based training programs to be widely beneficial across different ‘types of brains’.

Limitations and future directions

While our study has demonstrated a positive effect of mindfulness-based cognitive training

interventions, we note a few limitations to its rigour. Previous meta-analyses and reviews in

the mindfulness literature have suggested that many studies fail to define meditation styles,

creating difficulties in the comparison of different techniques [158,159]. Within our study, we

did not implement one specific type of mindfulness (e.g., focused attention, open-monitoring

or loving-kindness) but used a variety of mindfulness techniques across the week. From this

perspective, we are unable to identify which particular mental processes within mindfulness

practice help to enhance performance. Similarly, while the study highlights the intricate rela-

tionship between mindfulness interventions and cognitive enhancement, we did not directly

examine whether participants showed higher levels of dispositional mindfulness following the

intervention. Future approaches should aim to thoroughly examine mindfulness’ differential

impacts on cognition, trait mindfulness, and subsequent inter-relationships. We note that,

overall, this study aimed to be more exploratory in nature, in that we investigated outcomes in

more dynamic and complex settings. However, we look to future research to elucidate in more

detail the ways in which distinct mindfulness practices work and to better understand their

benefits to cognition more longitudinally.

Moreover, while we briefly examine how participant enjoyment may play a role in the bene-

fits gained from the mindfulness practice, we did not account for individual preferences for

different modalities. Anderson and Farb’s [135] experimental research has demonstrated that

individual differences in preference of modality of mindfulness interventions can help to

reduce attrition, facilitate adherence and enhance outcomes (similar to findings in clinical

practices too [160]). Thus, a tailored approach to individual participant training programs

could help to increase levels of engagement. Supplementary to this, our study could be biased

by the self-selection of participants to engage in the intervention, with largely fluctuating levels
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of adherence. However, this did fit well with our analytical approach, where we used levels of

adherence as a continuous predictor. Further, as higher levels of adherence and greater perfor-

mance outcomes were not related to enjoyment of the practice, we can suggest that it is more

than a desire or liking for the practice that drives enhancements.

Lastly, while the study aimed to investigate the transferability of mindfulness-based cogni-

tive training exercise, we do note the extremely novel and dynamic nature of the target motion

analyst task [23] used within the experiment. Here, it is difficult to explicitly quantify the diffi-

culty of task demands, and thus a comprehensive task analysis could help to better identify

how mindfulness-based training techniques help to improve dynamic performance. However,

we hope that future research can help to provide insight into the gaps where mindfulness-

based training enhancements diverge from simple/traditional cognitive tasks to undertakings

of larger complexity.

Conclusion

The current study examined how a short-term mindfulness-based cognitive training regime

augments performance on a dynamic cognitive task. Our findings demonstrated that stricter

adherence to the mindfulness-based training regime was associated with superior performance

in the second testing session, even when controlling for baseline performance and individual

differences. In addition to this, we explored how individual moderators (such as enjoyment,

timing of adherence and personality) influenced the effects of level of adherence. Our analyses

demonstrated that resting-state EEG was not a predictor of performance outcomes. Further,

while subtle effects of individual factors were evident, adherence remained the most promi-

nent predictor of second session performance. We also noted that the pattern of training

adherence contributed to performance augmentation; adherence to early mindfulness training

sessions was associated with heightened task performance overall. Nevertheless, higher vol-

umes of cognitive training at later time points were still related to enhanced performance. In

summary, the present findings illustrate the propensity of mindfulness-based training to trans-

fer cognitive enhancements to performance on an unrelated complex and dynamic task. Prac-

tically, the present work has demonstrated an effective solution to implement an online

mindfulness-based training program through a web browser approach, affording objective

monitoring of individual training adherence.
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S1 Fig. Modelled effects of conscientiousness, neuroticism and levels of adherence on sec-

ond session TPE scores. Modelled effects of conscientiousness and neuroticism on TPE

scores. TPE is represented on the y-axis (higher scores indicate poorer performance), while

experimental time is represented on the x-axis. Colours indicate varying levels of adherence in

the cognitive training intervention (brown indicates high levels of adherence, green for moder-

ate and blue for low adherence). Facets represent varying levels of neuroticism (left to

right = low to high) and conscientiousness (top to bottom = low to high). Differences in factors

are categorised as low, moderate and high based on the sample’s first quartile, median and

third quartile, respectively. Statistical models included these predictors as continuous vari-

ables, however, categories were created for visualisation purposes.
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85. Stock A-K, Pertermann M, Mückschel M, et al. High-dose ethanol intoxication decreases 1/f neural

noise or scale-free neural activity in the resting state. Addict Biol 2020; 25: e12818. https://doi.org/10.

1111/adb.12818 PMID: 31368192

86. Colombo MA, Napolitani M, Boly M, et al. The spectral exponent of the resting EEG indexes the pres-

ence of consciousness during unresponsiveness induced by propofol, xenon, and ketamine. Neuro-

Image 2019; 189: 631–644. https://doi.org/10.1016/j.neuroimage.2019.01.024 PMID: 30639334

87. Allegrini P, Paradisi P, Menicucci D, et al. Self-organized dynamical complexity in human wakefulness

and sleep: different critical brain-activity feedback for conscious and unconscious states. Phys Rev E

Stat Nonlin Soft Matter Phys 2015; 92: 032808. https://doi.org/10.1103/PhysRevE.92.032808 PMID:

26465529

88. Robertson MM, Furlong S, Voytek B, et al. EEG power spectral slope differs by ADHD status and stim-

ulant medication exposure in early childhood. J Neurophysiol 2019; 122: 2427–2437. https://doi.org/

10.1152/jn.00388.2019 PMID: 31619109

89. Elias AN, Guich S, Wilson AF. Ketosis with enhanced GABAergic tone promotes physiological

changes in transcendental meditation. Med Hypotheses 2000; 54: 660–662. https://doi.org/10.1054/

mehy.1999.0921 PMID: 10859661

90. Guglietti C, Daskalakis Z, Radhu N, et al. Meditation-Related Increases in GABA(B) Modulated Corti-

cal Inhibition. Brain Stimulat; 6. Epub ahead of print 7 September 2012. https://doi.org/10.1016/j.brs.

2012.08.005 PMID: 23022436

91. Gard T, Hölzel BK, Lazar SW. The potential effects of meditation on age-related cognitive decline: a

systematic review. Ann N Y Acad Sci 2014; 1307: 89–103. https://doi.org/10.1111/nyas.12348 PMID:

24571182
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117. Lüdecke D, Ben-Shachar MS, Patil I, et al. performance: An R Package for Assessment, Comparison

and Testing of Statistical Models. J Open Source Softw 2021; 6: 3139.

118. Alday PM. lmerOut: LaTeX Output for Mixed Effects Models with lme4., https://bitbucket.org/palday/

lmerout (2018).

119. Wickham H. ggplot2: Elegant Graphics for Data Analysis. ew York: Springer-Verlag New York, https://

ggplot2.tidyverse.org. (2016, accessed 13 May 2021).
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133. Sleimen-Malkoun R, Devillers-Réolon L, Temprado J-J. A single session of mindfulness meditation

may acutely enhance cognitive performance regardless of meditation experience. PLOS ONE 2023;

18: e0282188. https://doi.org/10.1371/journal.pone.0282188 PMID: 36920902

134. Colzato LS, van der Wel P, Sellaro R, et al. A single bout of meditation biases cognitive control but not

attentional focusing: Evidence from the global–local task. Conscious Cogn 2016; 39: 1–7. https://doi.

org/10.1016/j.concog.2015.11.003 PMID: 26637968

135. Anderson T, Farb NAS. Personalising practice using preferences for meditation anchor modality. Front

Psychol; 9. Epub ahead of print 2018. https://doi.org/10.3389/fpsyg.2018.02521 PMID: 30618947

136. Anicha CL, Ode S, Moeller SK, et al. Toward a Cognitive View of Trait Mindfulness: Distinct Cognitive

Skills Predict Its Observing and Nonreactivity Facets. J Pers 2012; 80: 255–285. https://doi.org/10.

1111/j.1467-6494.2011.00722.x PMID: 21299556

137. Ruocco AC, Wonders E. Delineating the contributions of sustained attention and working memory to

individual differences in mindfulness. Personal Individ Differ 2013; 54: 226–230.

138. Schmertz SK, Anderson PL, Robins DL. The Relation Between Self-Report Mindfulness and Perfor-

mance on Tasks of Sustained Attention. J Psychopathol Behav Assess 2009; 31: 60–66.

139. Costa PT, McCrae RR. Influence of extraversion and neuroticism on subjective well-being: Happy and

unhappy people. J Pers Soc Psychol 1980; 38: 668–678. https://doi.org/10.1037//0022-3514.38.4.

668 PMID: 7381680

140. Diener E, Suh EM, Lucas RE, et al. Subjective well-being: Three decades of progress. Psychol Bull

1999; 125: 276–302.

141. Librán EC. Personality Dimensions and Subjective Well-Being. Span J Psychol 2006; 9: 38–44.

https://doi.org/10.1017/s1138741600005953 PMID: 16673621

142. Wenzel M, von Versen C, Hirschmüller S, et al. Curb your neuroticism–Mindfulness mediates the link

between neuroticism and subjective well-being. Personal Individ Differ 2015; 80: 68–75.

143. Brown KW, Ryan RM, Creswell JD. Mindfulness: Theoretical foundations and evidence for its salutary

effects. Psychol Inq 2007; 18: 211–237.

144. Grandy TH, Werkle-Bergner M, Chicherio C, et al. Peak individual alpha frequency qualifies as a stable

neurophysiological trait marker in healthy younger and older adults. Psychophysiology 2013; 50: 570–

582. https://doi.org/10.1111/psyp.12043 PMID: 23551082
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